/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mozilla/LinkedList.h" #include "mozilla/TaggedAnonymousMemory.h" #include "Nuwa.h" using namespace mozilla; extern "C" MFBT_API int tgkill(pid_t tgid, pid_t tid, int signalno) { return syscall(__NR_tgkill, tgid, tid, signalno); } /** * Provides the wrappers to a selected set of pthread and system-level functions * as the basis for implementing Zygote-like preforking mechanism. */ /** * Real functions for the wrappers. */ extern "C" { #pragma GCC visibility push(default) int __real_pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg); int __real_pthread_key_create(pthread_key_t *key, void (*destructor)(void*)); int __real_pthread_key_delete(pthread_key_t key); pthread_t __real_pthread_self(); int __real_pthread_join(pthread_t thread, void **retval); int __real_epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout); int __real_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx); int __real_pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mtx, const struct timespec *abstime); int __real___pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mtx, const struct timespec *abstime, clockid_t clock); int __real_pthread_mutex_lock(pthread_mutex_t *mtx); int __real_poll(struct pollfd *fds, nfds_t nfds, int timeout); int __real_epoll_create(int size); int __real_socketpair(int domain, int type, int protocol, int sv[2]); int __real_pipe2(int __pipedes[2], int flags); int __real_pipe(int __pipedes[2]); int __real_epoll_ctl(int aEpollFd, int aOp, int aFd, struct epoll_event *aEvent); int __real_close(int aFd); #pragma GCC visibility pop } #define REAL(s) __real_##s /** * A Nuwa process is started by preparing. After preparing, it waits * for all threads becoming frozen. Then, it is ready while all * threads are frozen. */ static bool sIsNuwaProcess = false; // This process is a Nuwa process. static bool sIsFreezing = false; // Waiting for all threads getting frozen. static bool sNuwaReady = false; // Nuwa process is ready. static bool sNuwaPendingSpawn = false; // Are there any pending spawn requests? static bool sNuwaForking = false; // Fds of transports of top level protocols. static NuwaProtoFdInfo sProtoFdInfos[NUWA_TOPLEVEL_MAX]; static int sProtoFdInfosSize = 0; typedef std::vector > TLSInfoList; /** * Return the system's page size */ static size_t getPageSize(void) { #ifdef HAVE_GETPAGESIZE return getpagesize(); #elif defined(_SC_PAGESIZE) return sysconf(_SC_PAGESIZE); #elif defined(PAGE_SIZE) return PAGE_SIZE; #else #warning "Hard-coding page size to 4096 bytes" return 4096 #endif } /** * The stack size is chosen carefully so the frozen threads doesn't consume too * much memory in the Nuwa process. The threads shouldn't run deep recursive * methods or do large allocations on the stack to avoid stack overflow. */ #ifndef NUWA_STACK_SIZE #define NUWA_STACK_SIZE (1024 * 128) #endif #define NATIVE_THREAD_NAME_LENGTH 16 struct thread_info : public mozilla::LinkedListElement { pthread_t origThreadID; pthread_t recreatedThreadID; pthread_attr_t threadAttr; jmp_buf jmpEnv; jmp_buf retEnv; int flags; void *(*startupFunc)(void *arg); void *startupArg; // The thread specific function to recreate the new thread. It's executed // after the thread is recreated. void (*recrFunc)(void *arg); void *recrArg; TLSInfoList tlsInfo; /** * We must ensure that the recreated thread has entered pthread_cond_wait() or * similar functions before proceeding to recreate the next one. Otherwise, if * the next thread depends on the same mutex, it may be used in an incorrect * state. To do this, the main thread must unconditionally acquire the mutex. * The mutex is unconditionally released when the recreated thread enters * pthread_cond_wait(). The recreated thread may have locked the mutex itself * (if the pthread_mutex_trylock succeeded) or another thread may have already * held the lock. If the recreated thread did lock the mutex we must balance * that with another unlock on the main thread, which is signaled by * condMutexNeedsBalancing. */ pthread_mutex_t *condMutex; bool condMutexNeedsBalancing; void *stk; pid_t origNativeThreadID; pid_t recreatedNativeThreadID; char nativeThreadName[NATIVE_THREAD_NAME_LENGTH]; }; typedef struct thread_info thread_info_t; static thread_info_t *sCurrentRecreatingThread = nullptr; /** * This function runs the custom recreation function registered when calling * NuwaMarkCurrentThread() after thread stack is restored. */ static void RunCustomRecreation() { thread_info_t *tinfo = sCurrentRecreatingThread; if (tinfo->recrFunc != nullptr) { tinfo->recrFunc(tinfo->recrArg); } } /** * Every thread should be marked as either TINFO_FLAG_NUWA_SUPPORT or * TINFO_FLAG_NUWA_SKIP, or it means a potential error. We force * Gecko code to mark every single thread to make sure there are no accidents * when recreating threads with Nuwa. * * Threads marked as TINFO_FLAG_NUWA_SUPPORT can be checkpointed explicitly, by * calling NuwaCheckpointCurrentThread(), or implicitly when they call into wrapped * functions like pthread_mutex_lock(), epoll_wait(), etc. * TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT denotes the explicitly checkpointed thread. */ #define TINFO_FLAG_NUWA_SUPPORT 0x1 #define TINFO_FLAG_NUWA_SKIP 0x2 #define TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT 0x4 typedef struct nuwa_construct { void (*construct)(void *); void *arg; } nuwa_construct_t; static std::vector sConstructors; static std::vector sFinalConstructors; typedef std::map TLSKeySet; static TLSKeySet sTLSKeys; /** * This mutex is used to block the running threads and freeze their contexts. * PrepareNuwaProcess() is the first one to acquire the lock. Further attempts * to acquire this mutex (in the freeze point macros) will block and freeze the * calling thread. */ static pthread_mutex_t sThreadFreezeLock = PTHREAD_MUTEX_INITIALIZER; static thread_info_t sMainThread; static int sThreadCount = 0; static int sThreadFreezeCount = 0; // Bug 1008254: LinkedList's destructor asserts that the list is empty. // But here, on exit, when the global sAllThreads list // is destroyed, it may or may be empty. Bug 1008254 comment 395 has a log // when there were 8 threads remaining on exit. So this assertion was // intermittently (almost every second time) failing. // As a work-around to avoid this intermittent failure, we clear the list on // exit just before it gets destroyed. This is the only purpose of that // AllThreadsListType subclass. struct AllThreadsListType : public LinkedList { ~AllThreadsListType() { if (!isEmpty()) { __android_log_print(ANDROID_LOG_WARN, "Nuwa", "Threads remaining at exit:\n"); int n = 0; for (const thread_info_t* t = getFirst(); t; t = t->getNext()) { __android_log_print(ANDROID_LOG_WARN, "Nuwa", " %.