/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: sw=4 ts=4 et : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ipc/MessageChannel.h" #include "mozilla/ipc/ProtocolUtils.h" #include "mozilla/dom/ScriptSettings.h" #include "mozilla/Assertions.h" #include "mozilla/DebugOnly.h" #include "mozilla/Move.h" #include "mozilla/SizePrintfMacros.h" #include "nsDebug.h" #include "nsISupportsImpl.h" #include "nsContentUtils.h" #include "prprf.h" // Undo the damage done by mozzconf.h #undef compress /* * IPC design: * * There are three kinds of messages: async, sync, and intr. Sync and intr * messages are blocking. Only intr and high-priority sync messages can nest. * * Terminology: To dispatch a message Foo is to run the RecvFoo code for * it. This is also called "handling" the message. * * Sync messages have priorities while async and intr messages always have * normal priority. The three possible priorities are normal, high, and urgent. * The intended uses of these priorities are: * NORMAL - most messages. * HIGH - CPOW-related messages, which can go in either direction. * URGENT - messages where we don't want to dispatch * incoming CPOWs while waiting for the response. * * To avoid jank, the parent process is not allowed to send sync messages of * normal priority. The parent also is not allowed to send urgent messages at * all. When a process is waiting for a response to a sync message M0, it will * dispatch an incoming message M if: * 1. M has a higher priority than M0, or * 2. if M has the same priority as M0 and we're in the child, or * 3. if M has the same priority as M0 and it was sent by the other side while dispatching M0 (nesting). * The idea is that higher priority messages should take precendence, and we * also want to allow nesting. The purpose of rule 2 is to handle a race where * both processes send to each other simultaneously. In this case, we resolve * the race in favor of the parent (so the child dispatches first). * * Sync messages satisfy the following properties: * A. When waiting for a response to a sync message, we won't dispatch any * messages of lower priority. * B. Sync messages of the same priority will be dispatched roughly in the * order they were sent. The exception is when the parent and child send * sync messages to each other simulataneously. In this case, the parent's * message is dispatched first. While it is dispatched, the child may send * further nested messages, and these messages may be dispatched before the * child's original message. We can consider ordering to be preserved here * because we pretend that the child's original message wasn't sent until * after the parent's message is finished being dispatched. * * Intr messages are blocking but not prioritized. While waiting for an intr * response, all incoming messages are dispatched until a response is * received. Intr messages also can be nested. When two intr messages race with * each other, a similar scheme is used to ensure that one side wins. The * winning side is chosen based on the message type. * * Intr messages differ from sync messages in that, while sending an intr * message, we may dispatch an async message. This causes some additional * complexity. One issue is that replies can be received out of order. It's also * more difficult to determine whether one message is nested inside * another. Consequently, intr handling uses mOutOfTurnReplies and * mRemoteStackDepthGuess, which are not needed for sync messages. */ using namespace mozilla; using namespace std; using mozilla::dom::AutoNoJSAPI; using mozilla::dom::ScriptSettingsInitialized; using mozilla::MonitorAutoLock; using mozilla::MonitorAutoUnlock; template<> struct RunnableMethodTraits { static void RetainCallee(mozilla::ipc::MessageChannel* obj) { } static void ReleaseCallee(mozilla::ipc::MessageChannel* obj) { } }; #define IPC_ASSERT(_cond, ...) \ do { \ if (!(_cond)) \ DebugAbort(__FILE__, __LINE__, #_cond,## __VA_ARGS__); \ } while (0) static bool gParentIsBlocked; namespace mozilla { namespace ipc { const int32_t MessageChannel::kNoTimeout = INT32_MIN; // static bool MessageChannel::sIsPumpingMessages = false; enum Direction { IN_MESSAGE, OUT_MESSAGE }; class MessageChannel::InterruptFrame { private: enum Semantics { INTR_SEMS, SYNC_SEMS, ASYNC_SEMS }; public: InterruptFrame(Direction direction, const Message* msg) : mMessageName(strdup(msg->name())), mMessageRoutingId(msg->routing_id()), mMesageSemantics(msg->is_interrupt() ? INTR_SEMS : msg->is_sync() ? SYNC_SEMS : ASYNC_SEMS), mDirection(direction), mMoved(false) { MOZ_ASSERT(mMessageName); } InterruptFrame(InterruptFrame&& aOther) { MOZ_ASSERT(aOther.mMessageName); mMessageName = aOther.mMessageName; aOther.mMessageName = nullptr; aOther.mMoved = true; mMessageRoutingId = aOther.mMessageRoutingId; mMesageSemantics = aOther.mMesageSemantics; mDirection = aOther.mDirection; } ~InterruptFrame() { MOZ_ASSERT_IF(!mMessageName, mMoved); if (mMessageName) free(const_cast(mMessageName)); } InterruptFrame& operator=(InterruptFrame&& aOther) { MOZ_RELEASE_ASSERT(&aOther != this); this->~InterruptFrame(); new (this) InterruptFrame(mozilla::Move(aOther)); return *this; } bool IsInterruptIncall() const { return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection; } bool IsInterruptOutcall() const { return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection; } bool IsOutgoingSync() const { return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) && mDirection == OUT_MESSAGE; } void Describe(int32_t* id, const char** dir, const char** sems, const char** name) const { *id = mMessageRoutingId; *dir = (IN_MESSAGE == mDirection) ? "in" : "out"; *sems = (INTR_SEMS == mMesageSemantics) ? "intr" : (SYNC_SEMS == mMesageSemantics) ? "sync" : "async"; *name = mMessageName; } int32_t GetRoutingId() const { return mMessageRoutingId; } private: const char* mMessageName; int32_t mMessageRoutingId; Semantics mMesageSemantics; Direction mDirection; DebugOnly mMoved; // Disable harmful methods. InterruptFrame(const InterruptFrame& aOther) = delete; InterruptFrame& operator=(const InterruptFrame&) = delete; }; class MOZ_STACK_CLASS MessageChannel::CxxStackFrame { public: CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg) : mThat(that) { mThat.AssertWorkerThread(); if (mThat.mCxxStackFrames.empty()) mThat.EnteredCxxStack(); mThat.mCxxStackFrames.append(InterruptFrame(direction, msg)); const InterruptFrame& frame = mThat.mCxxStackFrames.back(); if (frame.IsInterruptIncall()) mThat.EnteredCall(); if (frame.IsOutgoingSync()) mThat.EnteredSyncSend(); mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall(); } ~CxxStackFrame() { mThat.AssertWorkerThread(); MOZ_ASSERT(!mThat.mCxxStackFrames.empty()); const InterruptFrame& frame = mThat.mCxxStackFrames.back(); bool exitingSync = frame.IsOutgoingSync(); bool exitingCall = frame.IsInterruptIncall(); mThat.mCxxStackFrames.shrinkBy(1); bool exitingStack = mThat.mCxxStackFrames.empty(); // mListener could have gone away if Close() was called while // MessageChannel code was still on the stack if (!mThat.mListener) return; if (exitingCall) mThat.ExitedCall(); if (exitingSync) mThat.ExitedSyncSend(); if (exitingStack) mThat.ExitedCxxStack(); } private: MessageChannel& mThat; // Disable harmful methods. CxxStackFrame() = delete; CxxStackFrame(const CxxStackFrame&) = delete; CxxStackFrame& operator=(const CxxStackFrame&) = delete; }; namespace { class MOZ_STACK_CLASS MaybeScriptBlocker { public: explicit MaybeScriptBlocker(MessageChannel *aChannel, bool aBlock MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : mBlocked(aChannel->ShouldBlockScripts() && aBlock) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; if (mBlocked) { nsContentUtils::AddScriptBlocker(); } } ~MaybeScriptBlocker() { if (mBlocked) { nsContentUtils::RemoveScriptBlocker(); } } private: MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER bool mBlocked; }; } /* namespace {} */ MessageChannel::MessageChannel(MessageListener *aListener) : mListener(aListener), mChannelState(ChannelClosed), mSide(UnknownSide), mLink(nullptr), mWorkerLoop(nullptr), mChannelErrorTask(nullptr), mWorkerLoopID(-1), mTimeoutMs(kNoTimeout), mInTimeoutSecondHalf(false), mNextSeqno(0), mAwaitingSyncReply(false), mAwaitingSyncReplyPriority(0), mDispatchingSyncMessage(false), mDispatchingSyncMessagePriority(0), mDispatchingAsyncMessage(false), mDispatchingAsyncMessagePriority(0), mCurrentTransaction(0), mTimedOutMessageSeqno(0), mTimedOutMessagePriority(0), mRecvdErrors(0), mRemoteStackDepthGuess(false), mSawInterruptOutMsg(false), mIsWaitingForIncoming(false), mAbortOnError(false), mBlockScripts(false), mFlags(REQUIRE_DEFAULT), mPeerPidSet(false), mPeerPid(-1) { MOZ_COUNT_CTOR(ipc::MessageChannel); #ifdef OS_WIN mTopFrame = nullptr; mIsSyncWaitingOnNonMainThread = false; #endif mDequeueOneTask = new RefCountedTask(NewRunnableMethod( this, &MessageChannel::OnMaybeDequeueOne)); mOnChannelConnectedTask = new RefCountedTask(NewRunnableMethod( this, &MessageChannel::DispatchOnChannelConnected)); #ifdef OS_WIN mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr); NS_ASSERTION(mEvent, "CreateEvent failed! Nothing is going to work!"); #endif } MessageChannel::~MessageChannel() { MOZ_COUNT_DTOR(ipc::MessageChannel); IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors"); #ifdef OS_WIN DebugOnly ok = CloseHandle(mEvent); MOZ_ASSERT(ok); #endif Clear(); } static void PrintErrorMessage(Side side, const char* channelName, const char* msg) { const char *from = (side == ChildSide) ? "Child" : ((side == ParentSide) ? "Parent" : "Unknown"); printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg); } bool MessageChannel::Connected() const { mMonitor->AssertCurrentThreadOwns(); // The transport layer allows us to send messages before // receiving the "connected" ack from the remote side. return (ChannelOpening == mChannelState || ChannelConnected == mChannelState); } bool MessageChannel::CanSend() const { if (!mMonitor) { return false; } MonitorAutoLock lock(*mMonitor); return Connected(); } void MessageChannel::Clear() { // Don't clear mWorkerLoopID; we use it in AssertLinkThread() and // AssertWorkerThread(). // // Also don't clear mListener. If we clear it, then sending a message // through this channel after it's Clear()'ed can cause this process to // crash. // // In practice, mListener owns the channel, so the channel gets deleted // before mListener. But just to be safe, mListener is a weak pointer. mDequeueOneTask->Cancel(); mWorkerLoop = nullptr; delete mLink; mLink = nullptr; mOnChannelConnectedTask->Cancel(); if (mChannelErrorTask) { mChannelErrorTask->Cancel(); mChannelErrorTask = nullptr; } // Free up any memory used by pending messages. mPending.clear(); mRecvd = nullptr; mOutOfTurnReplies.clear(); while (!mDeferred.empty()) { mDeferred.pop(); } } bool MessageChannel::Open(Transport* aTransport, MessageLoop* aIOLoop, Side aSide) { NS_PRECONDITION(!mLink, "Open() called > once"); mMonitor = new RefCountedMonitor(); mWorkerLoop = MessageLoop::current(); mWorkerLoopID = mWorkerLoop->id(); ProcessLink *link = new ProcessLink(this); link->Open(aTransport, aIOLoop, aSide); // :TODO: n.b.: sets mChild mLink = link; return true; } bool MessageChannel::Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide) { // Opens a connection to another thread in the same process. // This handshake proceeds as follows: // - Let A be the thread initiating the process (either child or parent) // and B be the other thread. // - A spawns thread for B, obtaining B's message loop // - A creates ProtocolChild and ProtocolParent instances. // Let PA be the one appropriate to A and PB the side for B. // - A invokes PA->Open(PB, ...): // - set state to mChannelOpening // - this will place a work item in B's worker loop (see next bullet) // and then spins until PB->mChannelState becomes mChannelConnected // - meanwhile, on PB's worker loop, the work item is removed and: // - invokes PB->SlaveOpen(PA, ...): // - sets its state and that of PA to Connected NS_PRECONDITION(aTargetChan, "Need a target channel"); NS_PRECONDITION(ChannelClosed == mChannelState, "Not currently closed"); CommonThreadOpenInit(aTargetChan, aSide); Side oppSide = UnknownSide; switch(aSide) { case ChildSide: oppSide = ParentSide; break; case ParentSide: oppSide = ChildSide; break; case UnknownSide: break; } mMonitor = new RefCountedMonitor(); MonitorAutoLock lock(*mMonitor); mChannelState = ChannelOpening; aTargetLoop->PostTask( FROM_HERE, NewRunnableMethod(aTargetChan, &MessageChannel::OnOpenAsSlave, this, oppSide)); while (ChannelOpening == mChannelState) mMonitor->Wait(); NS_ASSERTION(ChannelConnected == mChannelState, "not connected when awoken"); return (ChannelConnected == mChannelState); } void MessageChannel::OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide) { // Invoked when the other side has begun the open. NS_PRECONDITION(ChannelClosed == mChannelState, "Not currently closed"); NS_PRECONDITION(ChannelOpening == aTargetChan->mChannelState, "Target channel not in the process of opening"); CommonThreadOpenInit(aTargetChan, aSide); mMonitor = aTargetChan->mMonitor; MonitorAutoLock lock(*mMonitor); NS_ASSERTION(ChannelOpening == aTargetChan->mChannelState, "Target channel not in the process of opening"); mChannelState = ChannelConnected; aTargetChan->mChannelState = ChannelConnected; aTargetChan->mMonitor->Notify(); } void MessageChannel::CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide) { mWorkerLoop = MessageLoop::current(); mWorkerLoopID = mWorkerLoop->id(); mLink = new ThreadLink(this, aTargetChan); mSide = aSide; } bool MessageChannel::Echo(Message* aMsg) { nsAutoPtr msg(aMsg); AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); if (MSG_ROUTING_NONE == msg->routing_id()) { ReportMessageRouteError("MessageChannel::Echo"); return false; } MonitorAutoLock lock(*mMonitor); if (!Connected()) { ReportConnectionError("MessageChannel", msg); return false; } mLink->EchoMessage(msg.forget()); return true; } bool MessageChannel::Send(Message* aMsg) { CxxStackFrame frame(*this, OUT_MESSAGE, aMsg); nsAutoPtr msg(aMsg); AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); if (MSG_ROUTING_NONE == msg->routing_id()) { ReportMessageRouteError("MessageChannel::Send"); return false; } MonitorAutoLock lock(*mMonitor); if (!Connected()) { ReportConnectionError("MessageChannel", msg); return false; } mLink->SendMessage(msg.forget()); return true; } bool MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg) { AssertLinkThread(); mMonitor->AssertCurrentThreadOwns(); if (MSG_ROUTING_NONE == aMsg.routing_id() && GOODBYE_MESSAGE_TYPE == aMsg.type()) { // :TODO: Sort out Close() on this side racing with Close() on the // other side mChannelState = ChannelClosing; if (LoggingEnabled()) { printf("NOTE: %s process received `Goodbye', closing down\n", (mSide == ChildSide) ? "child" : "parent"); } return true; } return false; } bool MessageChannel::ShouldDeferMessage(const Message& aMsg) { // Never defer messages that have the highest priority, even async // ones. This is safe because only the child can send these messages, so // they can never nest. if (aMsg.priority() == IPC::Message::PRIORITY_URGENT) return false; // Unless they're urgent, we always defer async messages. if (!aMsg.is_sync()) { MOZ_ASSERT(aMsg.priority() == IPC::Message::PRIORITY_NORMAL); return true; } int msgPrio = aMsg.priority(); int waitingPrio = AwaitingSyncReplyPriority(); // Always defer if the priority of the incoming message is less than the // priority of the message we're awaiting. if (msgPrio < waitingPrio) return true; // Never defer if the message has strictly greater priority. if (msgPrio > waitingPrio) return false; // When both sides send sync messages of the same priority, we resolve the // race by dispatching in the child and deferring the incoming message in // the parent. However, the parent still needs to dispatch nested sync // messages. // // Deferring in the parent only sort of breaks message ordering. When the // child's message comes in, we can pretend the child hasn't quite // finished sending it yet. Since the message is sync, we know that the // child hasn't moved on yet. return mSide == ParentSide && aMsg.transaction_id() != mCurrentTransaction; } // Predicate that is true for messages that should be consolidated if 'compress' is set. class MatchingKinds { typedef IPC::Message Message; Message::msgid_t mType; int32_t mRoutingId; public: MatchingKinds(Message::msgid_t aType, int32_t aRoutingId) : mType(aType), mRoutingId(aRoutingId) {} bool operator()(const Message &msg) { return msg.type() == mType && msg.routing_id() == mRoutingId; } }; void MessageChannel::OnMessageReceivedFromLink(const Message& aMsg) { AssertLinkThread(); mMonitor->AssertCurrentThreadOwns(); if (MaybeInterceptSpecialIOMessage(aMsg)) return; // Regardless of the Interrupt stack, if we're awaiting a sync reply, // we know that it needs to be immediately handled to unblock us. if (aMsg.is_sync() && aMsg.is_reply()) { if (aMsg.seqno() == mTimedOutMessageSeqno) { // Drop the message, but allow future sync messages to be sent. mTimedOutMessageSeqno = 0; return; } MOZ_ASSERT(AwaitingSyncReply()); MOZ_ASSERT(!mRecvd); // Rather than storing errors in mRecvd, we mark them in // mRecvdErrors. We need a counter because multiple replies can arrive // when a timeout happens, as in the following example. Imagine the // child is running slowly. The parent sends a sync message P1. It times // out. The child eventually sends a sync message C1. While waiting for // the C1 response, the child dispatches P1. In doing so, it sends sync // message C2. At that point, it's valid for the parent to send error // responses for both C1 and C2. if (aMsg.is_reply_error()) { mRecvdErrors++; NotifyWorkerThread(); return; } mRecvd = new Message(aMsg); NotifyWorkerThread(); return; } // Prioritized messages cannot be compressed. MOZ_ASSERT_IF(aMsg.compress_type() != IPC::Message::COMPRESSION_NONE, aMsg.priority() == IPC::Message::PRIORITY_NORMAL); bool compress = false; if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) { compress = (!mPending.empty() && mPending.back().type() == aMsg.type() && mPending.back().routing_id() == aMsg.routing_id()); if (compress) { // This message type has compression enabled, and the back of the // queue was the same message type and routed to the same destination. // Replace it with the newer