/* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is RIL JS Worker. * * The Initial Developer of the Original Code is * the Mozilla Foundation. * Portions created by the Initial Developer are Copyright (C) 2011 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Kyle Machulis * Philipp von Weitershausen * Fernando Jimenez * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /** * This file implements the RIL worker thread. It communicates with * the main thread to provide a high-level API to the phone's RIL * stack, and with the RIL IPC thread to communicate with the RIL * device itself. These communication channels use message events as * known from Web Workers: * * - postMessage()/"message" events for main thread communication * * - postRILMessage()/"RILMessageEvent" events for RIL IPC thread * communication. * * The three objects in this file represent individual parts of this * communication chain: * * - RILMessageEvent -> Buf -> RIL -> Phone -> postMessage() * - "message" event -> Phone -> RIL -> Buf -> postRILMessage() * * Note: The code below is purposely lean on abstractions to be as lean in * terms of object allocations. As a result, it may look more like C than * JavaScript, and that's intended. */ "use strict"; importScripts("ril_consts.js", "systemlibs.js"); // We leave this as 'undefined' instead of setting it to 'false'. That // way an outer scope can define it to 'true' (e.g. for testing purposes) // without us overriding that here. let DEBUG; const INT32_MAX = 2147483647; const UINT8_SIZE = 1; const UINT16_SIZE = 2; const UINT32_SIZE = 4; const PARCEL_SIZE_SIZE = UINT32_SIZE; let RILQUIRKS_CALLSTATE_EXTRA_UINT32 = false; let RILQUIRKS_DATACALLSTATE_DOWN_IS_UP = false; /** * This object contains helpers buffering incoming data & deconstructing it * into parcels as well as buffering outgoing data & constructing parcels. * For that it maintains two buffers and corresponding uint8 views, indexes. * * The incoming buffer is a circular buffer where we store incoming data. * As soon as a complete parcel is received, it is processed right away, so * the buffer only needs to be large enough to hold one parcel. * * The outgoing buffer is to prepare outgoing parcels. The index is reset * every time a parcel is sent. */ let Buf = { INCOMING_BUFFER_LENGTH: 1024, OUTGOING_BUFFER_LENGTH: 1024, init: function init() { this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH); this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH); this.incomingBytes = new Uint8Array(this.incomingBuffer); this.outgoingBytes = new Uint8Array(this.outgoingBuffer); // Track where incoming data is read from and written to. this.incomingWriteIndex = 0; this.incomingReadIndex = 0; // Leave room for the parcel size for outgoing parcels. this.outgoingIndex = PARCEL_SIZE_SIZE; // How many bytes we've read for this parcel so far. this.readIncoming = 0; // How many bytes available as parcel data. this.readAvailable = 0; // Size of the incoming parcel. If this is zero, we're expecting a new // parcel. this.currentParcelSize = 0; // This gets incremented each time we send out a parcel. this.token = 1; // Maps tokens we send out with requests to the request type, so that // when we get a response parcel back, we know what request it was for. this.tokenRequestMap = {}; // This is the token of last solicited response. this.lastSolicitedToken = 0; }, /** * Grow the incoming buffer. * * @param min_size * Minimum new size. The actual new size will be the the smallest * power of 2 that's larger than this number. */ growIncomingBuffer: function growIncomingBuffer(min_size) { if (DEBUG) { debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH + " can't handle incoming " + min_size + " bytes."); } let oldBytes = this.incomingBytes; this.INCOMING_BUFFER_LENGTH = 2 << Math.floor(Math.log(min_size)/Math.log(2)); if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH); this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH); this.incomingBytes = new Uint8Array(this.incomingBuffer); if (this.incomingReadIndex <= this.incomingWriteIndex) { // Read and write index are in natural order, so we can just copy // the old buffer over to the bigger one without having to worry // about the indexes. this.incomingBytes.set(oldBytes, 0); } else { // The write index has wrapped around but the read index hasn't yet. // Write whatever the read index has left to read until it would // circle around to the beginning of the new buffer, and the rest // behind that. let head = oldBytes.subarray(this.incomingReadIndex); let tail = oldBytes.subarray(0, this.incomingReadIndex); this.incomingBytes.set(head, 0); this.incomingBytes.set(tail, head.length); this.incomingReadIndex = 0; this.incomingWriteIndex += head.length; } if (DEBUG) { debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH); } }, /** * Grow the outgoing buffer. * * @param min_size * Minimum new size. The actual new size will be the the smallest * power of 2 that's larger than this number. */ growOutgoingBuffer: function growOutgoingBuffer(min_size) { if (DEBUG) { debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH + " is too small."); } let oldBytes = this.outgoingBytes; this.OUTGOING_BUFFER_LENGTH = 2 << Math.floor(Math.log(min_size)/Math.log(2)); this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH); this.outgoingBytes = new Uint8Array(this.outgoingBuffer); this.outgoingBytes.set(oldBytes, 0); if (DEBUG) { debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH); } }, /** * Functions for reading data from the incoming buffer. * * These are all little endian, apart from readParcelSize(); */ readUint8Unchecked: function readUint8Unchecked() { let value = this.incomingBytes[this.incomingReadIndex]; this.incomingReadIndex = (this.incomingReadIndex + 1) % this.INCOMING_BUFFER_LENGTH; return value; }, readUint8: function readUint8() { if (!this.readAvailable) { throw new Error("Trying to read data beyond the parcel end!"); } this.readAvailable--; return this.readUint8Unchecked(); }, readUint16: function readUint16() { return this.readUint8() | this.readUint8() << 8; }, readUint32: function readUint32() { return this.readUint8() | this.readUint8() << 8 | this.readUint8() << 16 | this.readUint8() << 24; }, readUint32List: function readUint32List() { let length = this.readUint32(); let ints = []; for (let i = 0; i < length; i++) { ints.push(this.readUint32()); } return ints; }, readString: function readString() { let string_len = this.readUint32(); if (string_len < 0 || string_len >= INT32_MAX) { return null; } let s = ""; for (let i = 0; i < string_len; i++) { s += String.fromCharCode(this.readUint16()); } // Strings are \0\0 delimited, but that isn't part of the length. And // if the string length is even, the delimiter is two characters wide. // It's insane, I know. let delimiter = this.readUint16(); if (!(string_len & 1)) { delimiter |= this.readUint16(); } if (DEBUG) { if (delimiter != 0) { debug("Something's wrong, found string delimiter: " + delimiter); } } return s; }, readStringList: function readStringList() { let num_strings = this.readUint32(); let strings = []; for (let i = 0; i < num_strings; i++) { strings.push(this.readString()); } return strings; }, readParcelSize: function readParcelSize() { return this.readUint8Unchecked() << 24 | this.readUint8Unchecked() << 16 | this.readUint8Unchecked() << 8 | this.readUint8Unchecked(); }, /** * Functions for writing data to the outgoing buffer. */ writeUint8: function writeUint8(value) { if (this.outgoingIndex >= this.OUTGOING_BUFFER_LENGTH) { this.growOutgoingBuffer(this.outgoingIndex + 1); } this.outgoingBytes[this.outgoingIndex] = value; this.outgoingIndex++; }, writeUint16: function writeUint16(value) { this.writeUint8(value & 0xff); this.writeUint8((value >> 8) & 0xff); }, writeUint32: function writeUint32(value) { this.writeUint8(value & 0xff); this.writeUint8((value >> 8) & 0xff); this.writeUint8((value >> 16) & 0xff); this.writeUint8((value >> 24) & 0xff); }, writeString: function writeString(value) { if (value == null) { this.writeUint32(-1); return; } this.writeUint32(value.length); for (let i = 0; i < value.length; i++) { this.writeUint16(value.charCodeAt(i)); } // Strings are \0\0 delimited, but that isn't part of the length. And // if the string length is even, the delimiter is two characters wide. // It's insane, I know. this.writeUint16(0); if (!(value.length & 1)) { this.writeUint16(0); } }, writeStringList: function writeStringList(strings) { this.writeUint32(strings.length); for (let i = 0; i < strings.length; i++) { this.writeString(strings[i]); } }, writeParcelSize: function writeParcelSize(value) { /** * Parcel size will always be the first thing in the parcel byte * array, but the last thing written. Store the current index off * to a temporary to be reset after we write the size. */ let currentIndex = this.outgoingIndex; this.outgoingIndex = 0; this.writeUint8((value >> 24) & 0xff); this.writeUint8((value >> 16) & 0xff); this.writeUint8((value >> 8) & 0xff); this.writeUint8(value & 0xff); this.outgoingIndex = currentIndex; }, /** * Parcel management */ /** * Write incoming data to the circular buffer. * * @param incoming * Uint8Array containing the incoming data. */ writeToIncoming: function writeToIncoming(incoming) { // We don't have to worry about the head catching the tail since // we process any backlog in parcels immediately, before writing // new data to the buffer. So the only edge case we need to handle // is when the incoming data is larger than the buffer size. if (incoming.length > this.INCOMING_BUFFER_LENGTH) { this.growIncomingBuffer(incoming.length); } // We can let the typed arrays do the copying if the incoming data won't // wrap around the edges of the circular buffer. let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex; if (remaining >= incoming.length) { this.incomingBytes.set(incoming, this.incomingWriteIndex); } else { // The incoming data would wrap around it. let head = incoming.subarray(0, remaining); let tail = incoming.subarray(remaining); this.incomingBytes.set(head, this.incomingWriteIndex); this.incomingBytes.set(tail, 0); } this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) % this.INCOMING_BUFFER_LENGTH; }, /** * Process incoming data. * * @param incoming * Uint8Array containing the incoming data. */ processIncoming: function processIncoming(incoming) { if (DEBUG) { debug("Received " + incoming.length + " bytes."); debug("Already read " + this.readIncoming); } this.writeToIncoming(incoming); this.readIncoming += incoming.length; while (true) { if (!this.currentParcelSize) { // We're expecting a new parcel. if (this.readIncoming < PARCEL_SIZE_SIZE) { // We don't know how big the next parcel is going to be, need more // data. if (DEBUG) debug("Next parcel size unknown, going to sleep."); return; } this.currentParcelSize = this.readParcelSize(); if (DEBUG) debug("New