/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * This file contains implementations of the nsIBinaryInputStream and * nsIBinaryOutputStream interfaces. Together, these interfaces allows reading * and writing of primitive data types (integers, floating-point values, * booleans, etc.) to a stream in a binary, untagged, fixed-endianness format. * This might be used, for example, to implement network protocols or to * produce architecture-neutral binary disk files, i.e. ones that can be read * and written by both big-endian and little-endian platforms. Output is * written in big-endian order (high-order byte first), as this is traditional * network order. * * @See nsIBinaryInputStream * @See nsIBinaryOutputStream */ #include #include "nsBinaryStream.h" #include "nsCRT.h" #include "nsString.h" #include "nsISerializable.h" #include "nsIClassInfo.h" #include "nsComponentManagerUtils.h" #include "nsIURI.h" // for NS_IURI_IID #include "mozilla/Endian.h" #include "jsfriendapi.h" NS_IMPL_ISUPPORTS3(nsBinaryOutputStream, nsIObjectOutputStream, nsIBinaryOutputStream, nsIOutputStream) NS_IMETHODIMP nsBinaryOutputStream::Flush() { if (NS_WARN_IF(!mOutputStream)) return NS_ERROR_UNEXPECTED; return mOutputStream->Flush(); } NS_IMETHODIMP nsBinaryOutputStream::Close() { if (NS_WARN_IF(!mOutputStream)) return NS_ERROR_UNEXPECTED; return mOutputStream->Close(); } NS_IMETHODIMP nsBinaryOutputStream::Write(const char *aBuf, uint32_t aCount, uint32_t *aActualBytes) { if (NS_WARN_IF(!mOutputStream)) return NS_ERROR_UNEXPECTED; return mOutputStream->Write(aBuf, aCount, aActualBytes); } NS_IMETHODIMP nsBinaryOutputStream::WriteFrom(nsIInputStream *inStr, uint32_t count, uint32_t *_retval) { NS_NOTREACHED("WriteFrom"); return NS_ERROR_NOT_IMPLEMENTED; } NS_IMETHODIMP nsBinaryOutputStream::WriteSegments(nsReadSegmentFun reader, void * closure, uint32_t count, uint32_t *_retval) { NS_NOTREACHED("WriteSegments"); return NS_ERROR_NOT_IMPLEMENTED; } NS_IMETHODIMP nsBinaryOutputStream::IsNonBlocking(bool *aNonBlocking) { if (NS_WARN_IF(!mOutputStream)) return NS_ERROR_UNEXPECTED; return mOutputStream->IsNonBlocking(aNonBlocking); } nsresult nsBinaryOutputStream::WriteFully(const char *aBuf, uint32_t aCount) { if (NS_WARN_IF(!mOutputStream)) return NS_ERROR_UNEXPECTED; nsresult rv; uint32_t bytesWritten; rv = mOutputStream->Write(aBuf, aCount, &bytesWritten); if (NS_FAILED(rv)) return rv; if (bytesWritten != aCount) return NS_ERROR_FAILURE; return NS_OK; } NS_IMETHODIMP nsBinaryOutputStream::SetOutputStream(nsIOutputStream *aOutputStream) { if (NS_WARN_IF(!aOutputStream)) return NS_ERROR_INVALID_ARG; mOutputStream = aOutputStream; mBufferAccess = do_QueryInterface(aOutputStream); return NS_OK; } NS_IMETHODIMP nsBinaryOutputStream::WriteBoolean(bool aBoolean) { return Write8(aBoolean); } NS_IMETHODIMP nsBinaryOutputStream::Write8(uint8_t aByte) { return WriteFully((const char*)&aByte, sizeof aByte); } NS_IMETHODIMP nsBinaryOutputStream::Write16(uint16_t a16) { a16 = mozilla::NativeEndian::swapToBigEndian(a16); return WriteFully((const char*)&a16, sizeof a16); } NS_IMETHODIMP nsBinaryOutputStream::Write32(uint32_t a32) { a32 = mozilla::NativeEndian::swapToBigEndian(a32); return WriteFully((const char*)&a32, sizeof a32); } NS_IMETHODIMP nsBinaryOutputStream::Write64(uint64_t a64) { nsresult rv; uint32_t bytesWritten; a64 = mozilla::NativeEndian::swapToBigEndian(a64); rv = Write(reinterpret_cast(&a64), sizeof a64, &bytesWritten); if (NS_FAILED(rv)) return rv; if (bytesWritten != sizeof a64) return NS_ERROR_FAILURE; return rv; } NS_IMETHODIMP nsBinaryOutputStream::WriteFloat(float aFloat) { NS_ASSERTION(sizeof(float) == sizeof (uint32_t), "False assumption about sizeof(float)"); return Write32(*reinterpret_cast(&aFloat)); } NS_IMETHODIMP nsBinaryOutputStream::WriteDouble(double aDouble) { NS_ASSERTION(sizeof(double) == sizeof(uint64_t), "False assumption about sizeof(double)"); return Write64(*reinterpret_cast(&aDouble)); } NS_IMETHODIMP nsBinaryOutputStream::WriteStringZ(const char *aString) { uint32_t length; nsresult rv; length = strlen(aString); rv = Write32(length); if (NS_FAILED(rv)) return rv; return WriteFully(aString, length); } NS_IMETHODIMP nsBinaryOutputStream::WriteWStringZ(const char16_t* aString) { uint32_t length, byteCount; nsresult rv; length = NS_strlen(aString); rv = Write32(length); if (NS_FAILED(rv)) return rv; if (length == 0) return NS_OK; byteCount = length * sizeof(char16_t); #ifdef IS_BIG_ENDIAN rv = WriteBytes(reinterpret_cast(aString), byteCount); #else // XXX use WriteSegments here to avoid copy! char16_t *copy, temp[64]; if (length <= 64) { copy = temp; } else { copy = reinterpret_cast(moz_malloc(byteCount)); if (!copy) return NS_ERROR_OUT_OF_MEMORY; } NS_ASSERTION((uintptr_t(aString) & 0x1) == 0, "aString not properly aligned"); mozilla::NativeEndian::copyAndSwapToBigEndian(copy, aString, length); rv = WriteBytes(reinterpret_cast(copy), byteCount); if (copy != temp) moz_free(copy); #endif return rv; } NS_IMETHODIMP nsBinaryOutputStream::WriteUtf8Z(const char16_t* aString) { return WriteStringZ(NS_ConvertUTF16toUTF8(aString).get()); } NS_IMETHODIMP nsBinaryOutputStream::WriteBytes(const char *aString, uint32_t aLength) { nsresult rv; uint32_t bytesWritten; rv = Write(aString, aLength, &bytesWritten); if (NS_FAILED(rv)) return rv; if (bytesWritten != aLength) return NS_ERROR_FAILURE; return rv; } NS_IMETHODIMP nsBinaryOutputStream::WriteByteArray(uint8_t *aBytes, uint32_t aLength) { return WriteBytes(reinterpret_cast(aBytes), aLength); } NS_IMETHODIMP nsBinaryOutputStream::WriteObject(nsISupports* aObject, bool aIsStrongRef) { return WriteCompoundObject(aObject, NS_GET_IID(nsISupports), aIsStrongRef); } NS_IMETHODIMP nsBinaryOutputStream::WriteSingleRefObject(nsISupports* aObject) { return WriteCompoundObject(aObject, NS_GET_IID(nsISupports), true); } NS_IMETHODIMP nsBinaryOutputStream::WriteCompoundObject(nsISupports* aObject, const nsIID& aIID, bool aIsStrongRef) { nsCOMPtr classInfo = do_QueryInterface(aObject); nsCOMPtr serializable = do_QueryInterface(aObject); // Can't deal with weak refs if (NS_WARN_IF(!aIsStrongRef)) return NS_ERROR_UNEXPECTED; if (NS_WARN_IF(!classInfo) || NS_WARN_IF(!serializable)) return NS_ERROR_NOT_AVAILABLE; nsCID cid; nsresult rv = classInfo->GetClassIDNoAlloc(&cid); if (NS_SUCCEEDED(rv)) { rv = WriteID(cid); } else { nsCID *cidptr = nullptr; rv = classInfo->GetClassID(&cidptr); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } rv = WriteID(*cidptr); NS_Free(cidptr); } if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = WriteID(aIID); if (NS_WARN_IF(NS_FAILED(rv))) return rv; return serializable->Write(this); } NS_IMETHODIMP nsBinaryOutputStream::WriteID(const