message. MOZ_ASSERT(mPending.back().compress_type() == IPC::Message::COMPRESSION_ENABLED); mPending.pop_back(); } } else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL) { // Check the message queue for another message with this type/destination. auto it = std::find_if(mPending.rbegin(), mPending.rend(), MatchingKinds(aMsg.type(), aMsg.routing_id())); if (it != mPending.rend()) { // This message type has compression enabled, and the queue holds // a message with the same message type and routed to the same destination. // Erase it. Note that, since we always compress these redundancies, There Can // Be Only One. compress = true; MOZ_ASSERT((*it).compress_type() == IPC::Message::COMPRESSION_ALL); mPending.erase((++it).base()); } } bool shouldWakeUp = AwaitingInterruptReply() || (AwaitingSyncReply() && !ShouldDeferMessage(aMsg)) || AwaitingIncomingMessage(); // There are three cases we're concerned about, relating to the state of the // main thread: // // (1) We are waiting on a sync reply - main thread is blocked on the // IPC monitor. // - If the message is high priority, we wake up the main thread to // deliver the message depending on ShouldDeferMessage. Otherwise, we // leave it in the mPending queue, posting a task to the main event // loop, where it will be processed once the synchronous reply has been // received. // // (2) We are waiting on an Interrupt reply - main thread is blocked on the // IPC monitor. // - Always notify and wake up the main thread. // // (3) We are not waiting on a reply. // - We post a task to the main event loop. // // Note that, we may notify the main thread even though the monitor is not // blocked. This is okay, since we always check for pending events before // blocking again. mPending.push_back(aMsg); if (shouldWakeUp) { NotifyWorkerThread(); } else { // Worker thread is either not blocked on a reply, or this is an // incoming Interrupt that raced with outgoing sync, and needs to be // deferred to a later event-loop iteration. if (!compress) { // If we compressed away the previous message, we'll re-use // its pending task. mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask)); } } } void MessageChannel::ProcessPendingRequests() { // Loop until there aren't any more priority messages to process. for (;;) { mozilla::Vector toProcess; for (MessageQueue::iterator it = mPending.begin(); it != mPending.end(); ) { Message &msg = *it; if (!ShouldDeferMessage(msg)) { toProcess.append(Move(msg)); it = mPending.erase(it); continue; } it++; } if (toProcess.empty()) break; // Processing these messages could result in more messages, so we // loop around to check for more afterwards. for (auto it = toProcess.begin(); it != toProcess.end(); it++) ProcessPendingRequest(*it); } } bool MessageChannel::Send(Message* aMsg, Message* aReply) { // See comment in DispatchSyncMessage. MaybeScriptBlocker scriptBlocker(this, true); // Sanity checks. AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); if (mCurrentTransaction == 0) mListener->OnBeginSyncTransaction(); #ifdef OS_WIN SyncStackFrame frame(this, false); #endif CxxStackFrame f(*this, OUT_MESSAGE, aMsg); MonitorAutoLock lock(*mMonitor); if (mTimedOutMessageSeqno) { // Don't bother sending another sync message if a previous one timed out // and we haven't received a reply for it. Once the original timed-out // message receives a reply, we'll be able to send more sync messages // again. return false; } IPC_ASSERT(aMsg->is_sync(), "can only Send() sync messages here"); IPC_ASSERT(aMsg->priority() >= DispatchingSyncMessagePriority(), "can't send sync message of a lesser priority than what's being dispatched"); IPC_ASSERT(mAwaitingSyncReplyPriority <= aMsg->priority(), "nested sync message sends must be of increasing priority"); IPC_ASSERT(DispatchingSyncMessagePriority() != IPC::Message::PRIORITY_URGENT, "not allowed to send messages while dispatching urgent messages"); IPC_ASSERT(DispatchingAsyncMessagePriority() != IPC::Message::PRIORITY_URGENT, "not allowed to send messages while dispatching urgent messages"); nsAutoPtr msg(aMsg); if (!Connected()) { ReportConnectionError("MessageChannel::SendAndWait", msg); return false; } msg->set_seqno(NextSeqno()); int32_t seqno = msg->seqno(); int prio = msg->priority(); DebugOnly replyType = msg->type() + 1; AutoSetValue replies(mAwaitingSyncReply, true); AutoSetValue prioSet(mAwaitingSyncReplyPriority, prio); AutoEnterTransaction transact(this, seqno); int32_t transaction = mCurrentTransaction; msg->set_transaction_id(transaction); ProcessPendingRequests(); mLink->SendMessage(msg.forget()); while (true) { ProcessPendingRequests(); // See if we've received a reply. if (mRecvdErrors) { mRecvdErrors--; return false; } if (mRecvd) { break; } MOZ_ASSERT(!mTimedOutMessageSeqno); bool maybeTimedOut = !WaitForSyncNotify(); if (!Connected()) { ReportConnectionError("MessageChannel::SendAndWait"); return false; } // We only time out a message if it initiated a new transaction (i.e., // if neither side has any other message Sends on the stack). bool canTimeOut = transaction == seqno; if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) { // We might have received a reply during WaitForSyncNotify or inside // ShouldContinueFromTimeout (which drops the lock). We need to make // sure not to set mTimedOutMessageSeqno if that happens, since then // there would be no way to unset it. if (mRecvdErrors) { mRecvdErrors--; return false; } if (mRecvd) { break; } mTimedOutMessageSeqno = seqno; mTimedOutMessagePriority = prio; return false; } } MOZ_ASSERT(mRecvd); MOZ_ASSERT(mRecvd->is_reply(), "expected reply"); MOZ_ASSERT(!mRecvd->is_reply_error()); MOZ_ASSERT(mRecvd->type() == replyType, "wrong reply type"); MOZ_ASSERT(mRecvd->seqno() == seqno); MOZ_ASSERT(mRecvd->is_sync()); *aReply = Move(*mRecvd); mRecvd = nullptr; return true; } bool MessageChannel::Call(Message* aMsg, Message* aReply) { AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); #ifdef OS_WIN SyncStackFrame frame(this, true); #endif // This must come before MonitorAutoLock, as its destructor acquires the // monitor lock. CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg); MonitorAutoLock lock(*mMonitor); if (!Connected()) { ReportConnectionError("MessageChannel::Call", aMsg); return false; } // Sanity checks. IPC_ASSERT(!AwaitingSyncReply(), "cannot issue Interrupt call while blocked on sync request"); IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant"); IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here"); nsAutoPtr msg(aMsg); msg->set_seqno(NextSeqno()); msg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess); msg->set_interrupt_local_stack_depth(1 + InterruptStackDepth()); mInterruptStack.push(*msg); mLink->SendMessage(msg.forget()); while (true) { // if a handler invoked by *Dispatch*() spun a nested event // loop, and the connection was broken during that loop, we // might have already processed the OnError event. if so, // trying another loop iteration will be futile because // channel state will have been cleared if (!Connected()) { ReportConnectionError("MessageChannel::Call"); return false; } // Now might be the time to process a message deferred because of race // resolution. MaybeUndeferIncall(); // Wait for an event to occur. while (!InterruptEventOccurred()) { bool maybeTimedOut = !WaitForInterruptNotify(); // We might have received a "subtly deferred" message in a nested // loop that it's now time to process. if (InterruptEventOccurred() || (!maybeTimedOut && (!mDeferred.empty() || !mOutOfTurnReplies.empty()))) { break; } if (maybeTimedOut && !ShouldContinueFromTimeout()) return false; } Message recvd; MessageMap::iterator it; if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno())) != mOutOfTurnReplies.end()) { recvd = Move(it->second); mOutOfTurnReplies.erase(it); } else if (!mPending.empty()) { recvd = Move(mPending.front()); mPending.pop_front(); } else { // because of subtleties with nested event loops, it's possible // that we got here and nothing happened. or, we might have a // deferred in-call that needs to be processed. either way, we // won't break the inner while loop again until something new // happens. continue; } // If the message is not Interrupt, we can dispatch it as normal. if (!recvd.is_interrupt()) { { AutoEnterTransaction transaction(this, recvd); MonitorAutoUnlock unlock(*mMonitor); CxxStackFrame frame(*this, IN_MESSAGE, &recvd); DispatchMessage(recvd); } if (!Connected()) { ReportConnectionError("MessageChannel::DispatchMessage"); return false; } continue; } // If the message is an Interrupt reply, either process it as a reply to our // call, or add it to the list of out-of-turn replies we've received. if (recvd.is_reply()) { IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack"); // If this is not a reply the call we've initiated, add it to our // out-of-turn replies and keep polling for events. { const Message &outcall = mInterruptStack.top(); // Note, In the parent, sequence numbers increase from 0, and // in the child, they decrease from 0. if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) || (mSide != ChildSide && recvd.seqno() < outcall.seqno())) { mOutOfTurnReplies[recvd.seqno()] = Move(recvd); continue; } IPC_ASSERT(recvd.is_reply_error() || (recvd.type() == (outcall.type() + 1) && recvd.seqno() == outcall.seqno()), "somebody's misbehavin'", true); } // We received a reply to our most recent outstanding call. Pop // this frame and return the reply. mInterruptStack.pop(); bool is_reply_error = recvd.is_reply_error(); if (!is_reply_error) { *aReply = Move(recvd); } // If we have no more pending out calls waiting on replies, then // the reply queue should be empty. IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(), "still have pending replies with no pending out-calls", true); return !is_reply_error; } // Dispatch an Interrupt in-call. Snapshot the current stack depth while we // own the monitor. size_t stackDepth = InterruptStackDepth(); { MonitorAutoUnlock unlock(*mMonitor); CxxStackFrame frame(*this, IN_MESSAGE, &recvd); DispatchInterruptMessage(recvd, stackDepth); } if (!Connected()) { ReportConnectionError("MessageChannel::DispatchInterruptMessage"); return false; } } return true; } bool MessageChannel::WaitForIncomingMessage() { #ifdef OS_WIN SyncStackFrame frame(this, true); #endif { // Scope for lock MonitorAutoLock lock(*mMonitor); AutoEnterWaitForIncoming waitingForIncoming(*this); if (mChannelState != ChannelConnected) { return false; } if (!HasPendingEvents()) { return WaitForInterruptNotify(); } } return OnMaybeDequeueOne(); } bool MessageChannel::HasPendingEvents() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); return Connected() && !mPending.empty(); } bool MessageChannel::InterruptEventOccurred() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop"); return (!Connected() || !mPending.empty() || (!mOutOfTurnReplies.empty() && mOutOfTurnReplies.find(mInterruptStack.top().seqno()) != mOutOfTurnReplies.end())); } bool MessageChannel::ProcessPendingRequest(const Message &aUrgent) { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); // Note that it is possible we could have sent a sync message at // the same time the parent process sent an urgent message, and // therefore mPendingUrgentRequest is set *and* mRecvd is set as // well, because the link thread received both before the worker // thread woke up. // // In this case, we process the urgent message first, but we need // to save the reply. nsAutoPtr savedReply(mRecvd.forget()); { // In order to send the parent RPC messages and guarantee it will // wake up, we must re-use its transaction. AutoEnterTransaction transaction(this, aUrgent); MonitorAutoUnlock unlock(*mMonitor); DispatchMessage(aUrgent); } if (!Connected()) { ReportConnectionError("MessageChannel::ProcessPendingRequest"); return false; } // In between having dispatched our reply to the parent process, and // re-acquiring the monitor, the parent process could have already // processed that reply and sent the reply to our sync message. If so, // our saved reply should be empty. IPC_ASSERT(!mRecvd || !savedReply, "unknown reply"); if (!mRecvd) mRecvd = savedReply.forget(); return true; } bool MessageChannel::DequeueOne(Message *recvd) { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); if (!Connected()) { ReportConnectionError("OnMaybeDequeueOne"); return