*s (origNativeThreadID=%d recreatedNativeThreadID=%d)\n", NATIVE_THREAD_NAME_LENGTH, t->nativeThreadName, t->origNativeThreadID, t->recreatedNativeThreadID); n++; } __android_log_print(ANDROID_LOG_WARN, "Nuwa", "total: %d outstanding threads. " "Please fix them so they're destroyed before this point!\n", n); __android_log_print(ANDROID_LOG_WARN, "Nuwa", "note: sThreadCount=%d, sThreadFreezeCount=%d\n", sThreadCount, sThreadFreezeCount); } clear(); } }; static AllThreadsListType sAllThreads; /** * This mutex protects the access to thread info: * sAllThreads, sThreadCount, sThreadFreezeCount, sRecreateVIPCount. */ static pthread_mutex_t sThreadCountLock = PTHREAD_MUTEX_INITIALIZER; /** * This condition variable lets MakeNuwaProcess() wait until all recreated * threads are frozen. */ static pthread_cond_t sThreadChangeCond = PTHREAD_COND_INITIALIZER; /** * This mutex and condition variable is used to serialize the fork requests * from the parent process. */ static pthread_mutex_t sForkLock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t sForkWaitCond = PTHREAD_COND_INITIALIZER; /** * sForkWaitCondChanged will be reset to false on the IPC thread before * and will be changed to true on the main thread to indicate that the condition * that the IPC thread is waiting for has already changed. */ static bool sForkWaitCondChanged = false; /** * This mutex protects the access to sTLSKeys, which keeps track of existing * TLS Keys. */ static pthread_mutex_t sTLSKeyLock = PTHREAD_MUTEX_INITIALIZER; static int sThreadSkipCount = 0; static thread_info_t * GetThreadInfoInner(pthread_t threadID) { for (thread_info_t *tinfo = sAllThreads.getFirst(); tinfo; tinfo = tinfo->getNext()) { if (pthread_equal(tinfo->origThreadID, threadID)) { return tinfo; } } return nullptr; } /** * Get thread info using the specified thread ID. * * @return thread_info_t which has threadID == specified threadID */ static thread_info_t * GetThreadInfo(pthread_t threadID) { if (sIsNuwaProcess) { REAL(pthread_mutex_lock)(&sThreadCountLock); } thread_info_t *tinfo = GetThreadInfoInner(threadID); if (sIsNuwaProcess) { pthread_mutex_unlock(&sThreadCountLock); } return tinfo; } /** * Get thread info using the specified native thread ID. * * @return thread_info_t with nativeThreadID == specified threadID */ static thread_info_t* GetThreadInfo(pid_t threadID) { if (sIsNuwaProcess) { REAL(pthread_mutex_lock)(&sThreadCountLock); } thread_info_t *thrinfo = nullptr; for (thread_info_t *tinfo = sAllThreads.getFirst(); tinfo; tinfo = tinfo->getNext()) { if (tinfo->origNativeThreadID == threadID) { thrinfo = tinfo; break; } } if (sIsNuwaProcess) { pthread_mutex_unlock(&sThreadCountLock); } return thrinfo; } #if !defined(HAVE_THREAD_TLS_KEYWORD) /** * Get thread info of the current thread. * * @return thread_info_t for the current thread. */ static thread_info_t * GetCurThreadInfo() { pthread_t threadID = REAL(pthread_self)(); pthread_t thread_info_t::*threadIDptr = (sIsNuwaProcess ? &thread_info_t::origThreadID : &thread_info_t::recreatedThreadID); REAL(pthread_mutex_lock)(&sThreadCountLock); thread_info_t *tinfo; for (tinfo = sAllThreads.getFirst(); tinfo; tinfo = tinfo->getNext()) { if (pthread_equal(tinfo->*threadIDptr, threadID)) { break; } } pthread_mutex_unlock(&sThreadCountLock); return tinfo; } #define CUR_THREAD_INFO GetCurThreadInfo() #define SET_THREAD_INFO(x) /* Nothing to do. */ #else // Is not nullptr only for threads created by pthread_create() in an Nuwa process. // It is always nullptr for the main thread. static __thread thread_info_t *sCurThreadInfo = nullptr; #define CUR_THREAD_INFO sCurThreadInfo #define SET_THREAD_INFO(x) do { sCurThreadInfo = (x); } while(0) #endif // HAVE_THREAD_TLS_KEYWORD /* * Track all epoll fds and handling events. */ class EpollManager { public: class EpollInfo { public: typedef struct epoll_event Events; typedef std::map EpollEventsMap; typedef EpollEventsMap::iterator iterator; typedef EpollEventsMap::const_iterator const_iterator; EpollInfo(): mBackSize(0) {} EpollInfo(int aBackSize): mBackSize(aBackSize) {} EpollInfo(const EpollInfo &aOther): mEvents(aOther.mEvents) , mBackSize(aOther.mBackSize) { } ~EpollInfo() { mEvents.clear(); } void AddEvents(int aFd, Events &aEvents) { std::pair pair = mEvents.insert(std::make_pair(aFd, aEvents)); if (!pair.second) { abort(); } } void RemoveEvents(int aFd) { if (!mEvents.erase(aFd)) { abort(); } } void ModifyEvents(int aFd, Events &aEvents) { iterator it = mEvents.find(aFd); if (it == mEvents.end()) { abort(); } it->second = aEvents; } const Events &FindEvents(int aFd) const { const_iterator it = mEvents.find(aFd); if (it == mEvents.end()) { abort(); } return it->second; } int Size() const { return mEvents.size(); } // Iterator with values of pairs. const_iterator begin() const { return mEvents.begin(); } const_iterator end() const { return mEvents.end(); } int BackSize() const { return mBackSize; } private: EpollEventsMap mEvents; int mBackSize; friend class EpollManager; }; typedef std::map EpollInfoMap; typedef EpollInfoMap::iterator iterator; typedef EpollInfoMap::const_iterator const_iterator; public: void AddEpollInfo(int aEpollFd, int aBackSize) { EpollInfo *oldinfo = FindEpollInfo(aEpollFd); if (oldinfo != nullptr) { abort(); } mEpollFdsInfo[aEpollFd] = EpollInfo(aBackSize); } EpollInfo *FindEpollInfo(int aEpollFd) { iterator it = mEpollFdsInfo.find(aEpollFd); if (it == mEpollFdsInfo.end()) { return nullptr; } return &it->second; } void RemoveEpollInfo(int aEpollFd) { if (!mEpollFdsInfo.erase(aEpollFd)) { abort(); } } int Size() const { return mEpollFdsInfo.size(); } // Iterator of pairs. const_iterator begin() const { return mEpollFdsInfo.begin(); } const_iterator end() const { return mEpollFdsInfo.end(); } static EpollManager *Singleton() { if (!sInstance) { sInstance = new EpollManager(); } return sInstance; } static void Shutdown() { if (!sInstance) { abort(); } delete sInstance; sInstance = nullptr; } private: static EpollManager *sInstance; ~EpollManager() { mEpollFdsInfo.clear(); } EpollInfoMap mEpollFdsInfo; EpollManager() {} }; EpollManager* EpollManager::sInstance; static thread_info_t * thread_info_new(void) { /* link tinfo to sAllThreads */ thread_info_t *tinfo = new thread_info_t(); tinfo->flags = 0; tinfo->recrFunc = nullptr; tinfo->recrArg = nullptr; tinfo->recreatedThreadID = 0; tinfo->recreatedNativeThreadID = 0; tinfo->condMutex = nullptr; tinfo->condMutexNeedsBalancing = false; tinfo->stk = MozTaggedAnonymousMmap(nullptr, NUWA_STACK_SIZE + getPageSize(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, /* fd */ -1, /* offset */ 0, "nuwa-thread-stack"); // We use a smaller stack size. Add protection to stack overflow: mprotect() // stack top (the page at the lowest address) so we crash instead of corrupt // other content that is malloc()'d. mprotect(tinfo->stk, getPageSize(), PROT_NONE); pthread_attr_init(&tinfo->threadAttr); REAL(pthread_mutex_lock)(&sThreadCountLock); // Insert to the tail. sAllThreads.insertBack(tinfo); sThreadCount++; pthread_cond_signal(&sThreadChangeCond); pthread_mutex_unlock(&sThreadCountLock); return tinfo; } static void thread_info_cleanup(void *arg) { if (sNuwaForking) { // We shouldn't have any thread exiting when we are forking a new process. abort(); } thread_info_t *tinfo = (thread_info_t *)arg; pthread_attr_destroy(&tinfo->threadAttr); munmap(tinfo->stk, NUWA_STACK_SIZE + getPageSize()); REAL(pthread_mutex_lock)(&sThreadCountLock); /* unlink tinfo from sAllThreads */ tinfo->remove(); pthread_mutex_unlock(&sThreadCountLock); // while sThreadCountLock is held, since delete calls wrapped functions // which try to lock sThreadCountLock. This results in deadlock. And we // need to delete |tinfo| before decreasing sThreadCount, so Nuwa won't // get ready before tinfo is cleaned. delete tinfo; REAL(pthread_mutex_lock)(&sThreadCountLock); sThreadCount--; pthread_cond_signal(&sThreadChangeCond); pthread_mutex_unlock(&sThreadCountLock); } static void* cleaner_thread(void *arg) { thread_info_t *tinfo = (thread_info_t *)arg; pthread_t *thread = sIsNuwaProcess ? &tinfo->origThreadID : &tinfo->recreatedThreadID; // Wait until target thread end. while (!pthread_kill(*thread, 0)) { sched_yield(); } thread_info_cleanup(tinfo); return nullptr; } static void thread_cleanup(void *arg) { pthread_t thread; REAL(pthread_create)(&thread, nullptr, &cleaner_thread, arg); pthread_detach(thread); } static void * _thread_create_startup(void *arg) { thread_info_t *tinfo = (thread_info_t *)arg; void *r; // Save thread info; especially, stackaddr & stacksize. // Reuse the stack in the new thread. pthread_getattr_np(REAL(pthread_self)(), &tinfo->threadAttr); SET_THREAD_INFO(tinfo); tinfo->origThreadID = REAL(pthread_self)(); tinfo->origNativeThreadID = gettid(); pthread_cleanup_push(thread_cleanup, tinfo); r = tinfo->startupFunc(tinfo->startupArg); if (!sIsNuwaProcess) { return r; } pthread_cleanup_pop(1); return r; } // reserve STACK_RESERVED_SZ * 4 bytes for thread_recreate_startup(). #define STACK_RESERVED_SZ 64 #define STACK_SENTINEL(v) ((v)[0]) #define STACK_SENTINEL_VALUE(v) ((uint32_t)(v) ^ 0xdeadbeef) static void * thread_create_startup(void *arg) { /* * Dark Art!! Never try to do the same unless you are ABSOLUTELY sure of * what you are doing! * * This function is here for reserving stack space before calling * _thread_create_startup(). see also thread_create_startup(); */ void *r; volatile uint32_t reserved[STACK_RESERVED_SZ]; // Reserve stack space. STACK_SENTINEL(reserved) = STACK_SENTINEL_VALUE(reserved); r = _thread_create_startup(arg); // Check if the reservation is enough. if (STACK_SENTINEL(reserved) != STACK_SENTINEL_VALUE(reserved)) { abort(); // Did not reserve enough stack space. } thread_info_t *tinfo = CUR_THREAD_INFO; if (!sIsNuwaProcess) { longjmp(tinfo->retEnv, 1); // Never go here! abort(); } return r; } extern "C" MFBT_API int __wrap_pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg) { if (!sIsNuwaProcess) { return REAL(pthread_create)(thread, attr, start_routine, arg); } thread_info_t *tinfo = thread_info_new(); tinfo->startupFunc = start_routine; tinfo->startupArg = arg; pthread_attr_setstack(&tinfo->threadAttr, (char*)tinfo->stk + getPageSize(), NUWA_STACK_SIZE); int rv = REAL(pthread_create)(thread, &tinfo->threadAttr, thread_create_startup, tinfo); if (rv) { thread_info_cleanup(tinfo); } else { tinfo->origThreadID = *thread; } return rv; } // TLS related /** * Iterates over the existing TLS keys and store the TLS data for the current * thread in tinfo. */ static void SaveTLSInfo(thread_info_t *tinfo) { REAL(pthread_mutex_lock)(&sTLSKeyLock); tinfo->tlsInfo.clear(); for (TLSKeySet::const_iterator it = sTLSKeys.begin(); it != sTLSKeys.end(); it++) { void *value = pthread_getspecific(it->first); if (value == nullptr) { continue; } pthread_key_t key = it->first; tinfo->tlsInfo.push_back(TLSInfoList::value_type(key, value)); } pthread_mutex_unlock(&sTLSKeyLock); } /** * Restores the TLS data for the current thread from tinfo. */ static void RestoreTLSInfo(thread_info_t *tinfo) { for (TLSInfoList::const_iterator it = tinfo->tlsInfo.begin(); it != tinfo->tlsInfo.end(); it++) { pthread_key_t key = it->first; const void *value = it->second; if (pthread_setspecific(key, value)) { abort(); } } SET_THREAD_INFO(tinfo); tinfo->recreatedThreadID = REAL(pthread_self)(); tinfo->recreatedNativeThreadID = gettid(); } extern "C" MFBT_API int __wrap_pthread_key_create(pthread_key_t *key, void (*destructor)(void*)) { int rv = REAL(pthread_key_create)(key, destructor); if (rv != 0) { return rv; } REAL(pthread_mutex_lock)(&sTLSKeyLock); sTLSKeys.insert(TLSKeySet::value_type(*key, destructor)); pthread_mutex_unlock(&sTLSKeyLock); return 0; } extern "C" MFBT_API int __wrap_pthread_key_delete(pthread_key_t key) { if (!sIsNuwaProcess) { return REAL(pthread_key_delete)(key); } int rv = REAL(pthread_key_delete)(key); if (rv != 0) { return rv; } REAL(pthread_mutex_lock)(&sTLSKeyLock); sTLSKeys.erase(key); pthread_mutex_unlock(&sTLSKeyLock); return 0; } extern "C" MFBT_API pthread_t __wrap_pthread_self() { thread_info_t *tinfo = CUR_THREAD_INFO; if (tinfo) { // For recreated thread, masquerade as the original thread in the Nuwa // process. return tinfo->origThreadID; } return REAL(pthread_self)(); } extern "C" MFBT_API int __wrap_pthread_join(pthread_t thread, void **retval) { thread_info_t *tinfo = GetThreadInfo(thread); if (tinfo == nullptr) { return REAL(pthread_join)(thread, retval); } // pthread_join() need to use the real thread ID in the spawned process. return REAL(pthread_join)(tinfo->recreatedThreadID, retval); } /** * The following are used to synchronize between the main thread and the * thread being recreated. The main thread will wait until the thread is woken * up from the freeze points or the blocking intercepted functions and then * proceed to recreate the next frozen thread. * * In thread recreation, the main thread recreates the frozen threads one by * one. The recreated threads will be "gated" until the main thread "opens the * gate" to let them run freely as if they were created from scratch. The VIP * threads gets the chance to run first after their thread stacks are recreated * (using longjmp()) so they can adjust their contexts to a valid, consistent * state. The threads frozen waiting for pthread condition variables are VIP * threads. After woken up they need to run first to make the associated mutex * in a valid state to maintain the semantics of the intercepted function calls * (like pthread_cond_wait()). */ // Used to synchronize the main thread and the thread being recreated so that // only one thread is allowed to be recreated at a time. static pthread_mutex_t sRecreateWaitLock = PTHREAD_MUTEX_INITIALIZER; // Used to block recreated threads until the main thread "opens the gate". static pthread_mutex_t sRecreateGateLock = PTHREAD_MUTEX_INITIALIZER; // Used to block the main thread from "opening the gate" until all VIP threads // have been recreated. static pthread_mutex_t sRecreateVIPGateLock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t sRecreateVIPCond = PTHREAD_COND_INITIALIZER; static int sRecreateVIPCount = 0; static int sRecreateGatePassed = 0; /** * Thread recreation macros. * * The following macros are used in the forked process to synchronize and * control the progress of thread recreation. * * 1. RECREATE_START() is first called in the beginning of thread * recreation to set sRecreateWaitLock and sRecreateGateLock in locked * state. * 2. For each frozen thread: * 2.1. RECREATE_BEFORE() to set the thread being recreated. * 2.2. thread_recreate() to recreate the frozen thread. * 2.3. Main thread calls RECREATE_WAIT() to wait on sRecreateWaitLock until * the thread is recreated from the freeze point and calls * RECREATE_CONTINUE() to release sRecreateWaitLock. * 2.3. Non-VIP threads are blocked on RECREATE_GATE(). VIP threads calls * RECREATE_PASS_VIP() to mark that a VIP thread is successfully * recreated and then is blocked by calling RECREATE_GATE_VIP(). * 3. RECREATE_WAIT_ALL_VIP() to wait until all VIP threads passed, that is, * VIP threads already has their contexts (mainly pthread mutex) in a valid * state. * 4. RECREATE_OPEN_GATE() to unblock threads blocked by sRecreateGateLock. * 5. RECREATE_FINISH() to complete thread recreation. */ #define RECREATE_START() \ do { \ REAL(pthread_mutex_lock)(&sRecreateWaitLock); \ REAL(pthread_mutex_lock)(&sRecreateGateLock); \ } while(0) #define RECREATE_BEFORE(info) do { sCurrentRecreatingThread = info; } while(0) #define RECREATE_WAIT() REAL(pthread_mutex_lock)(&sRecreateWaitLock) #define RECREATE_CONTINUE() do { \ RunCustomRecreation(); \ pthread_mutex_unlock(&sRecreateWaitLock); \ } while(0) #define RECREATE_FINISH() pthread_mutex_unlock(&sRecreateWaitLock) #define RECREATE_GATE() \ do { \ REAL(pthread_mutex_lock)(&sRecreateGateLock); \ sRecreateGatePassed++; \ pthread_mutex_unlock(&sRecreateGateLock); \ } while(0) #define RECREATE_OPEN_GATE() pthread_mutex_unlock(&sRecreateGateLock) #define RECREATE_GATE_VIP() \ do { \ REAL(pthread_mutex_lock)(&sRecreateGateLock); \ pthread_mutex_unlock(&sRecreateGateLock); \ } while(0) #define RECREATE_PASS_VIP() \ do { \ REAL(pthread_mutex_lock)(&sRecreateVIPGateLock); \ sRecreateGatePassed++; \ pthread_cond_signal(&sRecreateVIPCond); \ pthread_mutex_unlock(&sRecreateVIPGateLock); \ } while(0) #define RECREATE_WAIT_ALL_VIP() \ do { \ REAL(pthread_mutex_lock)(&sRecreateVIPGateLock); \ while(sRecreateGatePassed < sRecreateVIPCount) { \ REAL(pthread_cond_wait)(&sRecreateVIPCond, \ &sRecreateVIPGateLock); \ } \ pthread_mutex_unlock(&sRecreateVIPGateLock); \ } while(0) /** * Thread freeze points. Note that the freeze points are implemented as macros * so as not to garble the content of the stack after setjmp(). * * In the nuwa process, when a thread supporting nuwa calls a wrapper * function, freeze point 1 setjmp()s to save the state. We only allow the * thread to be frozen in the wrapper functions. If thread freezing is not * enabled yet, the wrapper functions act like their wrapped counterparts, * except for the extra actions in the freeze points. If thread freezing is * enabled, the thread will be frozen by calling one of the wrapper functions. * The threads can be frozen in any of the following points: * * 1) Freeze point 1: this is the point where we setjmp() in the nuwa process * and longjmp() in the spawned process. If freezing is enabled, then the * current thread blocks by acquiring an already locked mutex, * sThreadFreezeLock. * 2) The wrapped function: the function that might block waiting for some * resource or condition. * 3) Freeze point 2: blocks the current thread by acquiring sThreadFreezeLock. * If freezing is not enabled then revert the counter change in freeze * point 1. */ #define THREAD_FREEZE_POINT1() \ bool freezeCountChg = false; \ bool recreated = false; \ volatile bool freezePoint2 = false; \ thread_info_t *tinfo; \ if (sIsNuwaProcess && \ (tinfo = CUR_THREAD_INFO) && \ (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) && \ !