nsIID& aIID) { nsresult rv = Write32(aIID.m0); if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = Write16(aIID.m1); if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = Write16(aIID.m2); if (NS_WARN_IF(NS_FAILED(rv))) return rv; for (int i = 0; i < 8; ++i) { rv = Write8(aIID.m3[i]); if (NS_WARN_IF(NS_FAILED(rv))) return rv; } return NS_OK; } NS_IMETHODIMP_(char*) nsBinaryOutputStream::GetBuffer(uint32_t aLength, uint32_t aAlignMask) { if (mBufferAccess) return mBufferAccess->GetBuffer(aLength, aAlignMask); return nullptr; } NS_IMETHODIMP_(void) nsBinaryOutputStream::PutBuffer(char* aBuffer, uint32_t aLength) { if (mBufferAccess) mBufferAccess->PutBuffer(aBuffer, aLength); } NS_IMPL_ISUPPORTS3(nsBinaryInputStream, nsIObjectInputStream, nsIBinaryInputStream, nsIInputStream) NS_IMETHODIMP nsBinaryInputStream::Available(uint64_t* aResult) { if (NS_WARN_IF(!mInputStream)) return NS_ERROR_UNEXPECTED; return mInputStream->Available(aResult); } NS_IMETHODIMP nsBinaryInputStream::Read(char* aBuffer, uint32_t aCount, uint32_t *aNumRead) { if (NS_WARN_IF(!mInputStream)) return NS_ERROR_UNEXPECTED; // mInputStream might give us short reads, so deal with that. uint32_t totalRead = 0; uint32_t bytesRead; do { nsresult rv = mInputStream->Read(aBuffer, aCount, &bytesRead); if (rv == NS_BASE_STREAM_WOULD_BLOCK && totalRead != 0) { // We already read some data. Return it. break; } if (NS_FAILED(rv)) { return rv; } totalRead += bytesRead; aBuffer += bytesRead; aCount -= bytesRead; } while (aCount != 0 && bytesRead != 0); *aNumRead = totalRead; return NS_OK; } // when forwarding ReadSegments to mInputStream, we need to make sure // 'this' is being passed to the writer each time. To do this, we need // a thunking function which keeps the real input stream around. // the closure wrapper struct ReadSegmentsClosure { nsIInputStream* mRealInputStream; void* mRealClosure; nsWriteSegmentFun mRealWriter; nsresult mRealResult; uint32_t mBytesRead; // to properly implement aToOffset }; // the thunking function static NS_METHOD ReadSegmentForwardingThunk(nsIInputStream* aStream, void *aClosure, const char* aFromSegment, uint32_t aToOffset, uint32_t aCount, uint32_t *aWriteCount) { ReadSegmentsClosure* thunkClosure = reinterpret_cast(aClosure); NS_ASSERTION(NS_SUCCEEDED(thunkClosure->mRealResult), "How did this get to be a failure status?"); thunkClosure->mRealResult = thunkClosure->mRealWriter(thunkClosure->mRealInputStream, thunkClosure->mRealClosure, aFromSegment, thunkClosure->mBytesRead + aToOffset, aCount, aWriteCount); return thunkClosure->mRealResult; } NS_IMETHODIMP nsBinaryInputStream::ReadSegments(nsWriteSegmentFun writer, void * closure, uint32_t count, uint32_t *_retval) { if (NS_WARN_IF(!mInputStream)) return NS_ERROR_UNEXPECTED; ReadSegmentsClosure thunkClosure = { this, closure, writer, NS_OK, 0 }; // mInputStream might give us short reads, so deal with that. uint32_t bytesRead; do { nsresult rv = mInputStream->ReadSegments(ReadSegmentForwardingThunk, &thunkClosure, count, &bytesRead); if (rv == NS_BASE_STREAM_WOULD_BLOCK && thunkClosure.mBytesRead != 0) { // We already read some data. Return it. break; } if (NS_FAILED(rv)) { return rv; } thunkClosure.mBytesRead += bytesRead; count -= bytesRead; } while (count != 0 && bytesRead != 0 && NS_SUCCEEDED(thunkClosure.mRealResult)); *_retval = thunkClosure.mBytesRead; return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::IsNonBlocking(bool *aNonBlocking) { if (NS_WARN_IF(!mInputStream)) return NS_ERROR_UNEXPECTED; return mInputStream->IsNonBlocking(aNonBlocking); } NS_IMETHODIMP nsBinaryInputStream::Close() { if (NS_WARN_IF(!mInputStream)) return NS_ERROR_UNEXPECTED; return mInputStream->Close(); } NS_IMETHODIMP nsBinaryInputStream::SetInputStream(nsIInputStream *aInputStream) { if (NS_WARN_IF(!aInputStream)) return NS_ERROR_INVALID_ARG; mInputStream = aInputStream; mBufferAccess = do_QueryInterface(aInputStream); return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadBoolean(bool* aBoolean) { uint8_t byteResult; nsresult rv = Read8(&byteResult); if (NS_FAILED(rv)) return rv; *aBoolean = !!byteResult; return rv; } NS_IMETHODIMP nsBinaryInputStream::Read8(uint8_t* aByte) { nsresult rv; uint32_t bytesRead; rv = Read(reinterpret_cast(aByte), sizeof(*aByte), &bytesRead); if (NS_FAILED(rv)) return rv; if (bytesRead != 1) return NS_ERROR_FAILURE; return rv; } NS_IMETHODIMP nsBinaryInputStream::Read16(uint16_t* a16) { nsresult rv; uint32_t bytesRead; rv = Read(reinterpret_cast(a16), sizeof *a16, &bytesRead); if (NS_FAILED(rv)) return rv; if (bytesRead != sizeof *a16) return NS_ERROR_FAILURE; *a16 = mozilla::NativeEndian::swapFromBigEndian(*a16); return rv; } NS_IMETHODIMP nsBinaryInputStream::Read32(uint32_t* a32) { nsresult rv; uint32_t bytesRead; rv = Read(reinterpret_cast(a32), sizeof *a32, &bytesRead); if (NS_FAILED(rv)) return rv; if (bytesRead != sizeof *a32) return NS_ERROR_FAILURE; *a32 = mozilla::NativeEndian::swapFromBigEndian(*a32); return rv; } NS_IMETHODIMP nsBinaryInputStream::Read64(uint64_t* a64) { nsresult rv; uint32_t bytesRead; rv = Read(reinterpret_cast(a64), sizeof *a64, &bytesRead); if (NS_FAILED(rv)) return rv; if (bytesRead != sizeof *a64) return NS_ERROR_FAILURE; *a64 = mozilla::NativeEndian::swapFromBigEndian(*a64); return rv; } NS_IMETHODIMP nsBinaryInputStream::ReadFloat(float* aFloat) { NS_ASSERTION(sizeof(float) == sizeof (uint32_t), "False assumption about sizeof(float)"); return Read32(reinterpret_cast(aFloat)); } NS_IMETHODIMP nsBinaryInputStream::ReadDouble(double* aDouble) { NS_ASSERTION(sizeof(double) == sizeof(uint64_t), "False assumption about sizeof(double)"); return Read64(reinterpret_cast(aDouble)); } static NS_METHOD WriteSegmentToCString(nsIInputStream* aStream, void *aClosure, const char* aFromSegment, uint32_t aToOffset, uint32_t aCount, uint32_t *aWriteCount) { nsACString* outString = static_cast(aClosure); outString->Append(aFromSegment, aCount); *aWriteCount = aCount; return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadCString(nsACString& aString) { nsresult rv; uint32_t length, bytesRead; rv = Read32(&length); if (NS_FAILED(rv)) return rv; aString.Truncate(); rv = ReadSegments(WriteSegmentToCString, &aString, length, &bytesRead); if (NS_FAILED(rv)) return rv; if (bytesRead != length) return NS_ERROR_FAILURE; return NS_OK; } // sometimes, WriteSegmentToString will be handed an odd-number of // bytes, which means we only have half of the last char16_t struct WriteStringClosure { char16_t *mWriteCursor; bool mHasCarryoverByte; char mCarryoverByte; }; // there are a few cases we have to account for here: // * even length buffer, no carryover - easy, just append // * odd length buffer, no