incoming parcel of size " + this.currentParcelSize); // The size itself is not included in the size. this.readIncoming -= PARCEL_SIZE_SIZE; } if (this.readIncoming < this.currentParcelSize) { // We haven't read enough yet in order to be able to process a parcel. if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is " + this.currentParcelSize + ". Going to sleep."); return; } // Alright, we have enough data to process at least one whole parcel. // Let's do that. let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize) % this.INCOMING_BUFFER_LENGTH; if (DEBUG) { let parcel; if (expectedAfterIndex < this.incomingReadIndex) { let head = this.incomingBytes.subarray(this.incomingReadIndex); let tail = this.incomingBytes.subarray(0, expectedAfterIndex); parcel = Array.slice(head).concat(Array.slice(tail)); } else { parcel = Array.slice(this.incomingBytes.subarray( this.incomingReadIndex, expectedAfterIndex)); } debug("Parcel (size " + this.currentParcelSize + "): " + parcel); } if (DEBUG) debug("We have at least one complete parcel."); try { this.readAvailable = this.currentParcelSize; this.processParcel(); } catch (ex) { if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack); } // Ensure that the whole parcel was consumed. if (this.incomingReadIndex != expectedAfterIndex) { if (DEBUG) { debug("Parcel handler didn't consume whole parcel, " + Math.abs(expectedAfterIndex - this.incomingReadIndex) + " bytes left over"); } this.incomingReadIndex = expectedAfterIndex; } this.readIncoming -= this.currentParcelSize; this.readAvailable = 0; this.currentParcelSize = 0; } }, /** * Process one parcel. */ processParcel: function processParcel() { let response_type = this.readUint32(); let request_type, options; if (response_type == RESPONSE_TYPE_SOLICITED) { let token = this.readUint32(); let error = this.readUint32(); options = this.tokenRequestMap[token]; request_type = options.rilRequestType; options.rilRequestError = error; if (error) { if (DEBUG) { debug("Received error " + error + " for solicited parcel type " + request_type); } RIL.handleRequestError(options); return; } if (DEBUG) { debug("Solicited response for request type " + request_type + ", token " + token); } delete this.tokenRequestMap[token]; this.lastSolicitedToken = token; } else if (response_type == RESPONSE_TYPE_UNSOLICITED) { request_type = this.readUint32(); if (DEBUG) debug("Unsolicited response for request type " + request_type); } else { if (DEBUG) debug("Unknown response type: " + response_type); return; } RIL.handleParcel(request_type, this.readAvailable, options); }, /** * Start a new outgoing parcel. * * @param type * Integer specifying the request type. * @param options [optional] * Object containing information about the request, e.g. the * original main thread message object that led to the RIL request. */ newParcel: function newParcel(type, options) { if (DEBUG) debug("New outgoing parcel of type " + type); // We're going to leave room for the parcel size at the beginning. this.outgoingIndex = PARCEL_SIZE_SIZE; this.writeUint32(type); let token = this.token; this.writeUint32(token); if (!options) { options = {}; } options.rilRequestType = type; options.rilRequestError = null; this.tokenRequestMap[token] = options; this.token++; return token; }, /** * Communicate with the RIL IPC thread. */ sendParcel: function sendParcel() { // Compute the size of the parcel and write it to the front of the parcel // where we left room for it. Note that he parcel size does not include // the size itself. let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE; this.writeParcelSize(parcelSize); // This assumes that postRILMessage will make a copy of the ArrayBufferView // right away! let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex); if (DEBUG) debug("Outgoing parcel: " + Array.slice(parcel)); postRILMessage(parcel); this.outgoingIndex = PARCEL_SIZE_SIZE; }, simpleRequest: function simpleRequest(type, options) { this.newParcel(type, options); this.sendParcel(); } }; /** * Provide a high-level API representing the RIL's capabilities. This is * where parcels are sent and received from and translated into API calls. * For the most part, this object is pretty boring as it simply translates * between method calls and RIL parcels. Somebody's gotta do the job... */ let RIL = { /** * Set quirk flags based on the RIL model detected. Note that this * requires the RIL being "warmed up" first, which happens when on * an incoming or outgoing voice call or data call. */ rilQuirksInitialized: false, initRILQuirks: function initRILQuirks() { if (this.rilQuirksInitialized) { return; } // The Samsung Galaxy S2 I-9100 radio sends an extra Uint32 in the // call state. let model_id = libcutils.property_get("ril.model_id"); if (DEBUG) debug("Detected RIL model " + model_id); if (model_id == "I9100") { if (DEBUG) { debug("Detected I9100, enabling " + "RILQUIRKS_CALLSTATE_EXTRA_UINT32, " + "RILQUIRKS_DATACALLSTATE_DOWN_IS_UP."); } RILQUIRKS_CALLSTATE_EXTRA_UINT32 = true; RILQUIRKS_DATACALLSTATE_DOWN_IS_UP = true; } this.rilQuirksInitialized = true; }, /** * Parse an integer from a string, falling back to a default value * if the the provided value is not a string or does not contain a valid * number. * * @param string * String to be parsed. * @param defaultValue * Default value to be used. */ parseInt: function RIL_parseInt(string, defaultValue) { let number = parseInt(string, 10); if (!isNaN(number)) { return number; } if (defaultValue === undefined) { defaultValue = null; } return defaultValue; }, /** * Retrieve the ICC's status. * * Response will call Phone.onICCStatus(). */ getICCStatus: function getICCStatus() { Buf.simpleRequest(REQUEST_GET_SIM_STATUS); }, /** * Enter a PIN to unlock the ICC. * * @param pin * String containing the PIN. * * Response will call Phone.onEnterICCPIN(). */ enterICCPIN: function enterICCPIN(pin) { Buf.newParcel(REQUEST_ENTER_SIM_PIN); Buf.writeUint32(1); Buf.writeString(pin); Buf.sendParcel(); }, /** * Change the current ICC PIN number * * @param oldPin * String containing the old PIN value * @param newPin * String containing the new PIN value * * Response will call Phone.onChangeICCPIN(). */ changeICCPIN: function changeICCPIN(oldPin, newPin) { Buf.newParcel(REQUEST_CHANGE_SIM_PIN); Buf.writeUint32(2); Buf.writeString(oldPin); Buf.writeString(newPin); Buf.sendParcel(); }, /** * Supplies SIM PUK and a new PIN to unlock the ICC * * @param puk * String containing the PUK value. * @param newPin * String containing the new PIN value. * * Response will call Phone.onEnterICCPUK(). */ enterICCPUK: function enterICCPUK(puk, newPin) { Buf.newParcel(REQUEST_ENTER_SIM_PUK); Buf.writeUint32(2); Buf.writeString(puk); Buf.writeString(newPin); Buf.sendParcel(); }, /** * Request the phone's radio power to be switched on or off. * * @param on * Boolean indicating the desired power state. */ setRadioPower: function setRadioPower(on) { Buf.newParcel(REQUEST_RADIO_POWER); Buf.writeUint32(1); Buf.writeUint32(on ? 1 : 0); Buf.sendParcel(); }, /** * Set screen state. * * @param on * Boolean indicating whether the screen should be on or off. */ setScreenState: function setScreenState(on) { Buf.newParcel(REQUEST_SCREEN_STATE); Buf.writeUint32(1); Buf.writeUint32(on ? 1 : 0); Buf.sendParcel(); }, getRegistrationState: function getRegistrationState() { Buf.simpleRequest(REQUEST_REGISTRATION_STATE); }, getGPRSRegistrationState: function getGPRSRegistrationState() { Buf.simpleRequest(REQUEST_GPRS_REGISTRATION_STATE); }, getOperator: function getOperator() { Buf.simpleRequest(REQUEST_OPERATOR); }, getNetworkSelectionMode: function getNetworkSelectionMode() { Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE); }, /** * Get current calls. */ getCurrentCalls: function getCurrentCalls() { Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS); }, /** * Get the signal strength. */ getSignalStrength: function getSignalStrength() { Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH); }, getIMEI: function getIMEI() { Buf.simpleRequest(REQUEST_GET_IMEI); }, getIMEISV: function getIMEISV() { Buf.simpleRequest(REQUEST_GET_IMEISV); }, getDeviceIdentity: function getDeviceIdentity() { Buf.simpleRequest(REQUEST_GET_DEVICE_IDENTITY); }, /** * Dial the phone. * * @param address * String containing the address (number) to dial. * @param clirMode * Integer doing something XXX TODO * @param uusInfo * Integer doing something XXX TODO */ dial: function dial(address, clirMode, uusInfo) { let token = Buf.newParcel(REQUEST_DIAL); Buf.writeString(address); Buf.writeUint32(clirMode || 0); Buf.writeUint32(uusInfo || 0); // TODO Why do we need this extra 0? It was put it in to make this // match the format of the binary message. Buf.writeUint32(0); Buf.sendParcel(); }, /** * Hang up the phone. * * @param callIndex * Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS. */ hangUp: function hangUp(callIndex) { Buf.newParcel(REQUEST_HANGUP); Buf.writeUint32(1); Buf.writeUint32(callIndex); Buf.sendParcel(); }, /** * Mute or unmute the radio. * * @param mute * Boolean to indicate whether to mute or unmute the radio. */ setMute: function setMute(mute) { Buf.newParcel(REQUEST_SET_MUTE); Buf.writeUint32(1); Buf.writeUint32(mute ? 1 : 0); Buf.sendParcel(); }, /** * Answer an incoming call. */ answerCall: function answerCall() { Buf.simpleRequest(REQUEST_ANSWER); }, /** * Reject an incoming call. */ rejectCall: function rejectCall() { Buf.simpleRequest(REQUEST_UDUB); }, /** * Send an SMS. * * The `options` parameter object should contain the following attributes: * * @param SMSC * String containing the SMSC PDU in hex format. * @param number * String containing the recipients address. * @param body * String containing the message body. * @param dcs * Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET * constants. * @param userDataHeaderLength * Length of embedded user data header, in bytes. The whole header * size will be userDataHeaderLength + 1; 0 for no header. * @param encodedBodyLength * Length of the message body when encoded with the given DCS. For * UCS2, in bytes; for 7-bit, in septets. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. */ sendSMS: function sendSMS(options) { let token = Buf.newParcel(REQUEST_SEND_SMS, options); //TODO we want to map token to the input values so that on the // response from the RIL device we know which SMS request was successful // or not. Maybe we should build that functionality into newParcel() and // handle it within tokenRequestMap[]. Buf.writeUint32(2); Buf.writeString(options.SMSC); GsmPDUHelper.writeMessage(options); Buf.sendParcel(); }, /** * Acknowledge the receipt and handling of an SMS. * * @param success * Boolean indicating whether the message was successfuly handled. * @param cause * SMS_* constant indicating the reason for unsuccessful handling. */ acknowledgeSMS: function acknowledgeSMS(success, cause) { let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE); Buf.writeUint32(2); Buf.writeUint32(success ? 