(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) { \ if (!setjmp(tinfo->jmpEnv)) { \ REAL(pthread_mutex_lock)(&sThreadCountLock); \ SaveTLSInfo(tinfo); \ sThreadFreezeCount++; \ freezeCountChg = true; \ pthread_cond_signal(&sThreadChangeCond); \ pthread_mutex_unlock(&sThreadCountLock); \ \ if (sIsFreezing) { \ REAL(pthread_mutex_lock)(&sThreadFreezeLock); \ /* Never return from the pthread_mutex_lock() call. */ \ abort(); \ } \ } else { \ RECREATE_CONTINUE(); \ RECREATE_GATE(); \ freezeCountChg = false; \ recreated = true; \ } \ } #define THREAD_FREEZE_POINT1_VIP() \ bool freezeCountChg = false; \ bool recreated = false; \ volatile bool freezePoint1 = false; \ volatile bool freezePoint2 = false; \ thread_info_t *tinfo; \ if (sIsNuwaProcess && \ (tinfo = CUR_THREAD_INFO) && \ (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) && \ !(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) { \ if (!setjmp(tinfo->jmpEnv)) { \ REAL(pthread_mutex_lock)(&sThreadCountLock); \ SaveTLSInfo(tinfo); \ sThreadFreezeCount++; \ sRecreateVIPCount++; \ freezeCountChg = true; \ pthread_cond_signal(&sThreadChangeCond); \ pthread_mutex_unlock(&sThreadCountLock); \ \ if (sIsFreezing) { \ freezePoint1 = true; \ REAL(pthread_mutex_lock)(&sThreadFreezeLock); \ /* Never return from the pthread_mutex_lock() call. */ \ abort(); \ } \ } else { \ freezeCountChg = false; \ recreated = true; \ } \ } #define THREAD_FREEZE_POINT2() \ if (freezeCountChg) { \ REAL(pthread_mutex_lock)(&sThreadCountLock); \ if (sNuwaReady && sIsNuwaProcess) { \ pthread_mutex_unlock(&sThreadCountLock); \ freezePoint2 = true; \ REAL(pthread_mutex_lock)(&sThreadFreezeLock); \ /* Never return from the pthread_mutex_lock() call. */ \ abort(); \ } \ sThreadFreezeCount--; \ pthread_cond_signal(&sThreadChangeCond); \ pthread_mutex_unlock(&sThreadCountLock); \ } #define THREAD_FREEZE_POINT2_VIP() \ if (freezeCountChg) { \ REAL(pthread_mutex_lock)(&sThreadCountLock); \ if (sNuwaReady && sIsNuwaProcess) { \ pthread_mutex_unlock(&sThreadCountLock); \ freezePoint2 = true; \ REAL(pthread_mutex_lock)(&sThreadFreezeLock); \ /* Never return from the pthread_mutex_lock() call. */ \ abort(); \ } \ sThreadFreezeCount--; \ sRecreateVIPCount--; \ pthread_cond_signal(&sThreadChangeCond); \ pthread_mutex_unlock(&sThreadCountLock); \ } /** * Wrapping the blocking functions: epoll_wait(), poll(), pthread_mutex_lock(), * pthread_cond_wait() and pthread_cond_timedwait(): * * These functions are wrapped by the above freeze point macros. Once a new * process is forked, the recreated thread will be blocked in one of the wrapper * functions. When recreating the thread, we longjmp() to * THREAD_FREEZE_POINT1() to recover the thread stack. Care must be taken to * maintain the semantics of the wrapped function: * * - epoll_wait() and poll(): just retry the function. * - pthread_mutex_lock(): don't lock if frozen at freeze point 2 (lock is * already acquired). * - pthread_cond_wait() and pthread_cond_timedwait(): if the thread is frozen * waiting the condition variable, the mutex is already released, we need to * reacquire the mutex before calling the wrapped function again so the mutex * will be in a valid state. */ extern "C" MFBT_API int __wrap_epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout) { int rv; THREAD_FREEZE_POINT1(); rv = REAL(epoll_wait)(epfd, events, maxevents, timeout); THREAD_FREEZE_POINT2(); return rv; } extern "C" MFBT_API int __wrap_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx) { int rv = 0; THREAD_FREEZE_POINT1_VIP(); if (freezePoint2) { RECREATE_CONTINUE(); RECREATE_PASS_VIP(); RECREATE_GATE_VIP(); return rv; } if (recreated && mtx) { if (!freezePoint1) { tinfo->condMutex = mtx; // The thread was frozen in pthread_cond_wait() after releasing mtx in the // Nuwa process. In recreating this thread, We failed to reacquire mtx // with the pthread_mutex_trylock() call, that is, mtx was acquired by // another thread. Because of this, we need the main thread's help to // reacquire mtx so that it will be in a valid state. if (!pthread_mutex_trylock(mtx)) { tinfo->condMutexNeedsBalancing = true; } } RECREATE_CONTINUE(); RECREATE_PASS_VIP(); } rv = REAL(pthread_cond_wait)(cond, mtx); if (recreated && mtx) { // We have reacquired mtx. The main thread also wants to acquire mtx to // synchronize with us. If the main thread didn't get a chance to acquire // mtx let it do that now. The main thread clears condMutex after acquiring // it to signal us. if (tinfo->condMutex) { // We need mtx to end up locked, so tell the main thread not to unlock // mtx after it locks it. tinfo->condMutexNeedsBalancing = false; pthread_mutex_unlock(mtx); } // We still need to be gated as not to acquire another mutex associated with // another VIP thread and interfere with it. RECREATE_GATE_VIP(); } THREAD_FREEZE_POINT2_VIP(); return rv; } extern "C" MFBT_API int __wrap_pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mtx, const struct timespec *abstime) { int rv = 0; THREAD_FREEZE_POINT1_VIP(); if (freezePoint2) { RECREATE_CONTINUE(); RECREATE_PASS_VIP(); RECREATE_GATE_VIP(); return rv; } if (recreated && mtx) { if (!freezePoint1) { tinfo->condMutex = mtx; if (!pthread_mutex_trylock(mtx)) { tinfo->condMutexNeedsBalancing = true; } } RECREATE_CONTINUE(); RECREATE_PASS_VIP(); } rv = REAL(pthread_cond_timedwait)(cond, mtx, abstime); if (recreated && mtx) { if (tinfo->condMutex) { tinfo->condMutexNeedsBalancing = false; pthread_mutex_unlock(mtx); } RECREATE_GATE_VIP(); } THREAD_FREEZE_POINT2_VIP(); return rv; } extern "C" int __pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mtx, const struct timespec *abstime, clockid_t clock); extern "C" MFBT_API int __wrap___pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mtx, const struct timespec *abstime, clockid_t clock) { int rv = 0; THREAD_FREEZE_POINT1_VIP(); if (freezePoint2) { RECREATE_CONTINUE(); RECREATE_PASS_VIP(); RECREATE_GATE_VIP(); return rv; } if (recreated && mtx) { if (!freezePoint1) { tinfo->condMutex = mtx; if (!pthread_mutex_trylock(mtx)) { tinfo->condMutexNeedsBalancing = true; } } RECREATE_CONTINUE(); RECREATE_PASS_VIP(); } rv = REAL(__pthread_cond_timedwait)(cond, mtx, abstime, clock); if (recreated && mtx) { if (tinfo->condMutex) { tinfo->condMutexNeedsBalancing = false; pthread_mutex_unlock(mtx); } RECREATE_GATE_VIP(); } THREAD_FREEZE_POINT2_VIP(); return rv; } extern "C" MFBT_API int __wrap_pthread_mutex_lock(pthread_mutex_t *mtx) { int rv = 0; THREAD_FREEZE_POINT1(); if (freezePoint2) { return rv; } rv = REAL(pthread_mutex_lock)(mtx); THREAD_FREEZE_POINT2(); return rv; } extern "C" MFBT_API int __wrap_poll(struct pollfd *fds, nfds_t nfds, int timeout) { int rv; THREAD_FREEZE_POINT1(); rv = REAL(poll)(fds, nfds, timeout); THREAD_FREEZE_POINT2(); return rv; } extern "C" MFBT_API int __wrap_epoll_create(int size) { int epollfd = REAL(epoll_create)(size); if (!sIsNuwaProcess) { return epollfd; } if (epollfd >= 0) { EpollManager::Singleton()->AddEpollInfo(epollfd, size); } return epollfd; } /** * Wrapping the functions to create file descriptor pairs. In the child process * FD pairs are created for intra-process signaling. The generation of FD pairs * need to be tracked in the nuwa process so they can be recreated in the * spawned process. */ struct FdPairInfo { enum { kPipe, kSocketpair } call; int FDs[2]; int flags; int domain; int type; int protocol; }; /** * Protects the access to sSingalFds. */ static pthread_mutex_t sSignalFdLock = PTHREAD_MUTEX_INITIALIZER; static std::vector sSignalFds; extern "C" MFBT_API int __wrap_socketpair(int domain, int type, int protocol, int sv[2]) { int rv = REAL(socketpair)(domain, type, protocol, sv); if (!sIsNuwaProcess || rv < 0) { return rv; } REAL(pthread_mutex_lock)(&sSignalFdLock); FdPairInfo signalFd; signalFd.call = FdPairInfo::kSocketpair; signalFd.FDs[0] = sv[0]; signalFd.FDs[1] = sv[1]; signalFd.domain = domain; signalFd.type = type; signalFd.protocol = protocol; sSignalFds.push_back(signalFd); pthread_mutex_unlock(&sSignalFdLock); return rv; } extern "C" MFBT_API int __wrap_pipe2(int __pipedes[2], int flags) { int rv = REAL(pipe2)(__pipedes, flags); if (!sIsNuwaProcess || rv < 0) { return rv; } REAL(pthread_mutex_lock)(&sSignalFdLock); FdPairInfo signalFd; signalFd.call = FdPairInfo::kPipe; signalFd.FDs[0] = __pipedes[0]; signalFd.FDs[1] = __pipedes[1]; signalFd.flags = flags; sSignalFds.push_back(signalFd); pthread_mutex_unlock(&sSignalFdLock); return rv; } extern "C" MFBT_API int __wrap_pipe(int __pipedes[2]) { return __wrap_pipe2(__pipedes, 0); } static void DupeSingleFd(int newFd, int origFd) { struct stat sb; if (fstat(origFd, &sb)) { // Maybe the original FD is closed. return; } int fd = fcntl(origFd, F_GETFD); int fl = fcntl(origFd, F_GETFL); dup2(newFd, origFd); fcntl(origFd, F_SETFD, fd); fcntl(origFd, F_SETFL, fl); REAL(close)(newFd); } extern "C" MFBT_API void ReplaceSignalFds() { for (std::vector::iterator it = sSignalFds.begin(); it < sSignalFds.end(); ++it) { int fds[2]; int rc = 0; switch (it->call) { case FdPairInfo::kPipe: rc = REAL(pipe2)(fds, it->flags); break; case FdPairInfo::kSocketpair: rc = REAL(socketpair)(it->domain, it->type, it->protocol, fds); break; default: continue; } if (rc == 0) { DupeSingleFd(fds[0], it->FDs[0]); DupeSingleFd(fds[1], it->FDs[1]); } } } extern "C" MFBT_API int __wrap_epoll_ctl(int aEpollFd, int aOp, int aFd, struct epoll_event *aEvent) { int rv = REAL(epoll_ctl)(aEpollFd, aOp, aFd, aEvent); if (!sIsNuwaProcess || rv == -1) { return rv; } EpollManager::EpollInfo *info = EpollManager::Singleton()->FindEpollInfo(aEpollFd); if (info == nullptr) { abort(); } switch(aOp) { case EPOLL_CTL_ADD: info->AddEvents(aFd, *aEvent); break; case EPOLL_CTL_MOD: info->ModifyEvents(aFd, *aEvent); break; case EPOLL_CTL_DEL: info->RemoveEvents(aFd); break; default: abort(); } return rv; } // XXX: thinker: Maybe, we should also track dup, dup2, and other functions. extern "C" MFBT_API int __wrap_close(int aFd) { int rv = REAL(close)(aFd); if (!sIsNuwaProcess || rv == -1) { return rv; } EpollManager::EpollInfo *info = EpollManager::Singleton()->FindEpollInfo(aFd); if (info) { EpollManager::Singleton()->RemoveEpollInfo(aFd); } return rv; } extern "C" MFBT_API int __wrap_tgkill(pid_t tgid, pid_t tid, int signalno) { if (sIsNuwaProcess) { return tgkill(tgid, tid, signalno); } if (tid == sMainThread.origNativeThreadID) { return tgkill(tgid, sMainThread.recreatedNativeThreadID, signalno); } thread_info_t *tinfo = (tid == sMainThread.origNativeThreadID ? &sMainThread : GetThreadInfo(tid)); if (!tinfo) { return tgkill(tgid, tid, signalno); } return tgkill(tgid, tinfo->recreatedNativeThreadID, signalno); } static void * thread_recreate_startup(void *arg) { /* * Dark Art!! Never do the same unless you are ABSOLUTELY sure what you are * doing! * * The stack space collapsed by this frame had been reserved by * thread_create_startup(). And thread_create_startup() will * return immediately after returning from real start routine, so * all collapsed values does not affect the result. * * All outer frames of thread_create_startup() and * thread_recreate_startup() are equivalent, so * thread_create_startup() will return successfully. */ thread_info_t *tinfo = (thread_info_t *)arg; prctl(PR_SET_NAME, (unsigned long)&tinfo->nativeThreadName, 