carryover - the last byte needs to be saved // for carryover // * odd length buffer, with carryover - first byte needs to be used // with the carryover byte, and // the rest of the even length // buffer is appended as normal // * even length buffer, with carryover - the first byte needs to be // used with the previous carryover byte. // this gives you an odd length buffer, // so you have to save the last byte for // the next carryover // same version of the above, but with correct casting and endian swapping static NS_METHOD WriteSegmentToString(nsIInputStream* aStream, void *aClosure, const char* aFromSegment, uint32_t aToOffset, uint32_t aCount, uint32_t *aWriteCount) { NS_PRECONDITION(aCount > 0, "Why are we being told to write 0 bytes?"); NS_PRECONDITION(sizeof(char16_t) == 2, "We can't handle other sizes!"); WriteStringClosure* closure = static_cast(aClosure); char16_t *cursor = closure->mWriteCursor; // we're always going to consume the whole buffer no matter what // happens, so take care of that right now.. that allows us to // tweak aCount later. Do NOT move this! *aWriteCount = aCount; // if the last Write had an odd-number of bytes read, then if (closure->mHasCarryoverByte) { // re-create the two-byte sequence we want to work with char bytes[2] = { closure->mCarryoverByte, *aFromSegment }; *cursor = *(char16_t*)bytes; // Now the little endianness dance mozilla::NativeEndian::swapToBigEndianInPlace(cursor, 1); ++cursor; // now skip past the first byte of the buffer.. code from here // can assume normal operations, but should not assume aCount // is relative to the ORIGINAL buffer ++aFromSegment; --aCount; closure->mHasCarryoverByte = false; } // this array is possibly unaligned... be careful how we access it! const char16_t *unicodeSegment = reinterpret_cast(aFromSegment); // calculate number of full characters in segment (aCount could be odd!) uint32_t segmentLength = aCount / sizeof(char16_t); // copy all data into our aligned buffer. byte swap if necessary. // cursor may be unaligned, so we cannot use copyAndSwapToBigEndian directly memcpy(cursor, unicodeSegment, segmentLength * sizeof(char16_t)); char16_t *end = cursor + segmentLength; mozilla::NativeEndian::swapToBigEndianInPlace(cursor, segmentLength); closure->mWriteCursor = end; // remember this is the modifed aCount and aFromSegment, // so that will take into account the fact that we might have // skipped the first byte in the buffer if (aCount % sizeof(char16_t) != 0) { // we must have had a carryover byte, that we'll need the next // time around closure->mCarryoverByte = aFromSegment[aCount - 1]; closure->mHasCarryoverByte = true; } return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadString(nsAString& aString) { nsresult rv; uint32_t length, bytesRead; rv = Read32(&length); if (NS_FAILED(rv)) return rv; if (length == 0) { aString.Truncate(); return NS_OK; } // pre-allocate output buffer, and get direct access to buffer... if (!aString.SetLength(length, mozilla::fallible_t())) return NS_ERROR_OUT_OF_MEMORY; nsAString::iterator start; aString.BeginWriting(start); WriteStringClosure closure; closure.mWriteCursor = start.get(); closure.mHasCarryoverByte = false; rv = ReadSegments(WriteSegmentToString, &closure, length*sizeof(char16_t), &bytesRead); if (NS_FAILED(rv)) return rv; NS_ASSERTION(!closure.mHasCarryoverByte, "some strange