false; } if (!mDeferred.empty()) MaybeUndeferIncall(); if (mPending.empty()) return false; *recvd = Move(mPending.front()); mPending.pop_front(); return true; } bool MessageChannel::OnMaybeDequeueOne() { AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); Message recvd; MonitorAutoLock lock(*mMonitor); if (!DequeueOne(&recvd)) return false; if (IsOnCxxStack() && recvd.is_interrupt() && recvd.is_reply()) { // We probably just received a reply in a nested loop for an // Interrupt call sent before entering that loop. mOutOfTurnReplies[recvd.seqno()] = Move(recvd); return false; } { // We should not be in a transaction yet if we're not blocked. MOZ_ASSERT(mCurrentTransaction == 0); AutoEnterTransaction transaction(this, recvd); MonitorAutoUnlock unlock(*mMonitor); CxxStackFrame frame(*this, IN_MESSAGE, &recvd); DispatchMessage(recvd); } return true; } void MessageChannel::DispatchMessage(const Message &aMsg) { Maybe nojsapi; if (ScriptSettingsInitialized() && NS_IsMainThread()) nojsapi.emplace(); if (aMsg.is_sync()) DispatchSyncMessage(aMsg); else if (aMsg.is_interrupt()) DispatchInterruptMessage(aMsg, 0); else DispatchAsyncMessage(aMsg); } void MessageChannel::DispatchSyncMessage(const Message& aMsg) { AssertWorkerThread(); nsAutoPtr reply; int prio = aMsg.priority(); // We don't want to run any code that might run a nested event loop here, so // we avoid running event handlers. Once we've sent the response to the // urgent message, it's okay to run event handlers again since the parent is // no longer blocked. MOZ_ASSERT_IF(prio > IPC::Message::PRIORITY_NORMAL, NS_IsMainThread()); MaybeScriptBlocker scriptBlocker(this, prio > IPC::Message::PRIORITY_NORMAL); IPC_ASSERT(prio >= mDispatchingSyncMessagePriority, "priority inversion while dispatching sync message"); IPC_ASSERT(prio >= mAwaitingSyncReplyPriority, "dispatching a message of lower priority while waiting for a response"); bool dummy; bool& blockingVar = ShouldBlockScripts() ? gParentIsBlocked : dummy; Result rv; if (mTimedOutMessageSeqno && mTimedOutMessagePriority >= prio) { // If the other side sends a message in response to one of our messages // that we've timed out, then we reply with an error. // // We do this because want to avoid a situation where we process an // incoming message from the child here while it simultaneously starts // processing our timed-out CPOW. It's very bad for both sides to // be processing sync messages concurrently. // // The only exception is if the incoming message has urgent priority and // our timed-out message had only high priority. In that case it's safe // to process the incoming message because we know that the child won't // process anything (the child will defer incoming messages when waiting // for a response to its urgent message). rv = MsgNotAllowed; } else { AutoSetValue blocked(blockingVar, true); AutoSetValue sync(mDispatchingSyncMessage, true); AutoSetValue prioSet(mDispatchingSyncMessagePriority, prio); rv = mListener->OnMessageReceived(aMsg, *getter_Transfers(reply)); } if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) { reply = new Message(); reply->set_sync(); reply->set_priority(aMsg.priority()); reply->set_reply(); reply->set_reply_error(); } reply->set_seqno(aMsg.seqno()); reply->set_transaction_id(aMsg.transaction_id()); MonitorAutoLock lock(*mMonitor); if (ChannelConnected == mChannelState) { mLink->SendMessage(reply.forget()); } } void MessageChannel::DispatchAsyncMessage(const Message& aMsg) { AssertWorkerThread(); MOZ_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync()); if (aMsg.routing_id() == MSG_ROUTING_NONE) { NS_RUNTIMEABORT("unhandled special message!"); } Result rv; { int prio = aMsg.priority(); AutoSetValue async(mDispatchingAsyncMessage, true); AutoSetValue prioSet(mDispatchingAsyncMessagePriority, prio); rv = mListener->OnMessageReceived(aMsg); } MaybeHandleError(rv, aMsg, "DispatchAsyncMessage"); } void MessageChannel::DispatchInterruptMessage(const Message& aMsg, size_t stackDepth) { AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type"); // Race detection: see the long comment near mRemoteStackDepthGuess in // MessageChannel.h. "Remote" stack depth means our side, and "local" means // the other side. if (aMsg.interrupt_remote_stack_depth_guess() != RemoteViewOfStackDepth(stackDepth)) { // Interrupt in-calls have raced. The winner, if there is one, gets to defer // processing of the other side's in-call. bool defer; const char* winner; const Message& parentMsg = (mSide == ChildSide) ? aMsg : mInterruptStack.top(); const Message& childMsg = (mSide == ChildSide) ? mInterruptStack.top() : aMsg; switch (mListener->MediateInterruptRace(parentMsg, childMsg)) { case RIPChildWins: winner = "child"; defer = (mSide == ChildSide); break; case RIPParentWins: winner = "parent"; defer = (mSide != ChildSide); break; case RIPError: NS_RUNTIMEABORT("NYI: 'Error' Interrupt race policy"); return; default: NS_RUNTIMEABORT("not reached"); return; } if (LoggingEnabled()) { printf_stderr(" (%s: %s won, so we're%sdeferring)\n", (mSide == ChildSide) ? "child" : "parent", winner, defer ? " " : " not "); } if (defer) { // We now know the other side's stack has one more frame // than we thought. ++mRemoteStackDepthGuess; // decremented in MaybeProcessDeferred() mDeferred.push(aMsg); return; } // We "lost" and need to process the other side's in-call. Don't need // to fix up the mRemoteStackDepthGuess here, because we're just about // to increment it in DispatchCall(), which will make it correct again. } #ifdef OS_WIN SyncStackFrame frame(this, true); #endif nsAutoPtr reply; ++mRemoteStackDepthGuess; Result rv = mListener->OnCallReceived(aMsg, *getter_Transfers(reply)); --mRemoteStackDepthGuess; if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) { reply = new Message(); reply->set_interrupt(); reply->set_reply(); reply->set_reply_error(); } reply->set_seqno(aMsg.seqno()); MonitorAutoLock lock(*mMonitor); if (ChannelConnected == mChannelState) { mLink->SendMessage(reply.forget()); } } void MessageChannel::MaybeUndeferIncall() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); if (mDeferred.empty()) return; size_t