1 : 0); Buf.writeUint32(cause); Buf.sendParcel(); }, /** * Start a DTMF Tone. * * @param dtmfChar * DTMF signal to send, 0-9, *, + */ startTone: function startTone(dtmfChar) { Buf.newParcel(REQUEST_DTMF_START); Buf.writeString(dtmfChar); Buf.sendParcel(); }, stopTone: function stopTone() { Buf.simpleRequest(REQUEST_DTMF_STOP); }, sendTone: function sendTone(dtmfChar) { Buf.newParcel(REQUEST_DTMF); Buf.writeString(dtmfChar); Buf.sendParcel(); }, /** * Get the Short Message Service Center address. * * @param pendingSMS * Object containing the parameters of an SMS waiting to be sent. */ getSMSCAddress: function getSMSCAddress(pendingSMS) { Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS, pendingSMS); }, /** * Set the Short Message Service Center address. * * @param smsc * Short Message Service Center address in PDU format. */ setSMSCAddress: function setSMSCAddress(smsc) { Buf.newParcel(REQUEST_SET_SMSC_ADDRESS); Buf.writeString(smsc); Buf.sendParcel(); }, /** * Setup a data call. * * @param radioTech * Integer to indicate radio technology. * DATACALL_RADIOTECHNOLOGY_CDMA => CDMA. * DATACALL_RADIOTECHNOLOGY_GSM => GSM. * @param apn * String containing the name of the APN to connect to. * @param user * String containing the username for the APN. * @param passwd * String containing the password for the APN. * @param chappap * Integer containing CHAP/PAP auth type. * DATACALL_AUTH_NONE => PAP and CHAP is never performed. * DATACALL_AUTH_PAP => PAP may be performed. * DATACALL_AUTH_CHAP => CHAP may be performed. * DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed. * @param pdptype * String containing PDP type to request. ("IP", "IPV6", ...) */ setupDataCall: function (radioTech, apn, user, passwd, chappap, pdptype) { let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL); Buf.writeUint32(7); Buf.writeString(radioTech.toString()); Buf.writeString(DATACALL_PROFILE_DEFAULT.toString()); Buf.writeString(apn); Buf.writeString(user); Buf.writeString(passwd); Buf.writeString(chappap.toString()); Buf.writeString(pdptype); Buf.sendParcel(); return token; }, /** * Request an ICC I/O operation. * * See TS 27.007 "restricted SIM" operation, "AT Command +CRSM". * The sequence is in the same order as how libril reads this parcel, * see the struct RIL_SIM_IO_v5 or RIL_SIM_IO_v6 defined in ril.h * * @param command * The I/O command, one of the ICC_COMMAND_* constants. * @param fileid * The file to operate on, one of the ICC_EF_* constants. * @param pathid * String type, check pathid from TS 27.007 +CRSM * @param p1, p2, p3 * Arbitrary integer parameters for the command. * @param data * String parameter for the command. * @param pin2 [optional] * String containing the PIN2. */ iccIO: function iccIO (options) { let token = Buf.newParcel(REQUEST_SIM_IO, options); Buf.writeUint32(options.command); Buf.writeUint32(options.fileid); Buf.writeString(options.path); Buf.writeUint32(options.p1); Buf.writeUint32(options.p2); Buf.writeUint32(options.p3); Buf.writeString(options.data); if (options.pin2 != null) { Buf.writeString(options.pin2); } Buf.sendParcel(); }, /** * Deactivate a data call. * * @param cid * String containing CID. * @param reason * One of DATACALL_DEACTIVATE_* constants. */ deactivateDataCall: function (cid, reason) { let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL); Buf.writeUint32(2); Buf.writeString(cid); Buf.writeString(reason); Buf.sendParcel(); return token; }, /** * Get a list of data calls. */ getDataCallList: function getDataCallList() { Buf.simpleRequest(REQUEST_DATA_CALL_LIST); }, /** * Get failure casue code for the most recently failed PDP context. */ getFailCauseCode: function getFailCauseCode() { Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE); }, /** * Handle the RIL request errors */ handleRequestError: function handleRequestError(options) { options.type = "error"; Phone.sendDOMMessage(options); }, /** * Handle incoming requests from the RIL. We find the method that * corresponds to the request type. Incidentally, the request type * _is_ the method name, so that's easy. */ handleParcel: function handleParcel(request_type, length, options) { let method = this[request_type]; if (typeof method == "function") { if (DEBUG) debug("Handling parcel as " + method.name); method.call(this, length, options); } } }; RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS() { let iccStatus = { cardState: Buf.readUint32(), // CARD_STATE_* universalPINState: Buf.readUint32(), // PINSTATE_* gsmUmtsSubscriptionAppIndex: Buf.readUint32(), setCdmaSubscriptionAppIndex: Buf.readUint32(), apps: [] }; let apps_length = Buf.readUint32(); if (apps_length > CARD_MAX_APPS) { apps_length = CARD_MAX_APPS; } for (let i = 0 ; i < apps_length ; i++) { iccStatus.apps.push({ app_type: Buf.readUint32(), // APPTYPE_* app_state: Buf.readUint32(), // CARD_APP_STATE_* perso_substate: Buf.readUint32(), // PERSOSUBSTATE_* aid: Buf.readString(), app_label: Buf.readString(), pin1_replaced: Buf.readUint32(), pin1: Buf.readUint32(), pin2: Buf.readUint32() }); } Phone.onICCStatus(iccStatus); }; RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN() { let response = Buf.readUint32List(); Phone.onEnterICCPIN(response); }; RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK() { let response = Buf.readUint32List(); Phone.onEnterICCPUK(response); }; RIL[REQUEST_ENTER_SIM_PIN2] = null; RIL[REQUEST_ENTER_SIM_PUK2] = null; RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN() { Phone.onChangeICCPIN(); }; RIL[REQUEST_CHANGE_SIM_PIN2] = null; RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION] = null; RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length) { this.initRILQuirks(); let calls_length = 0; // The RIL won't even send us the length integer if there are no active calls. // So only read this integer if the parcel actually has it. if (length) { calls_length = Buf.readUint32(); } if (!calls_length) { Phone.onCurrentCalls(null); return; } let calls = {}; for (let i = 0; i < calls_length; i++) { let call = {}; call.state = Buf.readUint32(); // CALL_STATE_* call.callIndex = Buf.readUint32(); // GSM index (1-based) call.toa = Buf.readUint32(); call.isMpty = Boolean(Buf.readUint32()); call.isMT = Boolean(Buf.readUint32()); call.als = Buf.readUint32(); call.isVoice = Boolean(Buf.readUint32()); call.isVoicePrivacy = Boolean(Buf.readUint32()); if (RILQUIRKS_CALLSTATE_EXTRA_UINT32) { Buf.readUint32(); } call.number = Buf.readString(); //TODO munge with TOA call.numberPresentation = Buf.readUint32(); // CALL_PRESENTATION_* call.name = Buf.readString(); call.namePresentation = Buf.readUint32(); call.uusInfo = null; let uusInfoPresent = Buf.readUint32(); if (uusInfoPresent == 1) { call.uusInfo = { type: Buf.readUint32(), dcs: Buf.readUint32(), userData: null //XXX TODO byte array?!? }; } calls[call.callIndex] = call; } Phone.onCurrentCalls(calls); }; RIL[REQUEST_DIAL] = function REQUEST_DIAL(length) { Phone.onDial(); }; RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length) { let imsi = Buf.readString(); Phone.onIMSI(imsi); }; RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length) { Phone.onHangUp(); }; RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = null; RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = null; RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = null; RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = null; RIL[REQUEST_CONFERENCE] = null; RIL[REQUEST_UDUB] = function REQUEST_UDUB(length) { Phone.onRejectCall(); }; RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = null; RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH() { let signalStrength = Buf.readUint32(); // The SGS2 seems to compute the number of bars for us and expose those // instead of the actual signal strength. let bars = signalStrength >> 8; signalStrength = signalStrength & 0xff; let strength = { // Valid values are (0-31, 99) as defined in TS 27.007 8.5. gsmSignalStrength: signalStrength, // Non-standard extension by the SGS2. bars: bars, // GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5. gsmBitErrorRate: Buf.readUint32(), // The CDMA RSSI value. cdmaDBM: Buf.readUint32(), // The CDMA EC/IO. cdmaECIO: Buf.readUint32(), // The EVDO RSSI value. evdoDBM: Buf.readUint32(), // The EVDO EC/IO. evdoECIO: Buf.readUint32(), // Valid values are 0-8. 8 is the highest signal to noise ratio evdoSNR: Buf.readUint32() }; Phone.onSignalStrength(strength); }; RIL[REQUEST_REGISTRATION_STATE] = function REQUEST_REGISTRATION_STATE(length) { let state = Buf.readStringList(); Phone.onRegistrationState(state); }; RIL[REQUEST_GPRS_REGISTRATION_STATE] = function REQUEST_GPRS_REGISTRATION_STATE(length) { let state = Buf.readStringList(); Phone.onGPRSRegistrationState(state); }; RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length) { let operator = Buf.readStringList(); Phone.onOperator(operator); }; RIL[REQUEST_RADIO_POWER] = null; RIL[REQUEST_DTMF] = function REQUEST_DTMF() { Phone.onSendTone(); }; RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS(length, options) { options.messageRef = Buf.readUint32(); options.ackPDU = Buf.readString(); options.errorCode = Buf.readUint32(); Phone.onSendSMS(options); }; RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null; RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL() { let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList(); Phone.onSetupDataCall(Buf.lastSolicitedToken, cid, ifname, ipaddr, dns, gw); }; RIL[REQUEST_SIM_IO] = function REQUEST_SIM_IO(length, options) { Phone.onICCIO(options); }; RIL[REQUEST_SEND_USSD] = null; RIL[REQUEST_CANCEL_USSD] = null; RIL[REQUEST_GET_CLIR] = null; RIL[REQUEST_SET_CLIR] = null; RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] = null; RIL[REQUEST_SET_CALL_FORWARD] = null; RIL[REQUEST_QUERY_CALL_WAITING] = null; RIL[REQUEST_SET_CALL_WAITING] = null; RIL[REQUEST_SMS_ACKNOWLEDGE] = function REQUEST_SMS_ACKNOWLEDGE() { Phone.onAcknowledgeSMS(); }; RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI() { let imei = Buf.readString(); Phone.onIMEI(imei); }; RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV() { let imeiSV = Buf.readString(); Phone.onIMEISV(imeiSV); }; RIL[REQUEST_ANSWER] = function REQUEST_ANSWER(length) { Phone.onAnswerCall(); }; RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL() { Phone.onDeactivateDataCall(Buf.lastSolicitedToken); }; RIL[REQUEST_QUERY_FACILITY_LOCK] = null; RIL[REQUEST_SET_FACILITY_LOCK] = null; RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null; RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE() { let response = Buf.readUint32List(); Phone.onNetworkSelectionMode(response); }; RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = null; RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = null; RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = null; RIL[REQUEST_DTMF_START] = function