0, 0, 0); RestoreTLSInfo(tinfo); if (setjmp(tinfo->retEnv) != 0) { return nullptr; } // longjump() to recreate the stack on the new thread. longjmp(tinfo->jmpEnv, 1); // Never go here! abort(); return nullptr; } /** * Recreate the context given by tinfo at a new thread. */ static void thread_recreate(thread_info_t *tinfo) { pthread_t thread; // Note that the thread_recreate_startup() runs on the stack specified by // tinfo. pthread_create(&thread, &tinfo->threadAttr, thread_recreate_startup, tinfo); } /** * Recreate all threads in a process forked from an Nuwa process. */ static void RecreateThreads() { sIsNuwaProcess = false; sIsFreezing = false; sMainThread.recreatedThreadID = pthread_self(); sMainThread.recreatedNativeThreadID = gettid(); // Run registered constructors. for (std::vector::iterator ctr = sConstructors.begin(); ctr != sConstructors.end(); ctr++) { (*ctr).construct((*ctr).arg); } sConstructors.clear(); REAL(pthread_mutex_lock)(&sThreadCountLock); thread_info_t *tinfo = sAllThreads.getFirst(); pthread_mutex_unlock(&sThreadCountLock); RECREATE_START(); while (tinfo != nullptr) { if (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) { RECREATE_BEFORE(tinfo); thread_recreate(tinfo); RECREATE_WAIT(); if (tinfo->condMutex) { // Synchronize with the recreated thread in pthread_cond_wait(). REAL(pthread_mutex_lock)(tinfo->condMutex); // Tell the other thread that we have successfully locked the mutex. // NB: condMutex can only be touched while it is held, so we must clear // it here and store the mutex locally. pthread_mutex_t *mtx = tinfo->condMutex; tinfo->condMutex = nullptr; if (tinfo->condMutexNeedsBalancing) { pthread_mutex_unlock(mtx); } } } else if(!(tinfo->flags & TINFO_FLAG_NUWA_SKIP)) { // An unmarked thread is found other than the main thread. // All threads should be marked as one of SUPPORT or SKIP, or // abort the process to make sure all threads in the Nuwa // process are Nuwa-aware. abort(); } tinfo = tinfo->getNext(); } RECREATE_WAIT_ALL_VIP(); RECREATE_OPEN_GATE(); RECREATE_FINISH(); // Run registered final constructors. for (std::vector::iterator ctr = sFinalConstructors.begin(); ctr != sFinalConstructors.end(); ctr++) { (*ctr).construct((*ctr).arg); } sFinalConstructors.clear(); } extern "C" { /** * Recreate all epoll fds and restore status; include all events. */ static void RecreateEpollFds() { EpollManager *man = EpollManager::Singleton(); for (EpollManager::const_iterator info_it = man->begin(); info_it != man->end(); info_it++) { int epollfd = info_it->first; const EpollManager::EpollInfo *info = &info_it->second; int fdflags = fcntl(epollfd, F_GETFD); if (fdflags == -1) { abort(); } int fl = fcntl(epollfd, F_GETFL); if (fl == -1) { abort(); } int newepollfd = REAL(epoll_create)(info->BackSize()); if (newepollfd == -1) { abort(); } int rv = REAL(close)(epollfd); if (rv == -1) { abort(); } rv = dup2(newepollfd, epollfd); if (rv == -1) { abort(); } rv = REAL(close)(newepollfd); if (rv == -1) { abort(); } rv = fcntl(epollfd, F_SETFD, fdflags); if (rv == -1) { abort(); } rv = fcntl(epollfd, F_SETFL, fl); if (rv == -1) { abort(); } for (EpollManager::EpollInfo::const_iterator events_it = info->begin(); events_it != info->end(); events_it++) { int fd = events_it->first; epoll_event events; events = events_it->second; rv = REAL(epoll_ctl)(epollfd, EPOLL_CTL_ADD, fd, &events); if (rv == -1) { abort(); } } } // Shutdown EpollManager. It won't be needed in the spawned process. EpollManager::Shutdown(); } /** * Fix IPC to make it ready. * * Especially, fix ContentChild. */ static void ReplaceIPC(NuwaProtoFdInfo *aInfoList, int aInfoSize) { int i; int rv; for (i = 0; i < aInfoSize; i++) { int fd = fcntl(aInfoList[i].originFd, F_GETFD); if (fd == -1) { abort(); } int fl = fcntl(aInfoList[i].originFd, F_GETFL); if (fl == -1) { abort(); } rv = dup2(aInfoList[i].newFds[NUWA_NEWFD_CHILD], aInfoList[i].originFd); if (rv == -1) { abort(); } rv = fcntl(aInfoList[i].originFd, F_SETFD, fd); if (rv == -1) { abort(); } rv = fcntl(aInfoList[i].originFd, F_SETFL, fl); if (rv == -1) { abort(); } } } /** * Add a new content process at the chrome process. */ static void AddNewProcess(pid_t pid, NuwaProtoFdInfo *aInfoList, int aInfoSize) { static bool (*AddNewIPCProcess)(pid_t, NuwaProtoFdInfo *, int) = nullptr; if (AddNewIPCProcess == nullptr) { AddNewIPCProcess = (bool (*)(pid_t, NuwaProtoFdInfo *, int)) dlsym(RTLD_DEFAULT, "AddNewIPCProcess"); } AddNewIPCProcess(pid, aInfoList, aInfoSize); } static void PrepareProtoSockets(NuwaProtoFdInfo *aInfoList, int aInfoSize) { int i; int rv; for (i = 0; i < aInfoSize; i++) { rv = REAL(socketpair)(PF_UNIX, SOCK_STREAM, 0, aInfoList[i].newFds); if (rv == -1) { abort(); } } } static void CloseAllProtoSockets(NuwaProtoFdInfo *aInfoList, int aInfoSize) { int i; for (i = 0; i < aInfoSize; i++) { REAL(close)(aInfoList[i].newFds[0]); REAL(close)(aInfoList[i].newFds[1]); } } static void AfterForkHook() { void (*AfterNuwaFork)(); // This is defined in dom/ipc/ContentChild.cpp AfterNuwaFork = (void (*)()) dlsym(RTLD_DEFAULT, "AfterNuwaFork"); AfterNuwaFork(); } /** * Fork a new process that is ready for running IPC. * * @return the PID of the new process. */ static int ForkIPCProcess() { int pid; REAL(pthread_mutex_lock)(&sForkLock); PrepareProtoSockets(sProtoFdInfos, sProtoFdInfosSize); sNuwaForking = true; pid = fork(); sNuwaForking = false; if (pid == -1) { abort(); } if (pid > 0) { // in the parent AddNewProcess(pid, sProtoFdInfos, sProtoFdInfosSize); CloseAllProtoSockets(sProtoFdInfos, sProtoFdInfosSize); } else { // in the child if (getenv("MOZ_DEBUG_CHILD_PROCESS")) { printf("\n\nNUWA CHILDCHILDCHILDCHILD\n debug me @ %d\n\n", getpid()); sleep(30); } AfterForkHook(); ReplaceSignalFds(); ReplaceIPC(sProtoFdInfos, sProtoFdInfosSize); RecreateEpollFds(); RecreateThreads(); CloseAllProtoSockets(sProtoFdInfos, sProtoFdInfosSize); } sForkWaitCondChanged = true; pthread_cond_signal(&sForkWaitCond); pthread_mutex_unlock(&sForkLock); return pid; } /** * Prepare for