stream corruption!"); if (bytesRead != length*sizeof(char16_t)) return NS_ERROR_FAILURE; return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadBytes(uint32_t aLength, char* *_rval) { nsresult rv; uint32_t bytesRead; char* s; s = reinterpret_cast(moz_malloc(aLength)); if (!s) return NS_ERROR_OUT_OF_MEMORY; rv = Read(s, aLength, &bytesRead); if (NS_FAILED(rv)) { moz_free(s); return rv; } if (bytesRead != aLength) { moz_free(s); return NS_ERROR_FAILURE; } *_rval = s; return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadByteArray(uint32_t aLength, uint8_t* *_rval) { return ReadBytes(aLength, reinterpret_cast(_rval)); } NS_IMETHODIMP nsBinaryInputStream::ReadArrayBuffer(uint32_t aLength, JS::Handle aBuffer, JSContext* cx) { if (!aBuffer.isObject()) { return NS_ERROR_FAILURE; } JS::RootedObject buffer(cx, &aBuffer.toObject()); if (!JS_IsArrayBufferObject(buffer) || JS_GetArrayBufferByteLength(buffer) < aLength) { return NS_ERROR_FAILURE; } uint8_t* data = JS_GetStableArrayBufferData(cx, buffer); if (!data) { return NS_ERROR_FAILURE; } uint32_t bytesRead; nsresult rv = Read(reinterpret_cast(data), aLength, &bytesRead); if (NS_WARN_IF(NS_FAILED(rv))) return rv; if (bytesRead != aLength) { return NS_ERROR_FAILURE; } return NS_OK; } NS_IMETHODIMP nsBinaryInputStream::ReadObject(bool aIsStrongRef, nsISupports* *aObject) { nsCID cid; nsIID iid; nsresult rv = ReadID(&cid); if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = ReadID(&iid); if (NS_WARN_IF(NS_FAILED(rv))) return rv; // HACK: Intercept old (pre-gecko6) nsIURI IID, and replace with // the updated IID, so that we're QI'ing to an actual interface. // (As soon as we drop support for upgrading from pre-gecko6, we can // remove this chunk.) static const nsIID oldURIiid = { 0x7a22cc0, 0xce5, 0x11d3, { 0x93, 0x31, 0x0, 0x10, 0x4b, 0xa0, 0xfd, 0x40 }}; // hackaround for bug 670542 static const nsIID oldURIiid2 = { 0xd6d04c36, 0x0fa4, 0x4db3, { 0xbe, 0x05, 0x4a, 0x18, 0x39, 0x71, 0x03, 0xe2 }}; // hackaround for bug 682031 static const nsIID oldURIiid3 = { 0x12120b20, 0x0929, 0x40e9, { 0x88, 0xcf, 0x6e, 0x08, 0x76, 0x6e, 0x8b, 0x23 }}; if (iid.Equals(oldURIiid) || iid.Equals(oldURIiid2) || iid.Equals(oldURIiid3)) { const nsIID newURIiid = NS_IURI_IID; iid = newURIiid; } // END HACK nsCOMPtr object = do_CreateInstance(cid, &rv); if (NS_WARN_IF(NS_FAILED(rv))) return rv; nsCOMPtr serializable = do_QueryInterface(object); if (NS_WARN_IF(!serializable)) return NS_ERROR_UNEXPECTED; rv = serializable->Read(this); if (NS_WARN_IF(NS_FAILED(rv))) return rv; return object->QueryInterface(iid, reinterpret_cast(aObject)); } NS_IMETHODIMP nsBinaryInputStream::ReadID(nsID *aResult) { nsresult rv = Read32(&aResult->m0); if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = Read16(&aResult->m1); if (NS_WARN_IF(NS_FAILED(rv))) return rv; rv = Read16(&aResult->m2); if (NS_WARN_IF(NS_FAILED(rv))) return rv; for (int i = 0; i < 8; ++i) { rv = Read8(&aResult->m3[i]); if (NS_WARN_IF(NS_FAILED(rv))) return rv; } return NS_OK; } NS_IMETHODIMP_(char*) nsBinaryInputStream::GetBuffer(uint32_t aLength, uint32_t aAlignMask) { if (mBufferAccess) return mBufferAccess->GetBuffer(aLength, aAlignMask); return nullptr; } NS_IMETHODIMP_(void) nsBinaryInputStream::PutBuffer(char* aBuffer, uint32_t aLength) { if (mBufferAccess) mBufferAccess->PutBuffer(aBuffer, aLength); }