REQUEST_DTMF_START() { Phone.onStartTone(); }; RIL[REQUEST_DTMF_STOP] = function REQUEST_DTMF_STOP() { Phone.onStopTone(); }; RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION() { let version = Buf.readString(); Phone.onBasebandVersion(version); }; RIL[REQUEST_SEPARATE_CONNECTION] = null; RIL[REQUEST_SET_MUTE] = function REQUEST_SET_MUTE(length) { Phone.onSetMute(); }; RIL[REQUEST_GET_MUTE] = null; RIL[REQUEST_QUERY_CLIP] = null; RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null; RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length) { this.initRILQuirks(); let num = 0; if (length) { num = Buf.readUint32(); } if (!num) { Phone.onDataCallList(null); return; } let datacalls = {}; for (let i = 0; i < num; i++) { let datacall = { cid: Buf.readUint32().toString(), active: Buf.readUint32(), type: Buf.readString(), apn: Buf.readString(), address: Buf.readString() }; datacalls[datacall.cid] = datacall; } Phone.onDataCallList(datacalls); }; RIL[REQUEST_RESET_RADIO] = null; RIL[REQUEST_OEM_HOOK_RAW] = null; RIL[REQUEST_OEM_HOOK_STRINGS] = null; RIL[REQUEST_SCREEN_STATE] = null; RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null; RIL[REQUEST_WRITE_SMS_TO_SIM] = null; RIL[REQUEST_DELETE_SMS_ON_SIM] = null; RIL[REQUEST_SET_BAND_MODE] = null; RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null; RIL[REQUEST_STK_GET_PROFILE] = null; RIL[REQUEST_STK_SET_PROFILE] = null; RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null; RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null; RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = null; RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null; RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = null; RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = null; RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null; RIL[REQUEST_SET_LOCATION_UPDATES] = null; RIL[REQUEST_CDMA_SET_SUBSCRIPTION] = null; RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null; RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null; RIL[REQUEST_SET_TTY_MODE] = null; RIL[REQUEST_QUERY_TTY_MODE] = null; RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null; RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null; RIL[REQUEST_CDMA_FLASH] = null; RIL[REQUEST_CDMA_BURST_DTMF] = null; RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null; RIL[REQUEST_CDMA_SEND_SMS] = null; RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null; RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null; RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null; RIL[REQUEST_CDMA_SUBSCRIPTION] = null; RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null; RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null; RIL[REQUEST_DEVICE_IDENTITY] = null; RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null; RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS(length, options) { let smsc = Buf.readString(); Phone.onGetSMSCAddress(smsc, options); }; RIL[REQUEST_SET_SMSC_ADDRESS] = function REQUEST_SET_SMSC_ADDRESS() { Phone.onSetSMSCAddress(); }; RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null; RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null; RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() { let newState = Buf.readUint32(); Phone.onRadioStateChanged(newState); }; RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() { Phone.onCallStateChanged(); }; RIL[UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED() { Phone.onNetworkStateChanged(); }; RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) { Phone.onNewSMS(length); }; RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) { let info = Buf.readStringList(); Phone.onNewSMSStatusReport(info); }; RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) { let info = Buf.readUint32List(); Phone.onNewSMSOnSIM(message); }; RIL[UNSOLICITED_ON_USSD] = null; RIL[UNSOLICITED_ON_USSD_REQUEST] = null; RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = function UNSOLICITED_NITZ_TIME_RECEIVED() { let dateString = Buf.readString(); // The data contained in the NITZ message is // in the form "yy/mm/dd,hh:mm:ss(+/-)tz,dt" // for example: 12/02/16,03:36:08-20,00,310410 // Always print the NITZ info so we can collection what different providers // send down the pipe (see bug XXX). // TODO once data is collected, add in |if (DEBUG)| debug("DateTimeZone string " + dateString); let now = Date.now(); let year = parseInt(dateString.substr(0, 2), 10); let month = parseInt(dateString.substr(3, 2), 10); let day = parseInt(dateString.substr(6, 2), 10); let hours = parseInt(dateString.substr(9, 2), 10); let minutes = parseInt(dateString.substr(12, 2), 10); let seconds = parseInt(dateString.substr(15, 2), 10); let tz = parseInt(dateString.substr(17, 3), 10); // TZ is in 15 min. units let dst = parseInt(dateString.substr(21, 2), 10); // DST already is in local time let timeInSeconds = Date.UTC(year + PDU_TIMESTAMP_YEAR_OFFSET, month - 1, day, hours, minutes, seconds) / 1000; if (isNaN(timeInSeconds)) { debug("NITZ failed to convert date"); } else { Phone.onNITZ(timeInSeconds, tz*15, dst, now); } }; RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH() { this[REQUEST_SIGNAL_STRENGTH](); }; RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = function UNSOLICITED_DATA_CALL_LIST_CHANGED(length) { Phone.onDataCallListChanged(); }; RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null; RIL[UNSOLICITED_STK_SESSION_END] = null; RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = null; RIL[UNSOLICITED_STK_EVENT_NOTIFY] = null; RIL[UNSOLICITED_STK_CALL_SETUP] = null; RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null; RIL[UNSOLICITED_SIM_REFRESH] = null; RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() { let info; let isCDMA = false; //XXX TODO hard-code this for now if (isCDMA) { info = { isPresent: Buf.readUint32(), signalType: Buf.readUint32(), alertPitch: Buf.readUint32(), signal: Buf.readUint32() }; } Phone.onCallRing(info); }; RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() { Phone.onICCStatusChanged(); }; RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null; RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = null; RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null; RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null; RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null; RIL[UNSOLICITED_CDMA_CALL_WAITING] = null; RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null; RIL[UNSOLICITED_CDMA_INFO_REC] = null; RIL[UNSOLICITED_OEM_HOOK_RAW] = null; RIL[UNSOLICITED_RINGBACK_TONE] = null; RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null; /** * This object represents the phone's state and functionality. It is * essentially a state machine that's being acted upon from RIL and the * mainthread via postMessage communication. */ let Phone = { /** * One of the RADIO_STATE_* constants. */ radioState: RADIO_STATE_UNAVAILABLE, /** * Strings */ IMEI: null, IMEISV: null, IMSI: null, SMSC: null, MSISDN: null, registrationState: {}, gprsRegistrationState: {}, /** * List of strings identifying the network operator. */ operator: null, /** * String containing the baseband version. */ basebandVersion: null, /** * Network selection mode. 0 for automatic, 1 for manual selection. */ networkSelectionMode: null, /** * ICC status. Keeps a reference of the data response to the * getICCStatus request. */ iccStatus: null, /** * Card state */ cardState: null, /** * Active calls */ currentCalls: {}, /** * Mute or unmute the radio. */ _muted: true, /** * Existing data calls. */ currentDataCalls: {}, /** * Tracks active requests to the RIL concerning 3G data calls. */ activeDataRequests: {}, get muted() { return this._muted; }, set muted(val) { val = Boolean(val); if (this._muted != val) { RIL.setMute(val); this._muted = val; } }, _handleChangedCallState: function _handleChangedCallState(changedCall) { let message = {type: "callStateChange", call: {callIndex: changedCall.callIndex, state: changedCall.state, number: changedCall.number, name: changedCall.name}}; this.sendDOMMessage(message); }, _handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) { let message = {type: "callDisconnected", call: {callIndex: disconnectedCall.callIndex}}; this.sendDOMMessage(message); }, /** * Handlers for messages from the RIL. They all begin with on* and are called * from RIL object. */ onRadioStateChanged: function onRadioStateChanged(newState) { if (DEBUG) { debug("Radio state changed from " + this.radioState + " to " + newState); } if (this.radioState == newState) { // No change in state, return. return; } let gsm = newState == RADIO_STATE_SIM_NOT_READY || newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT || newState == RADIO_STATE_SIM_READY; let cdma = newState == RADIO_STATE_RUIM_NOT_READY || newState == RADIO_STATE_RUIM_READY || newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT || newState == RADIO_STATE_NV_NOT_READY || newState == RADIO_STATE_NV_READY; // Figure out state transitions and send out more RIL requests as necessary // as well as events to the main thread. if (this.radioState == RADIO_STATE_UNAVAILABLE && newState != RADIO_STATE_UNAVAILABLE) { // The radio became available, let's get its info. if (gsm) { RIL.getIMEI(); RIL.getIMEISV(); } if (cdma) { RIL.getDeviceIdentity(); } Buf.simpleRequest(REQUEST_BASEBAND_VERSION); RIL.setScreenState(true); this.sendDOMMessage({ type: "radiostatechange", radioState: (newState == RADIO_STATE_OFF) ? GECKO_RADIOSTATE_OFF : GECKO_RADIOSTATE_READY }); //XXX TODO For now, just turn the radio on if it's off. for the real // deal we probably want to do the opposite: start with a known state // when we boot up and let the UI layer control the radio power. if (newState == RADIO_STATE_OFF) { RIL.setRadioPower(true); } } if (newState == RADIO_STATE_UNAVAILABLE) { // The radio is no longer available, we need to deal with any // remaining pending requests. //TODO do that this.sendDOMMessage({type: "radiostatechange", radioState: GECKO_RADIOSTATE_UNAVAILABLE}); } if (newState == RADIO_STATE_SIM_READY || newState == RADIO_STATE_RUIM_READY || newState == RADIO_STATE_NV_READY) { // The ICC has become available. Get all the things. RIL.getICCStatus(); this.requestNetworkInfo(); RIL.getSignalStrength(); RIL.getSMSCAddress(); this.getMSISDN(); this.sendDOMMessage({type: "cardstatechange", cardState: GECKO_CARDSTATE_READY}); } if (newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT || newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) { RIL.getICCStatus(); this.sendDOMMessage({type: "cardstatechange", cardState: GECKO_CARDSTATE_UNAVAILABLE}); } let wasOn = this.radioState != RADIO_STATE_OFF && this.radioState != RADIO_STATE_UNAVAILABLE; let isOn = newState != RADIO_STATE_OFF && newState != RADIO_STATE_UNAVAILABLE; if (!wasOn && isOn) { //TODO } if (wasOn && !isOn) { //TODO } this.radioState = newState; }, onCurrentCalls: function onCurrentCalls(newCalls) { // Go through the calls we currently have on file and see if any of them // changed state. Remove them from the newCalls map as we deal with them // so that only new calls remain in the map after we're done. for each (let currentCall in this.currentCalls) { let newCall; if (newCalls) { newCall = newCalls[currentCall.callIndex]; delete newCalls[currentCall.callIndex]; } if (newCall) { // Call is still valid. if (newCall.state != currentCall.state) { // State has changed. currentCall.state = newCall.state; this._handleChangedCallState(currentCall); } } else { // Call is no longer reported by the radio. Remove from our map and // send disconnected state change. delete this.currentCalls[currentCall.callIndex]; this._handleDisconnectedCall(currentCall); } } // Go through any remaining calls that are new to us. for each (let newCall in newCalls) { if (newCall.isVoice) { // Format international numbers appropriately. if (newCall.number && newCall.toa == TOA_INTERNATIONAL && newCall.number[0] != "+") { newCall.number = "+" + newCall.number; } // Add to our map. this.currentCalls[newCall.callIndex] = newCall; this._handleChangedCallState(newCall); } } // Update our mute status. If there is anything in our currentCalls map then // we know it's a voice call and we should leave audio on. this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0; }, onCallStateChanged: function onCallStateChanged() { RIL.getCurrentCalls(); }, onCallRing: function onCallRing(info) { // For now we don't need to do anything here because we'll also get a // call state changed notification. }, onNetworkStateChanged: function onNetworkStateChanged() { if (DEBUG) debug("Network state changed, re-requesting phone state."); this.requestNetworkInfo(); }, onICCStatus: function onICCStatus(iccStatus) { if (DEBUG) { debug("iccStatus: " + JSON.stringify(iccStatus)); } this.iccStatus = iccStatus; if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) { if (DEBUG) debug("ICC absent"); if (this.cardState == GECKO_CARDSTATE_ABSENT) { this.operator = null; return; } this.cardState = GECKO_CARDSTATE_ABSENT; this.sendDOMMessage({type: "cardstatechange", cardState: this.cardState}); return; } if ((this.radioState == RADIO_STATE_OFF) || (this.radioState == RADIO_STATE_UNAVAILABLE) || (this.radioState == RADIO_STATE_SIM_NOT_READY) || (this.radioState == RADIO_STATE_RUIM_NOT_READY) || (this.radioState == RADIO_STATE_NV_NOT_READY) || (this.radioState == RADIO_STATE_NV_READY)) { if (DEBUG) debug("ICC not ready"); if (this.cardState == GECKO_CARDSTATE_NOT_READY) { return; } this.cardState = GECKO_CARDSTATE_NOT_READY; this.sendDOMMessage({type: "cardstatechange", cardState: this.cardState}); return; } if ((this.radioState == RADIO_STATE_SIM_LOCKED_OR_ABSENT) || (this.radioState == RADIO_STATE_SIM_READY) || (this.radioState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) || (this.radioState == RADIO_STATE_RUIM_READY)) { let app = iccStatus.apps[iccStatus.gsmUmtsSubscriptionAppIndex]; if (!app) { if (DEBUG) { debug("Subscription application is not present in iccStatus."); } if (this.cardState == GECKO_CARDSTATE_ABSENT) { return; } this.cardState = GECKO_CARDSTATE_ABSENT; this.operator = null; this.sendDOMMessage({type: "cardstatechange", cardState: this.cardState}); return; } let newCardState; switch (app.app_state) { case CARD_APP_STATE_PIN: newCardState = GECKO_CARDSTATE_PIN_REQUIRED; break; case CARD_APP_STATE_PUK: newCardState = GECKO_CARDSTATE_PUK_REQUIRED; break; case CARD_APP_STATE_SUBSCRIPTION_PERSO: newCardState = GECKO_CARDSTATE_NETWORK_LOCKED; break; case CARD_APP_STATE_READY: newCardState = GECKO_CARDSTATE_READY; break; case CARD_APP_STATE_UNKNOWN: case CARD_APP_STATE_DETECTED: default: newCardState = GECKO_CARDSTATE_NOT_READY; } if (this.cardState == newCardState) { return; } this.cardState = newCardState; this.sendDOMMessage({type: "cardstatechange", cardState: this.cardState}); } }, onICCStatusChanged: function onICCStatusChanged() { RIL.getICCStatus(); }, onEnterICCPIN: function onEnterICCPIN(response) { if (DEBUG) debug("REQUEST_ENTER_SIM_PIN returned " + response); //TODO }, onChangeICCPIN: function onChangeICCPIN() { if (DEBUG) debug("REQUEST_CHANGE_SIM_PIN"); //TODO }, onEnterICCPUK: function onEnterICCPUK(response) { if (DEBUG) debug("REQUEST_ENTER_SIM_PUK returned " + response); //TODO }, onNetworkSelectionMode: function onNetworkSelectionMode(mode) { this.networkSelectionMode = mode[0]; }, onBasebandVersion: function onBasebandVersion(version) { this.basebandVersion = version; }, onIMSI: function onIMSI(imsi) { this.IMSI = imsi; }, onIMEI: function onIMEI(imei) { this.IMEI = imei; }, onIMEISV: function onIMEISV(imeiSV) { this.IMEISV = imeiSV; }, onICCIO: function onICCIO(options) { switch (options.fileid) { case ICC_EF_MSISDN: this.readMSISDNResponse(options); break; } }, readMSISDNResponse: function readMSISDNResponse(options) { let sw1 = Buf.readUint32(); let sw2 = Buf.readUint32(); // See GSM11.11 section 9.4 for sw1 and sw2 if (sw1 != STATUS_NORMAL_ENDING) { // TODO: error // Wait for fix for Bug 713451 to report error. debug("Error in iccIO"); } if (DEBUG) debug("ICC I/O (" + sw1 + "/" + sw2 + ")"); switch (options.command) { case ICC_COMMAND_GET_RESPONSE: let response = Buf.readString(); let recordSize = parseInt( response.substr(RESPONSE_DATA_RECORD_LENGTH * 2, 2), 16) & 0xff; let options = { command: ICC_COMMAND_READ_RECORD, fileid: ICC_EF_MSISDN, pathid: EF_PATH_MF_SIM + EF_PATH_DF_TELECOM, p1: 1, // Record number, MSISDN is always in the 1st record p2: READ_RECORD_ABSOLUTE_MODE, p3: recordSize, data: null, pin2: null, }; RIL.iccIO(options); break; case ICC_COMMAND_READ_RECORD: // Ignore 2 bytes prefix, which is 4 chars let number = GsmPDUHelper.readStringAsBCD().toString().substr(4); if (DEBUG) debug("MSISDN: " + number); this.MSISDN = number; break; } }, onRegistrationState: function onRegistrationState(state) { let rs = this.registrationState; let stateChanged = false; let regState = RIL.parseInt(state[0], NETWORK_CREG_STATE_UNKNOWN); if (rs.regState != regState) { rs.regState = regState; stateChanged = true; } let radioTech = RIL.parseInt(state[3], NETWORK_CREG_TECH_UNKNOWN); if (rs.radioTech != radioTech) { rs.radioTech = radioTech; stateChanged = true; } // TODO: This zombie code branch that will be raised from the dead once // we add explicit CDMA support everywhere (bug 726098). let cdma = false; if (cdma) { let baseStationId = RIL.parseInt(state[4]); let baseStationLatitude = RIL.parseInt(state[5]); let baseStationLongitude = RIL.parseInt(state[6]); if (!baseStationLatitude && !baseStationLongitude) { baseStationLatitude = baseStationLongitude = null; } let cssIndicator = RIL.parseInt(state[7]); let systemId = RIL.parseInt(state[8]); let networkId = RIL.parseInt(state[9]); let roamingIndicator = RIL.parseInt(state[10]); let systemIsInPRL = RIL.parseInt(state[11]); let defaultRoamingIndicator = RIL.parseInt(state[12]); let reasonForDenial = RIL.parseInt(state[13]); } if (stateChanged) { this.sendDOMMessage({type: "registrationstatechange", registrationState: rs}); } }, onGPRSRegistrationState: function onGPRSRegistrationState(state) { let rs = this.gprsRegistrationState; let stateChanged = false; let regState = RIL.parseInt(state[0], NETWORK_CREG_STATE_UNKNOWN); if (rs.regState != regState) { rs.regState = regState; stateChanged = true; } let radioTech = RIL.parseInt(state[3], NETWORK_CREG_TECH_UNKNOWN); if (rs.radioTech != radioTech) { rs.radioTech = radioTech; stateChanged = true; } if (stateChanged) { this.sendDOMMessage({type: "gprsregistrationstatechange", gprsRegistrationState: rs}); } }, onOperator: function onOperator(operator) { if (operator.length < 3) { if (DEBUG) debug("Expected at least 3 strings for operator."); } if (!this.operator || this.operator.alphaLong != operator[0] || this.operator.alphaShort != operator[1] || this.operator.numeric != operator[2]) { this.operator = {alphaLong: operator[0], alphaShort: operator[1], numeric: operator[2]}; this.sendDOMMessage({type: "operatorchange", operator: this.operator}); } }, onSignalStrength: function onSignalStrength(strength) { if (DEBUG) debug("Signal strength " + JSON.stringify(strength)); this.sendDOMMessage({type: "signalstrengthchange", signalStrength: strength}); }, onDial: function onDial() { }, onHangUp: function onHangUp() { }, onAnswerCall: function onAnswerCall() { }, onRejectCall: function onRejectCall() { }, onSetMute: function onSetMute() { }, onSendTone: function onSendTone() { }, onStartTone: function onStartTone() { }, onStopTone: function onStopTone() { }, onGetSMSCAddress: function onGetSMSCAddress(smsc, options) { //TODO: notify main thread if we fail retrieving the SMSC, especially // if there was a pending SMS (bug 727319). this.SMSC = smsc; // If the SMSC was not retrieved on RIL initialization, an attempt to // get it is triggered from this.sendSMS followed by the 'options' // parameter of the SMS, so that we can send it after successfully // retrieving the SMSC. if (smsc && options.body) { this.sendSMS(options); } }, onSetSMSCAddress: function onSetSMSCAddress() { }, onSendSMS: function onSendSMS(options) { options.type = "sms-sent"; this.sendDOMMessage(options); }, onNewSMS: function onNewSMS(payloadLength) { if (!payloadLength) { if (DEBUG) debug("Received empty SMS!"); //TODO: should we acknowledge the SMS here? maybe only after multiple //failures. return; } // An SMS is a string, but we won't read it as such, so let's read the // string length and then defer to PDU parsing helper. let messageStringLength = Buf.readUint32(); if (DEBUG) debug("Got new SMS, length " + messageStringLength); let message = GsmPDUHelper.readMessage(); if (DEBUG) debug(message); // Read string delimiters. See Buf.readString(). let delimiter = Buf.readUint16(); if (!