stackDepth = InterruptStackDepth(); // the other side can only *under*-estimate our actual stack depth IPC_ASSERT(mDeferred.top().interrupt_remote_stack_depth_guess() <= stackDepth, "fatal logic error"); if (mDeferred.top().interrupt_remote_stack_depth_guess() < RemoteViewOfStackDepth(stackDepth)) return; // maybe time to process this message Message call = mDeferred.top(); mDeferred.pop(); // fix up fudge factor we added to account for race IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error"); --mRemoteStackDepthGuess; MOZ_ASSERT(call.priority() == IPC::Message::PRIORITY_NORMAL); mPending.push_back(call); } void MessageChannel::FlushPendingInterruptQueue() { AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); { MonitorAutoLock lock(*mMonitor); if (mDeferred.empty()) { if (mPending.empty()) return; const Message& last = mPending.back(); if (!last.is_interrupt() || last.is_reply()) return; } } while (OnMaybeDequeueOne()); } void MessageChannel::ExitedCxxStack() { mListener->OnExitedCxxStack(); if (mSawInterruptOutMsg) { MonitorAutoLock lock(*mMonitor); // see long comment in OnMaybeDequeueOne() EnqueuePendingMessages(); mSawInterruptOutMsg = false; } } void MessageChannel::EnqueuePendingMessages() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); MaybeUndeferIncall(); for (size_t i = 0; i < mDeferred.size(); ++i) { mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask)); } // XXX performance tuning knob: could process all or k pending // messages here, rather than enqueuing for later processing for (size_t i = 0; i < mPending.size(); ++i) { mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask)); } } static inline bool IsTimeoutExpired(PRIntervalTime aStart, PRIntervalTime aTimeout) { return (aTimeout != PR_INTERVAL_NO_TIMEOUT) && (aTimeout <= (PR_IntervalNow() - aStart)); } bool MessageChannel::WaitResponse(bool aWaitTimedOut) { if (aWaitTimedOut) { if (mInTimeoutSecondHalf) { // We've really timed out this time. return false; } // Try a second time. mInTimeoutSecondHalf = true; } else { mInTimeoutSecondHalf = false; } return true; } #ifndef OS_WIN bool MessageChannel::WaitForSyncNotify() { PRIntervalTime timeout = (kNoTimeout == mTimeoutMs) ? PR_INTERVAL_NO_TIMEOUT : PR_MillisecondsToInterval(mTimeoutMs); // XXX could optimize away this syscall for "no timeout" case if desired PRIntervalTime waitStart = PR_IntervalNow(); mMonitor->Wait(timeout); // If the timeout didn't expire, we know we received an event. The // converse is not true. return WaitResponse(IsTimeoutExpired(waitStart, timeout)); } bool MessageChannel::WaitForInterruptNotify() { return WaitForSyncNotify(); } void MessageChannel::NotifyWorkerThread() { mMonitor->Notify(); } #endif bool MessageChannel::ShouldContinueFromTimeout() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); bool cont; { MonitorAutoUnlock unlock(*mMonitor); cont = mListener->OnReplyTimeout(); } static enum { UNKNOWN, NOT_DEBUGGING, DEBUGGING } sDebuggingChildren = UNKNOWN; if (sDebuggingChildren == UNKNOWN) { sDebuggingChildren = getenv("MOZ_DEBUG_CHILD_PROCESS") ? DEBUGGING : NOT_DEBUGGING; } if (sDebuggingChildren == DEBUGGING) { return true; } return cont; } void MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs) { // Set channel timeout value. Since this is broken up into // two period, the minimum timeout value is 2ms. AssertWorkerThread(); mTimeoutMs = (aTimeoutMs <= 0) ? kNoTimeout : (int32_t)ceil((double)aTimeoutMs / 2.0); } void MessageChannel::OnChannelConnected(int32_t peer_id) { MOZ_ASSERT(!mPeerPidSet); mPeerPidSet = true; mPeerPid = peer_id; mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mOnChannelConnectedTask)); } void MessageChannel::DispatchOnChannelConnected() { AssertWorkerThread(); MOZ_ASSERT(mPeerPidSet); if (mListener) mListener->OnChannelConnected(mPeerPid); } void MessageChannel::ReportMessageRouteError(const char* channelName) const { PrintErrorMessage(mSide, channelName, "Need a route"); mListener->OnProcessingError(MsgRouteError, "MsgRouteError"); } void MessageChannel::ReportConnectionError(const char* aChannelName, Message* aMsg) const { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); const char* errorMsg = nullptr; switch (mChannelState) { case ChannelClosed: errorMsg = "Closed channel: cannot send/recv"; break; case ChannelOpening: errorMsg = "Opening channel: not yet ready for send/recv"; break; case ChannelTimeout: errorMsg = "Channel timeout: cannot send/recv"; break; case ChannelClosing: errorMsg = "Channel closing: too late to send/recv, messages will be lost"; break; case ChannelError: errorMsg = "Channel error: cannot send/recv"; break; default: NS_RUNTIMEABORT("unreached"); } if (aMsg) { char reason[512]; PR_snprintf(reason, sizeof(reason), "(msgtype=0x%lX,name=%s) %s", aMsg->type(), aMsg->name(), errorMsg); PrintErrorMessage(mSide, aChannelName, reason); } else { PrintErrorMessage(mSide, aChannelName, errorMsg); } MonitorAutoUnlock unlock(*mMonitor); mListener->OnProcessingError(MsgDropped, errorMsg); } bool MessageChannel::MaybeHandleError(Result code, const Message& aMsg, const char* channelName) { if (MsgProcessed == code) return true; const char* errorMsg = nullptr; switch (code) { case MsgNotKnown: errorMsg = "Unknown message: not processed"; break; case MsgNotAllowed: errorMsg = "Message not allowed: cannot be sent/recvd in this state"; break; case MsgPayloadError: errorMsg = "Payload error: message could not be deserialized"; break; case MsgProcessingError: errorMsg = "Processing error: message was deserialized, but the handler returned false (indicating failure)"; break; case MsgRouteError: errorMsg = "Route error: message sent to unknown actor ID"; break; case MsgValueError: errorMsg = "Value error: message was deserialized, but contained an illegal value"; break; default: NS_RUNTIMEABORT("unknown Result code"); return false; } char reason[512]; PR_snprintf(reason, sizeof(reason), "(msgtype=0x%lX,name=%s) %s", aMsg.type(), aMsg.name(), errorMsg); PrintErrorMessage(mSide, channelName, reason); mListener->OnProcessingError(code, reason); return false; } void MessageChannel::OnChannelErrorFromLink() { AssertLinkThread(); mMonitor->AssertCurrentThreadOwns(); if (InterruptStackDepth() > 0) NotifyWorkerThread(); if (AwaitingSyncReply() || AwaitingIncomingMessage()) NotifyWorkerThread(); if (ChannelClosing != mChannelState) { if (mAbortOnError) { NS_RUNTIMEABORT("Aborting on channel error."); } mChannelState = ChannelError; mMonitor->Notify(); } PostErrorNotifyTask(); } void MessageChannel::NotifyMaybeChannelError() { mMonitor->AssertNotCurrentThreadOwns(); // TODO sort out Close() on this side racing with Close() on the other side if (ChannelClosing == mChannelState) { // the channel closed, but we received a "Goodbye" message warning us // about it. no worries mChannelState = ChannelClosed; NotifyChannelClosed(); return; } // Oops, error! Let the listener know about it. mChannelState = ChannelError; mListener->OnChannelError(); Clear(); } void MessageChannel::OnNotifyMaybeChannelError() { AssertWorkerThread(); mMonitor->AssertNotCurrentThreadOwns(); mChannelErrorTask = nullptr; // OnChannelError holds mMonitor when it posts this task and this // task cannot be allowed to run until OnChannelError has // exited. We enforce that order by grabbing the mutex here which // should only continue once OnChannelError has completed. { MonitorAutoLock lock(*mMonitor); // nothing to do here } if (IsOnCxxStack()) { mChannelErrorTask = NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError); // 10 ms delay is completely arbitrary mWorkerLoop->PostDelayedTask(FROM_HERE, mChannelErrorTask, 10); return; } NotifyMaybeChannelError(); } void MessageChannel::PostErrorNotifyTask() { mMonitor->AssertCurrentThreadOwns(); if (mChannelErrorTask) return; // This must be the last code that runs on this thread! mChannelErrorTask = NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError); mWorkerLoop->PostTask(FROM_HERE, mChannelErrorTask); } // Special async message. class GoodbyeMessage : public IPC::Message { public: GoodbyeMessage() : IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE, PRIORITY_NORMAL) { } static bool Read(const Message* msg) { return true; } void Log(const std::string& aPrefix, FILE* aOutf) const { fputs("(special `Goodbye' message)", aOutf); } }; void MessageChannel::SynchronouslyClose() { AssertWorkerThread(); mMonitor->AssertCurrentThreadOwns(); mLink->SendClose(); while (ChannelClosed != mChannelState) mMonitor->Wait(); } void MessageChannel::CloseWithError() { AssertWorkerThread(); MonitorAutoLock lock(*mMonitor); if (ChannelConnected != mChannelState) { return; } SynchronouslyClose(); mChannelState = ChannelError; PostErrorNotifyTask(); } void MessageChannel::CloseWithTimeout() { AssertWorkerThread(); MonitorAutoLock lock(*mMonitor); if (ChannelConnected != mChannelState) { return; } SynchronouslyClose(); mChannelState = ChannelTimeout; } void MessageChannel::BlockScripts() { MOZ_ASSERT(NS_IsMainThread()); mBlockScripts = true; } void MessageChannel::Close() { AssertWorkerThread(); { MonitorAutoLock lock(*mMonitor); if (ChannelError == mChannelState || ChannelTimeout == mChannelState) { // See bug 538586: if the listener gets deleted while the // IO thread's NotifyChannelError event is still enqueued // and subsequently deletes us, then the error event will // also be deleted and the listener will never be notified // of the channel error. if (mListener) { MonitorAutoUnlock unlock(*mMonitor); NotifyMaybeChannelError(); } return; } if (ChannelOpening == mChannelState) { // SynchronouslyClose() waits for an ack from the other side, so // the opening sequence should complete before this returns. SynchronouslyClose(); mChannelState = ChannelError; NotifyMaybeChannelError(); return; } if (ChannelConnected != mChannelState) { // XXX be strict about this until there's a compelling reason // to relax NS_RUNTIMEABORT("Close() called on closed channel!"); } // notify the other side that we're about to close our socket mLink->SendMessage(new GoodbyeMessage()); SynchronouslyClose(); } NotifyChannelClosed(); } void MessageChannel::NotifyChannelClosed() { mMonitor->AssertNotCurrentThreadOwns(); if (ChannelClosed != mChannelState) NS_RUNTIMEABORT("channel should have been closed!"); // OK, the IO thread just closed the channel normally. Let the // listener know about it. mListener->OnChannelClose(); Clear(); } void MessageChannel::DebugAbort(const char* file, int line, const char* cond, const char* why, bool reply) const { printf_stderr("###!!! [MessageChannel][%s][%s:%d] " "Assertion (%s) failed. %s %s\n", mSide == ChildSide ? "Child" : "Parent", file, line, cond, why, reply ? "(reply)" : ""); // technically we need the mutex for this, but we're dying anyway DumpInterruptStack(" "); printf_stderr(" remote Interrupt stack guess: %" PRIuSIZE "\n", mRemoteStackDepthGuess); printf_stderr(" deferred stack size: %" PRIuSIZE "\n", mDeferred.size()); printf_stderr(" out-of-turn Interrupt replies stack size: %" PRIuSIZE "\n", mOutOfTurnReplies.size()); printf_stderr(" Pending queue size: %" PRIuSIZE ", front to back:\n", mPending.size()); MessageQueue pending = mPending; while (!pending.empty()) { printf_stderr(" [ %s%s ]\n", pending.front().is_interrupt() ? "intr" : (pending.front().is_sync() ? "sync" : "async"), pending.front().is_reply() ? "reply" : ""); pending.pop_front(); } NS_RUNTIMEABORT(why); } void MessageChannel::DumpInterruptStack(const char* const pfx) const { NS_WARN_IF_FALSE(MessageLoop::current() != mWorkerLoop, "The worker thread had better be paused in a debugger!"); printf_stderr("%sMessageChannel 'backtrace':\n", pfx); // print a python-style backtrace, first frame to last for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) { int32_t id; const char* dir; const char* sems; const char* name; mCxxStackFrames[i].Describe(&id, &dir, &sems, &name); printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx, i, dir, sems, name, id); } } int32_t MessageChannel::GetTopmostMessageRoutingId() const { MOZ_ASSERT(MessageLoop::current() == mWorkerLoop); if (mCxxStackFrames.empty()) { return MSG_ROUTING_NONE; } const InterruptFrame& frame = mCxxStackFrames.back(); return frame.GetRoutingId(); } bool ParentProcessIsBlocked() { return gParentIsBlocked; } } // ipc } // mozilla