spawning a new process. Called on the IPC thread. */ MFBT_API void NuwaSpawnPrepare() { REAL(pthread_mutex_lock)(&sForkLock); sForkWaitCondChanged = false; // Will be modified on the main thread. } /** * Let IPC thread wait until fork action on the main thread has completed. */ MFBT_API void NuwaSpawnWait() { while (!sForkWaitCondChanged) { REAL(pthread_cond_wait)(&sForkWaitCond, &sForkLock); } pthread_mutex_unlock(&sForkLock); } /** * Spawn a new process. If not ready for spawn (still waiting for some threads * to freeze), postpone the spawn request until ready. * * @return the pid of the new process, or 0 if not ready. */ MFBT_API pid_t NuwaSpawn() { if (gettid() != getpid()) { // Not the main thread. abort(); } pid_t pid = 0; if (sNuwaReady) { pid = ForkIPCProcess(); } else { sNuwaPendingSpawn = true; } return pid; } /** * Prepare to freeze the Nuwa-supporting threads. */ MFBT_API void PrepareNuwaProcess() { sIsNuwaProcess = true; // Explicitly ignore SIGCHLD so we don't have to call watpid() to reap // dead child processes. signal(SIGCHLD, SIG_IGN); // Make marked threads block in one freeze point. REAL(pthread_mutex_lock)(&sThreadFreezeLock); // Populate sMainThread for mapping of tgkill. sMainThread.origThreadID = pthread_self(); sMainThread.origNativeThreadID = gettid(); } // Make current process as a Nuwa process. MFBT_API void MakeNuwaProcess() { void (*GetProtoFdInfos)(NuwaProtoFdInfo *, int, int *) = nullptr; void (*OnNuwaProcessReady)() = nullptr; sIsFreezing = true; REAL(pthread_mutex_lock)(&sThreadCountLock); // wait until all threads are frozen. while ((sThreadFreezeCount + sThreadSkipCount) != sThreadCount) { REAL(pthread_cond_wait)(&sThreadChangeCond, &sThreadCountLock); } GetProtoFdInfos = (void (*)(NuwaProtoFdInfo *, int, int *)) dlsym(RTLD_DEFAULT, "GetProtoFdInfos"); GetProtoFdInfos(sProtoFdInfos, NUWA_TOPLEVEL_MAX, &sProtoFdInfosSize); sNuwaReady = true; pthread_mutex_unlock(&sThreadCountLock); OnNuwaProcessReady = (void (*)())dlsym(RTLD_DEFAULT, "OnNuwaProcessReady"); OnNuwaProcessReady(); if (sNuwaPendingSpawn) { sNuwaPendingSpawn = false; NuwaSpawn(); } } /** * Mark the current thread as supporting Nuwa. The thread will be recreated in * the spawned process. */ MFBT_API void NuwaMarkCurrentThread(void (*recreate)(void *), void *arg) { if (!sIsNuwaProcess) { return; } thread_info_t *tinfo = CUR_THREAD_INFO; if (tinfo == nullptr) { abort(); } tinfo->flags |= TINFO_FLAG_NUWA_SUPPORT; tinfo->recrFunc = recreate; tinfo->recrArg = arg; // XXX Thread name might be set later than this call. If this is the case, we // might need to delay getting the thread name. prctl(PR_GET_NAME, (unsigned long)&tinfo->nativeThreadName, 0, 0, 0); } /** * Mark the current thread as not supporting Nuwa. Don't recreate this thread in * the spawned process. */ MFBT_API void NuwaSkipCurrentThread() { if (!sIsNuwaProcess) return; thread_info_t *tinfo = CUR_THREAD_INFO; if (tinfo == nullptr) { abort(); } if (!(tinfo->flags & TINFO_FLAG_NUWA_SKIP)) { sThreadSkipCount++; } tinfo->flags |= TINFO_FLAG_NUWA_SKIP; } /** * Force to freeze the current thread. * * This method does not return in Nuwa process. It returns for the * recreated thread. */ MFBT_API void NuwaFreezeCurrentThread() { thread_info_t *tinfo = CUR_THREAD_INFO; if (sIsNuwaProcess && (tinfo = CUR_THREAD_INFO) && (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT)) { if (!setjmp(tinfo->jmpEnv)) { REAL(pthread_mutex_lock)(&sThreadCountLock); SaveTLSInfo(tinfo); sThreadFreezeCount++; pthread_cond_signal(&sThreadChangeCond); pthread_mutex_unlock(&sThreadCountLock); REAL(pthread_mutex_lock)(&sThreadFreezeLock); } else { RECREATE_CONTINUE(); RECREATE_GATE(); } } } /** * The caller of NuwaCheckpointCurrentThread() is at the line it wishes to * return after the thread is recreated. * * The checkpointed thread will restart at the calling line of * NuwaCheckpointCurrentThread(). This macro returns true in the Nuwa process * and false on the recreated thread in the forked process. * * NuwaCheckpointCurrentThread() is implemented as a macro so we can place the * setjmp() call in the calling method without changing its stack pointer. This * is essential for not corrupting the stack when the calling thread continues * to request the main thread for forking a new process. The caller of * NuwaCheckpointCurrentThread() should not return before the process forking * finishes. * * @return true for Nuwa process, and false in the forked process. */ MFBT_API jmp_buf* NuwaCheckpointCurrentThread1() { thread_info_t *tinfo = CUR_THREAD_INFO; if (sIsNuwaProcess && (tinfo = CUR_THREAD_INFO) && (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT)) { return &tinfo->jmpEnv; } abort(); return nullptr; } MFBT_API bool NuwaCheckpointCurrentThread2(int setjmpCond) { thread_info_t *tinfo = CUR_THREAD_INFO; if (setjmpCond == 0) { REAL(pthread_mutex_lock)(&sThreadCountLock); if (!(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) { tinfo->flags |= TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT; SaveTLSInfo(tinfo); sThreadFreezeCount++; } pthread_cond_signal(&sThreadChangeCond); pthread_mutex_unlock(&sThreadCountLock); return true; } RECREATE_CONTINUE(); RECREATE_GATE(); return false; // Recreated thread. } /** * Register methods to be invoked before recreating threads in the spawned * process. */ MFBT_API void NuwaAddConstructor(void (*construct)(void *), void *arg) { nuwa_construct_t ctr; ctr.construct = construct; ctr.arg = arg; sConstructors.push_back(ctr); } /** * Register methods to be invoked after recreating threads in the spawned * process. */ MFBT_API void NuwaAddFinalConstructor(void (*construct)(void *), void *arg) { nuwa_construct_t ctr; ctr.construct = construct; ctr.arg = arg; sFinalConstructors.push_back(ctr); } /** * @return if the current process is the nuwa process. */ MFBT_API bool IsNuwaProcess() { return sIsNuwaProcess; } /** * @return if the nuwa process is ready for spawning new processes. */ MFBT_API bool IsNuwaReady() { return sNuwaReady; } } // extern "C"