(messageStringLength & 1)) { delimiter |= Buf.readUint16(); } if (DEBUG) { if (delimiter != 0) { debug("Something's wrong, found string delimiter: " + delimiter); } } message.type = "sms-received"; this.sendDOMMessage(message); //TODO: this might be a lie? do we want to wait for the mainthread to // report back? RIL.acknowledgeSMS(true, SMS_HANDLED); }, onNewSMSStatusReport: function onNewSMSStatusReport(info) { //TODO }, onNewSMSOnSIM: function onNewSMSOnSIM(info) { //TODO }, onAcknowledgeSMS: function onAcknowledgeSMS() { }, onSetupDataCall: function onSetupDataCall(token, cid, ifname, ipaddr, dns, gw) { let options = this.activeDataRequests[token]; delete this.activeDataRequests[token]; let datacall = this.currentDataCalls[cid] = { active: -1, state: GECKO_NETWORK_STATE_CONNECTING, cid: cid, apn: options.apn, ifname: ifname, ipaddr: ipaddr, dns: dns, gw: gw, }; this.sendDOMMessage({type: "datacallstatechange", datacall: datacall}); // Let's get the list of data calls to ensure we know whether it's active // or not. RIL.getDataCallList(); }, onDeactivateDataCall: function onDeactivateDataCall(token) { let options = this.activeDataRequests[token]; delete this.activeDataRequests[token]; let datacall = this.currentDataCalls[options.cid]; delete this.currentDataCalls[options.cid]; datacall.state = GECKO_NETWORK_STATE_DISCONNECTED; this.sendDOMMessage({type: "datacallstatechange", datacall: datacall}); }, onDataCallList: function onDataCallList(datacalls) { for each (let currentDataCall in this.currentDataCalls) { let newDataCall; if (datacalls) { newDataCall = datacalls[currentDataCall.cid]; delete datacalls[currentDataCall.cid]; } if (newDataCall) { switch (newDataCall.active) { case DATACALL_INACTIVE: newDataCall.state = GECKO_NETWORK_STATE_DISCONNECTED; break; case DATACALL_ACTIVE_DOWN: newDataCall.state = GECKO_NETWORK_STATE_SUSPENDED; if (RILQUIRKS_DATACALLSTATE_DOWN_IS_UP) { newDataCall.state = GECKO_NETWORK_STATE_CONNECTED; } break; case DATACALL_ACTIVE_UP: newDataCall.state = GECKO_NETWORK_STATE_CONNECTED; break; } if (newDataCall.state != currentDataCall.state) { currentDataCall.active = newDataCall.active; currentDataCall.state = newDataCall.state; this.sendDOMMessage({type: "datacallstatechange", datacall: currentDataCall}); } } else { delete this.currentCalls[currentDataCall.callIndex]; currentDataCall.state = GECKO_NETWORK_STATE_DISCONNECTED; this.sendDOMMessage({type: "datacallstatechange", datacall: currentDataCall}); } } for each (let datacall in datacalls) { if (DEBUG) debug("Unexpected data call: " + JSON.stringify(datacall)); } }, onDataCallListChanged: function onDataCallListChanged() { RIL.getDataCallList(); }, onNITZ: function onNITZ(timeInSeconds, timeZoneInMinutes, dstFlag, timeStampInMS) { let message = {type: "nitzTime", networkTimeInSeconds: timeInSeconds, networkTimeZoneInMinutes: timeZoneInMinutes, dstFlag: dstFlag, localTimeStampInMS: timeStampInMS}; this.sendDOMMessage(message); }, /** * Outgoing requests to the RIL. These can be triggered from the * main thread via messages that look like this: * * {type: "methodName", * extra: "parameters", * go: "here"} * * So if one of the following methods takes arguments, it takes only one, * an object, which then contains all of the parameters as attributes. * The "@param" documentation is to be interpreted accordingly. */ /** * Request various states about the network. */ requestNetworkInfo: function requestNetworkInfo() { if (DEBUG) debug("Requesting phone state"); RIL.getRegistrationState(); RIL.getGPRSRegistrationState(); //TODO only GSM RIL.getOperator(); RIL.getNetworkSelectionMode(); }, /** * Get a list of current voice calls. */ enumerateCalls: function enumerateCalls() { if (DEBUG) debug("Sending all current calls"); let calls = []; for each (let call in this.currentCalls) { calls.push(call); } this.sendDOMMessage({type: "enumerateCalls", calls: calls}); }, enumerateDataCalls: function enumerateDataCalls() { let datacall_list = []; for each (let datacall in this.currentDataCalls) { datacall_list.push(datacall); } this.sendDOMMessage({type: "datacalllist", datacalls: datacall_list}); }, /** * Dial the phone. * * @param number * String containing the number to dial. */ dial: function dial(options) { RIL.dial(options.number, 0, 0); }, /** * Send DTMF Tone * * @param dtmfChar * String containing the DTMF signal to send. */ sendTone: function sendTone(options) { RIL.sendTone(options.dtmfChar); }, /** * Start DTMF Tone * * @param dtmfChar * String containing the DTMF signal to send. */ startTone: function startTone(options) { RIL.startTone(options.dtmfChar); }, /** * Stop DTMF Tone */ stopTone: function stopTone() { RIL.stopTone(); }, /** * Hang up a call. * * @param callIndex * Call index of the call to hang up. */ hangUp: function hangUp(options) { //TODO need to check whether call is holding/waiting/background // and then use REQUEST_HANGUP_WAITING_OR_BACKGROUND RIL.hangUp(options.callIndex); }, /** * Answer an incoming call. * * @param callIndex * Call index of the call to answer. */ answerCall: function answerCall(options) { // Check for races. Since we dispatched the incoming call notification the // incoming call may have changed. The main thread thinks that it is // answering the call with the given index, so only answer if that is still // incoming. let call = this.currentCalls[options.callIndex]; if (call && call.state == CALL_STATE_INCOMING) { RIL.answerCall(); } }, /** * Reject an incoming call. * * @param callIndex * Call index of the call to reject. */ rejectCall: function rejectCall(options) { // Check for races. Since we dispatched the incoming call notification the // incoming call may have changed. The main thread thinks that it is // rejecting the call with the given index, so only reject if that is still // incoming. let call = this.currentCalls[options.callIndex]; if (call && call.state == CALL_STATE_INCOMING) { RIL.rejectCall(); } }, /** * Send an SMS. * * @param number * String containing the recipient number. * @param body * String containing the message text. * @param requestId * String identifying the sms request used by the SmsRequestManager. * @param processId * String containing the processId for the SmsRequestManager. */ sendSMS: function sendSMS(options) { // Get the SMS Center address if (!this.SMSC) { // We request the SMS center address again, passing it the SMS options // in order to try to send it again after retrieving the SMSC number. RIL.getSMSCAddress(options); return; } // We explicitly save this information on the options object so that we // can refer to it later, in particular on the main thread (where this // object may get sent eventually.) options.SMSC = this.SMSC; //TODO: verify values on 'options' //TODO: the data encoding and length in octets should eventually be // computed on the mainthread and passed down to us. GsmPDUHelper.calculateUserDataLength(options); RIL.sendSMS(options); }, /** * Setup a data call (PDP). */ setupDataCall: function setupDataCall(options) { if (DEBUG) debug("setupDataCall: " + JSON.stringify(options)); let token = RIL.setupDataCall(options.radioTech, options.apn, options.user, options.passwd, options.chappap, options.pdptype); this.activeDataRequests[token] = options; }, /** * Deactivate a data call (PDP). */ deactivateDataCall: function deactivateDataCall(options) { if (!(options.cid in this.currentDataCalls)) { return; } let reason = options.reason || DATACALL_DEACTIVATE_NO_REASON; let token = RIL.deactivateDataCall(options.cid, reason); this.activeDataRequests[token] = options; let datacall = this.currentDataCalls[options.cid]; datacall.state = GECKO_NETWORK_STATE_DISCONNECTING; this.sendDOMMessage({type: "datacallstatechange", datacall: datacall}); }, /** * Get the list of data calls. */ getDataCallList: function getDataCallList(options) { RIL.getDataCallList(); }, /** * Get failure cause code for the last failed PDP context. */ getFailCauseCode: function getFailCauseCode(options) { RIL.getFailCauseCode(); }, /** * Get MSISDN */ getMSISDN: function getMSISDN() { let options = { command: ICC_COMMAND_GET_RESPONSE, fileid: ICC_EF_MSISDN, pathid: EF_PATH_MF_SIM + EF_PATH_DF_TELECOM, p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, }; RIL.iccIO(options); }, /** * Handle incoming messages from the main UI thread. * * @param message * Object containing the message. Messages are supposed */ handleDOMMessage: function handleMessage(message) { if (DEBUG) debug("Received DOM message " + JSON.stringify(message)); let method = this[message.type]; if (typeof method != "function") { if (DEBUG) { debug("Don't know what to do with message " + JSON.stringify(message)); } return; } method.call(this, message); }, /** * Send messages to the main UI thread. */ sendDOMMessage: function sendDOMMessage(message) { postMessage(message, "*"); } }; /** * This object exposes the functionality to parse and serialize PDU strings * * A PDU is a string containing a series of hexadecimally encoded octets * or nibble-swapped binary-coded decimals (BCDs). It contains not only the * message text but information about the sender, the SMS service center, * timestamp, etc. */ let GsmPDUHelper = { /** * List of tuples of national language identifier pairs. */ enabledGsmTableTuples: [ [PDU_NL_IDENTIFIER_DEFAULT, PDU_NL_IDENTIFIER_DEFAULT], ], /** * Read one character (2 bytes) from a RIL string and decode as hex. * * @return the nibble as a number. */ readHexNibble: function readHexNibble() { let nibble = Buf.readUint16(); if (nibble >= 48 && nibble <= 57) { nibble -= 48; // ASCII '0'..'9' } else if (nibble >= 65 && nibble <= 70) { nibble -= 55; // ASCII 'A'..'F' } else if (nibble >= 97 && nibble <= 102) { nibble -= 87; // ASCII 'a'..'f' } else { throw "Found invalid nibble during PDU parsing: " + String.fromCharCode(nibble); } return nibble; }, /** * Encode a nibble as one hex character in a RIL string (2 bytes). * * @param nibble * The nibble to encode (represented as a number) */ writeHexNibble: function writeHexNibble(nibble) { nibble &= 0x0f; if (nibble < 10) { nibble += 48; // ASCII '0' } else { nibble += 55; // ASCII 'A' } Buf.writeUint16(nibble); }, /** * Read a hex-encoded octet (two nibbles). * * @return the octet as a number. */ readHexOctet: function readHexOctet() { return (this.readHexNibble() << 4) | this.readHexNibble(); }, /** * Write an octet as two hex-encoded nibbles. * * @param octet * The octet (represented as a number) to encode. */ writeHexOctet: function writeHexOctet(octet) { this.writeHexNibble(octet >> 4); this.writeHexNibble(octet); }, /** * Convert an octet (number) to a BCD number. * * Any nibbles that are not in the BCD range count as 0. * * @param octet * The octet (a number, as returned by getOctet()) * * @return the corresponding BCD number. */ octetToBCD: function octetToBCD(octet) { return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) + ((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10; }, /** * Read a *swapped nibble* binary coded decimal (BCD) * * @param length * Number of nibble *pairs* to read. * * @return the decimal as a number. */ readSwappedNibbleBCD: function readSwappedNibbleBCD(length) { let number = 0; for (let i = 0; i < length; i++) { let octet = this.readHexOctet(); if (octet == 0xff) continue; // If the first nibble is an "F" , only the second nibble is to be taken // into account. if ((octet & 0xf0) == 0xf0) { number *= 10; number += octet & 0x0f; continue; } number *= 100; number += this.octetToBCD(octet); } return number; }, /** * Read a string from Buf and convert it to BCD * * @return the decimal as a number. */ readStringAsBCD: function readStringAsBCD() { let length = Buf.readUint32(); let bcd = this.readSwappedNibbleBCD(length / 2); let delimiter = Buf.readUint16(); if (!(length & 1)) { delimiter |= Buf.readUint16(); } return bcd; }, /** * Write numerical data as swapped nibble BCD. * * @param data * Data to write (as a string or a number) */ writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) { data = data.toString(); if (data.length % 2) { data += "F"; } for (let i = 0; i < data.length; i += 2) { Buf.writeUint16(data.charCodeAt(i + 1)); Buf.writeUint16(data.charCodeAt(i)); } }, /** * Read user data, convert to septets, look up relevant characters in a * 7-bit alphabet, and construct string. * * @param length * Number of septets to read (*not* octets) * @param paddingBits * Number of padding bits in the first byte of user data. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. * * @return a string. */ readSeptetsToString: function readSeptetsToString(length, paddingBits, langIndex, langShiftIndex) { let ret = ""; let byteLength = Math.ceil((length * 7 + paddingBits) / 8); /** * |<- last byte in header ->| * |<- incompleteBits ->|<- last header septet->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- 1st byte in user data ->| * |<- data septet 1 ->|<-paddingBits->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- 2nd byte in user data ->| * |<- data spetet 2 ->|<-ds1->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| */ let data = 0; let dataBits = 0; if (paddingBits) { data = this.readHexOctet() >> paddingBits; dataBits = 8 - paddingBits; --byteLength; } let escapeFound = false; const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex]; do { // Read as much as fits in 32bit word let bytesToRead = Math.min(byteLength, dataBits ? 3 : 4); for (let i = 0; i < bytesToRead; i++) { data |= this.readHexOctet() << dataBits; dataBits += 8; --byteLength; } // Consume available full septets for (; dataBits >= 7; dataBits -= 7) { let septet = data & 0x7F; data >>>= 7; if (escapeFound) { escapeFound = false; if (septet == PDU_NL_EXTENDED_ESCAPE) { // According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On // receipt of this code, a receiving entity shall display a space // until another extensiion table is defined." ret += " "; } else if (septet == PDU_NL_RESERVED_CONTROL) { // According to 3GPP TS 23.038 B.2, "This code represents a control // character and therefore must not be used for language specific // characters." ret += " "; } else { ret += langShiftTable[septet]; } } else if (septet == PDU_NL_EXTENDED_ESCAPE) { escapeFound = true; // is not an effective character --length; } else { ret += langTable[septet]; } } } while (byteLength); if (ret.length != length) { /** * If num of effective characters does not equal to the length of read * string, cut the tail off. This happens when the last octet of user * data has following layout: * * |<- penultimate octet in user data ->| * |<- data septet N ->|<- dsN-1 ->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- last octet in user data ->| * |<- fill bits ->|<-dsN->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * The fill bits in the last octet may happen to form a full septet and * be appended at the end of result string. */ ret = ret.slice(0, length); } return ret; }, writeStringAsSeptets: function writeStringAsSeptets(message, paddingBits, langIndex, langShiftIndex) { const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex]; let dataBits = paddingBits; let data = 0; for (let i = 0; i < message.length; i++) { let septet = langTable.indexOf(message[i]); if (septet == PDU_NL_EXTENDED_ESCAPE) { continue; } if (septet >= 0) { data |= septet << dataBits; dataBits += 7; } else { septet = langShiftTable.indexOf(message[i]); if (septet == -1) { throw new Error(message[i] + " not in 7 bit alphabet " + langIndex + ":" + langShiftIndex + "!"); } if (septet == PDU_NL_RESERVED_CONTROL) { continue; } data |= PDU_NL_EXTENDED_ESCAPE << dataBits; dataBits += 7; data |= septet << dataBits; dataBits += 7; } for (; dataBits >= 8; dataBits -= 8) { this.writeHexOctet(data & 0xFF); data >>>= 8; } } if (dataBits != 0) { this.writeHexOctet(data & 0xFF); } }, /** * Read user data and decode as a UCS2 string. * * @param numOctets * num of octets to read as UCS2 string. * * @return a string. */ readUCS2String: function readUCS2String(numOctets) { let str = ""; let length = numOctets / 2; for (let i = 0; i < length; ++i) { let code = (this.readHexOctet() << 8) | this.readHexOctet(); str += String.fromCharCode(code); } if (DEBUG) debug("Read UCS2 string: " + str); return str; }, /** * Write user data as a UCS2 string. * * @param message * Message string to encode as UCS2 in hex-encoded octets. */ writeUCS2String: function writeUCS2String(message) { for (let i = 0; i < message.length; ++i) { let code = message.charCodeAt(i); this.writeHexOctet((code >> 8) & 0xFF); this.writeHexOctet(code & 0xFF); } }, /** * Calculate encoded length using specified locking/single shift table * * @param message * message string to be encoded. * @param langTable * locking shift table string. * @param langShiftTable * single shift table string. * * @return encoded length in septets. * * @note that the algorithm used in this function must match exactly with * #writeStringAsSeptets. */ _calculateLangEncodedSeptets: function _calculateLangEncodedSeptets(message, langTable, langShiftTable) { let length = 0; for (let msgIndex = 0; msgIndex < message.length; msgIndex++) { let septet = langTable.indexOf(message.charAt(msgIndex)); // According to 3GPP TS 23.038, section 6.1.1 General notes, "The // characters marked '1)' are not used but are displayed as a space." if (septet == PDU_NL_EXTENDED_ESCAPE) { continue; } if (septet >= 0) { length++; continue; } septet = langShiftTable.indexOf(message.charAt(msgIndex)); if (septet == -1) { return -1; } // According to 3GPP TS 23.038 B.2, "This code represents a control // character and therefore must not be used for language specific // characters." if (septet == PDU_NL_RESERVED_CONTROL) { continue; } // The character is not found in locking shfit table, but could be // encoded as with single shift table. Note that it's // still possible for septet to has the value of PDU_NL_EXTENDED_ESCAPE, // but we can display it as a space in this case as said in previous // comment. length += 2; } return length; }, /** * Calculate user data length and its encoding. * * The `options` parameter object should contain the `body` attribute, and * the `dcs`, `userDataHeaderLength`, `encodedBodyLength`, `langIndex`, * `langShiftIndex` attributes will be set as return: * * @param body * String containing the message body. * @param dcs * Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET * constants. * @param userDataHeaderLength * Length of embedded user data header, in bytes. The whole header * size will be userDataHeaderLength + 1; 0 for no header. * @param encodedBodyLength * Length of the message body when encoded with the given DCS. For * UCS2, in bytes; for 7-bit, in septets. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. */ calculateUserDataLength: function calculateUserDataLength(options) { //TODO: support multipart SMS, see bug 712933 options.dcs = PDU_DCS_MSG_CODING_7BITS_ALPHABET; options.langIndex = PDU_NL_IDENTIFIER_DEFAULT; options.langShiftIndex = PDU_NL_IDENTIFIER_DEFAULT; options.encodedBodyLength = 0; options.userDataHeaderLength = 0; let needUCS2 = true; let minUserDataSeptets = Number.MAX_VALUE; for (let i = 0; i < this.enabledGsmTableTuples.length; i++) { let [langIndex, langShiftIndex] = this.enabledGsmTableTuples[i]; const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex]; let bodySeptets = this._calculateLangEncodedSeptets(options.body, langTable, langShiftTable); if (bodySeptets < 0) { continue; } let headerLen = 0; if (langIndex != PDU_NL_IDENTIFIER_DEFAULT) { headerLen += 3; // IEI + len + langIndex } if (langShiftIndex != PDU_NL_IDENTIFIER_DEFAULT) { headerLen += 3; // IEI + len + langShiftIndex } // Calculate full user data length, note the extra byte is for header len let headerSeptets = Math.ceil((headerLen ? headerLen + 1 : 0) * 8 / 7); let userDataSeptets = bodySeptets + headerSeptets; if (userDataSeptets >= minUserDataSeptets) { continue; } needUCS2 = false; minUserDataSeptets = userDataSeptets; options.encodedBodyLength = bodySeptets; options.userDataHeaderLength = headerLen; options.langIndex = langIndex; options.langShiftIndex = langShiftIndex; } if (needUCS2) { options.dcs = PDU_DCS_MSG_CODING_16BITS_ALPHABET; options.encodedBodyLength = options.body.length * 2; options.userDataHeaderLength = 0; } }, /** * Read 1 + UDHL octets and construct user data header at return. * * @return A header object with properties contained in received message. * The properties set include: *
    *
  • length: totoal length of the header, default 0. *
  • langIndex: used locking shift table index, default * PDU_NL_IDENTIFIER_DEFAULT. *
  • langShiftIndex: used locking shift table index, default * PDU_NL_IDENTIFIER_DEFAULT. *
*/ readUserDataHeader: function readUserDataHeader() { let header = { length: 0, langIndex: PDU_NL_IDENTIFIER_DEFAULT, langShiftIndex: PDU_NL_IDENTIFIER_DEFAULT }; header.length = this.readHexOctet(); let dataAvailable = header.length; while (dataAvailable >= 2) { let id = this.readHexOctet(); let length = this.readHexOctet(); dataAvailable -= 2; switch (id) { case PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT: let langShiftIndex = this.readHexOctet(); --dataAvailable; if (langShiftIndex < PDU_NL_SINGLE_SHIFT_TABLES.length) { header.langShiftIndex = langShiftIndex; } break; case PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT: let langIndex = this.readHexOctet(); --dataAvailable; if (langIndex < PDU_NL_LOCKING_SHIFT_TABLES.length) { header.langIndex = langIndex; } break; default: if (DEBUG) { debug("readUserDataHeader: unsupported IEI(" + id + "), " + length + " bytes."); } // Read out unsupported data if (length) { let octets; if (DEBUG) octets = new Uint8Array(length); for (let i = 0; i < length; i++) { let octet = this.readHexOctet(); if (DEBUG) octets[i] = octet; } dataAvailable -= length; if (DEBUG) debug("readUserDataHeader: " + Array.slice(octets)); } break; } } if (dataAvailable != 0) { throw new Error("Illegal user data header found!"); } return header; }, /** * Write out user data header. * * @param options * Options containing information for user data header write-out. The * `userDataHeaderLength` property must be correctly pre-calculated. */ writeUserDataHeader: function writeUserDataHeader(options) { this.writeHexOctet(options.userDataHeaderLength); if (options.langIndex != PDU_NL_IDENTIFIER_DEFAULT) { this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT); this.writeHexOctet(1); this.writeHexOctet(options.langIndex); } if (options.langShiftIndex != PDU_NL_IDENTIFIER_DEFAULT) { this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT); this.writeHexOctet(1); this.writeHexOctet(options.langShiftIndex); } }, /** * User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit * (UCS2) data. */ readUserData: function readUserData(length, codingScheme, hasHeader) { if (DEBUG) { debug("Reading " + length + " bytes of user data."); debug("Coding scheme: " + codingScheme); } // 7 bit is the default fallback encoding. let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET; switch (codingScheme & 0xC0) { case 0x0: // bits 7..4 = 00xx switch (codingScheme & 0x0C) { case 0x4: encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET; break; case 0x8: encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET; break; } break; case 0xC0: // bits 7..4 = 11xx switch (codingScheme & 0x30) { case 0x20: encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET; break; case 0x30: if (!codingScheme & 0x04) { encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET; } break; } break; default: // Falling back to default encoding. break; } let header; let paddingBits = 0; if (hasHeader) { header = this.readUserDataHeader(); if (encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { let headerBits = (header.length + 1) * 8; let headerSeptets = Math.ceil(headerBits / 7); length -= headerSeptets; paddingBits = headerSeptets * 7 - headerBits; } else { length -= (header.length + 1); } } if (DEBUG) debug("PDU: message encoding is " + encoding + " bit."); switch (encoding) { case PDU_DCS_MSG_CODING_7BITS_ALPHABET: // 7 bit encoding allows 140 octets, which means 160 characters // ((140x8) / 7 = 160 chars) if (length > PDU_MAX_USER_DATA_7BIT) { if (DEBUG) debug("PDU error: user data is too long: " + length); return null; } return this.readSeptetsToString(length, paddingBits, hasHeader ? header.langIndex : PDU_NL_IDENTIFIER_DEFAULT, hasHeader ? header.langShiftIndex : PDU_NL_IDENTIFIER_DEFAULT); case PDU_DCS_MSG_CODING_8BITS_ALPHABET: // Unsupported. return null; case PDU_DCS_MSG_CODING_16BITS_ALPHABET: return this.readUCS2String(length); } return null; }, /** * Read and decode a PDU-encoded message from the stream. * * TODO: add some basic sanity checks like: * - do we have the minimum number of chars available */ readMessage: function readMessage() { // An empty message object. This gets filled below and then returned. let msg = { SMSC: null, reference: null, sender: null, body: null, validity: null, timestamp: null }; // SMSC info let smscLength = this.readHexOctet(); if (smscLength > 0) { let smscTypeOfAddress = this.readHexOctet(); // Subtract the type-of-address octet we just read from the length. msg.SMSC = this.readSwappedNibbleBCD(smscLength - 1).toString(); if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) { msg.SMSC = '+' + msg.SMSC; } } // First octet of this SMS-DELIVER or SMS-SUBMIT message let firstOctet = this.readHexOctet(); // User data header indicator let hasUserDataHeader = firstOctet & PDU_UDHI; // if the sms is of SMS-SUBMIT type it would contain a TP-MR let isSmsSubmit = firstOctet & PDU_MTI_SMS_SUBMIT; if (isSmsSubmit) { msg.reference = this.readHexOctet(); // TP-Message-Reference } // - Sender Address info - // Address length let senderAddressLength = this.readHexOctet(); if (senderAddressLength <= 0) { if (DEBUG) debug("PDU error: invalid sender address length: " + senderAddressLength); return null; } // Type-of-Address let senderTypeOfAddress = this.readHexOctet(); if (senderAddressLength % 2 == 1) { senderAddressLength += 1; } if (DEBUG) debug("PDU: Going to read sender address: " + senderAddressLength); msg.sender = this.readSwappedNibbleBCD(senderAddressLength / 2).toString(); if (msg.sender.length <= 0) { if (DEBUG) debug("PDU error: no sender number provided"); return null; } if ((senderTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) { msg.sender = '+' + msg.sender; } // - TP-Protocolo-Identifier - let protocolIdentifier = this.readHexOctet(); // - TP-Data-Coding-Scheme - let dataCodingScheme = this.readHexOctet(); // SMS of SMS-SUBMIT type contains a TP-Service-Center-Time-Stamp field // SMS of SMS-DELIVER type contains a TP-Validity-Period octet if (isSmsSubmit) { // - TP-Validity-Period - // The Validity Period octet is optional. Depends on the SMS-SUBMIT // first octet // Validity Period Format. Bit4 and Bit3 specify the TP-VP field // according to this table: // bit4 bit3 // 0 0 : TP-VP field not present // 1 0 : TP-VP field present. Relative format (one octet) // 0 1 : TP-VP field present. Enhanced format (7 octets) // 1 1 : TP-VP field present. Absolute format (7 octets) if (firstOctet & (PDU_VPF_ABSOLUTE | PDU_VPF_RELATIVE | PDU_VPF_ENHANCED)) { msg.validity = this.readHexOctet(); } //TODO: check validity period } else { // - TP-Service-Center-Time-Stamp - let year = this.readSwappedNibbleBCD(1) + PDU_TIMESTAMP_YEAR_OFFSET; let month = this.readSwappedNibbleBCD(1) - 1; let day = this.readSwappedNibbleBCD(1); let hour = this.readSwappedNibbleBCD(1); let minute = this.readSwappedNibbleBCD(1); let second = this.readSwappedNibbleBCD(1); msg.timestamp = Date.UTC(year, month, day, hour, minute, second); // If the most significant bit of the least significant nibble is 1, // the timezone offset is negative (fourth bit from the right => 0x08). let tzOctet = this.readHexOctet(); let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000; if (tzOctet & 0x08) { msg.timestamp -= tzOffset; } else { msg.timestamp += tzOffset; } } // - TP-User-Data-Length - let userDataLength = this.readHexOctet(); // - TP-User-Data - if (userDataLength > 0) { msg.body = this.readUserData(userDataLength, dataCodingScheme, hasUserDataHeader); } return msg; }, /** * Serialize a SMS-SUBMIT PDU message and write it to the output stream. * * This method expects that a data coding scheme has been chosen already * and that the length of the user data payload in that encoding is known, * too. Both go hand in hand together anyway. * * @param address * String containing the address (number) of the SMS receiver * @param userData * String containing the message to be sent as user data * @param dcs * Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET * constants. * @param userDataHeaderLength * Length of embedded user data header, in bytes. The whole header * size will be userDataHeaderLength + 1; 0 for no header. * @param encodedBodyLength * Length of the user data when encoded with the given DCS. For UCS2, * in bytes; for 7-bit, in septets. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. */ writeMessage: function writeMessage(options) { if (DEBUG) { debug("writeMessage: " + JSON.stringify(options)); } let address = options.number; let body = options.body; let dcs = options.dcs; let userDataHeaderLength = options.userDataHeaderLength; let encodedBodyLength = options.encodedBodyLength; let langIndex = options.langIndex; let langShiftIndex = options.langShiftIndex; // SMS-SUBMIT Format: // // PDU Type - 1 octet // Message Reference - 1 octet // DA - Destination Address - 2 to 12 octets // PID - Protocol Identifier - 1 octet // DCS - Data Coding Scheme - 1 octet // VP - Validity Period - 0, 1 or 7 octets // UDL - User Data Length - 1 octet // UD - User Data - 140 octets let addressFormat = PDU_TOA_ISDN; // 81 if (address[0] == '+') { addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91 address = address.substring(1); } //TODO validity is unsupported for now let validity = 0; let headerOctets = (userDataHeaderLength ? userDataHeaderLength + 1 : 0); let paddingBits; let userDataLengthInSeptets; let userDataLengthInOctets; if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { let headerSeptets = Math.ceil(headerOctets * 8 / 7); userDataLengthInSeptets = headerSeptets + encodedBodyLength; userDataLengthInOctets = Math.ceil(userDataLengthInSeptets * 7 / 8); paddingBits = headerSeptets * 7 - headerOctets * 8; } else { userDataLengthInOctets = headerOctets + encodedBodyLength; paddingBits = 0; } let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format Math.ceil(address.length / 2) + 3 + // PID, DCS, UDL userDataLengthInOctets; if (validity) { //TODO: add more to pduOctetLength } // Start the string. Since octets are represented in hex, we will need // twice as many characters as octets. Buf.writeUint32(pduOctetLength * 2); // - PDU-TYPE- // +--------+----------+---------+---------+--------+---------+ // | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) | // +--------+----------+---------+---------+--------+---------+ // RP: 0 Reply path parameter is not set // 1 Reply path parameter is set // UDHI: 0 The UD Field contains only the short message // 1 The beginning of the UD field contains a header in addition // of the short message // SRR: 0 A status report is not requested // 1 A status report is requested // VPF: bit4 bit3 // 0 0 VP field is not present // 0 1 Reserved // 1 0 VP field present an integer represented (relative) // 1 1 VP field present a semi-octet represented (absolute) // RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT // for a short message still held in the SMSC which has the same // MR and DA as a previously submitted short message from the // same OA // MTI: bit1 bit0 Message Type // 0 0 SMS-DELIVER (SMSC ==> MS) // 0 1 SMS-SUBMIT (MS ==> SMSC) // PDU type. MTI is set to SMS-SUBMIT let firstOctet = PDU_MTI_SMS_SUBMIT; // Validity period if (validity) { //TODO: not supported yet, OR with one of PDU_VPF_* } // User data header indicator if (headerOctets) { firstOctet |= PDU_UDHI; } this.writeHexOctet(firstOctet); // Message reference 00 this.writeHexOctet(0x00); // - Destination Address - this.writeHexOctet(address.length); this.writeHexOctet(addressFormat); this.writeSwappedNibbleBCD(address); // - Protocol Identifier - this.writeHexOctet(0x00); // - Data coding scheme - // For now it assumes bits 7..4 = 1111 except for the 16 bits use case this.writeHexOctet(dcs); // - Validity Period - if (validity) { this.writeHexOctet(validity); } // - User Data - if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { this.writeHexOctet(userDataLengthInSeptets); } else { this.writeHexOctet(userDataLengthInOctets); } if (headerOctets) { this.writeUserDataHeader(options); } switch (dcs) { case PDU_DCS_MSG_CODING_7BITS_ALPHABET: this.writeStringAsSeptets(body, paddingBits, langIndex, langShiftIndex); break; case PDU_DCS_MSG_CODING_8BITS_ALPHABET: // Unsupported. break; case PDU_DCS_MSG_CODING_16BITS_ALPHABET: this.writeUCS2String(body); break; } // End of the string. The string length is always even by definition, so // we write two \0 delimiters. Buf.writeUint16(0); Buf.writeUint16(0); } }; /** * Global stuff. */ if (!this.debug) { // Debugging stub that goes nowhere. this.debug = function debug(message) { dump("RIL Worker: " + message + "\n"); }; } // Initialize buffers. This is a separate function so that unit tests can // re-initialize the buffers at will. Buf.init(); function onRILMessage(data) { Buf.processIncoming(data); }; onmessage = function onmessage(event) { Phone.handleDOMMessage(event.data); }; onerror = function onerror(event) { debug("RIL Worker error" + event.message + "\n"); };