/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla code. * * The Initial Developer of the Original Code is the Mozilla Corporation. * Portions created by the Initial Developer are Copyright (C) 2010 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Chris Double * Chris Pearce * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "nsDebug.h" #include "nsOggCodecState.h" #include "nsOggDecoder.h" #include #include "nsTraceRefcnt.h" #include "VideoUtils.h" /* The maximum height and width of the video. Used for sanitizing the memory allocation of the RGB buffer. The maximum resolution we anticipate encountering in the wild is 2160p - 3840x2160 pixels. */ #define MAX_VIDEO_WIDTH 4000 #define MAX_VIDEO_HEIGHT 3000 // Adds two 64bit numbers, retuns PR_TRUE if addition succeeded, or PR_FALSE // if addition would result in an overflow. static PRBool AddOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult); // 64 bit integer multiplication with overflow checking. Returns PR_TRUE // if the multiplication was successful, or PR_FALSE if the operation resulted // in an integer overflow. static PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult); static PRBool MulOverflow32(PRUint32 a, PRUint32 b, PRUint32& aResult) { // 32 bit integer multiplication with overflow checking. Returns PR_TRUE // if the multiplication was successful, or PR_FALSE if the operation resulted // in an integer overflow. PRUint64 a64 = a; PRUint64 b64 = b; PRUint64 r64 = a64 * b64; if (r64 > PR_UINT32_MAX) return PR_FALSE; aResult = static_cast(r64); return PR_TRUE; } nsOggCodecState* nsOggCodecState::Create(ogg_page* aPage) { nsAutoPtr codecState; if (aPage->body_len > 6 && memcmp(aPage->body+1, "theora", 6) == 0) { codecState = new nsTheoraState(aPage); } else if (aPage->body_len > 6 && memcmp(aPage->body+1, "vorbis", 6) == 0) { codecState = new nsVorbisState(aPage); } else if (aPage->body_len > 8 && memcmp(aPage->body, "fishead\0", 8) == 0) { codecState = new nsSkeletonState(aPage); } else { codecState = new nsOggCodecState(aPage); } return codecState->nsOggCodecState::Init() ? codecState.forget() : nsnull; } nsOggCodecState::nsOggCodecState(ogg_page* aBosPage) : mPacketCount(0), mSerial(ogg_page_serialno(aBosPage)), mActive(PR_FALSE), mDoneReadingHeaders(PR_FALSE) { MOZ_COUNT_CTOR(nsOggCodecState); memset(&mState, 0, sizeof(ogg_stream_state)); } nsOggCodecState::~nsOggCodecState() { MOZ_COUNT_DTOR(nsOggCodecState); int ret = ogg_stream_clear(&mState); NS_ASSERTION(ret == 0, "ogg_stream_clear failed"); } nsresult nsOggCodecState::Reset() { if (ogg_stream_reset(&mState) != 0) { return NS_ERROR_FAILURE; } mBuffer.Erase(); return NS_OK; } PRBool nsOggCodecState::Init() { int ret = ogg_stream_init(&mState, mSerial); return ret == 0; } void nsPageQueue::Append(ogg_page* aPage) { ogg_page* p = new ogg_page(); p->header_len = aPage->header_len; p->body_len = aPage->body_len; p->header = new unsigned char[p->header_len + p->body_len]; p->body = p->header + p->header_len; memcpy(p->header, aPage->header, p->header_len); memcpy(p->body, aPage->body, p->body_len); nsDeque::Push(p); } PRBool nsOggCodecState::PageInFromBuffer() { if (mBuffer.IsEmpty()) return PR_FALSE; ogg_page *p = mBuffer.PeekFront(); int ret = ogg_stream_pagein(&mState, p); NS_ENSURE_TRUE(ret == 0, PR_FALSE); mBuffer.PopFront(); delete p->header; delete p; return PR_TRUE; } nsTheoraState::nsTheoraState(ogg_page* aBosPage) : nsOggCodecState(aBosPage), mSetup(0), mCtx(0), mFrameDuration(0), mPixelAspectRatio(0) { MOZ_COUNT_CTOR(nsTheoraState); th_info_init(&mInfo); th_comment_init(&mComment); } nsTheoraState::~nsTheoraState() { MOZ_COUNT_DTOR(nsTheoraState); th_setup_free(mSetup); th_decode_free(mCtx); th_comment_clear(&mComment); th_info_clear(&mInfo); } PRBool nsTheoraState::Init() { if (!mActive) return PR_FALSE; mCtx = th_decode_alloc(&mInfo, mSetup); if (mCtx == NULL) { return mActive = PR_FALSE; } PRInt64 n = mInfo.fps_numerator; PRInt64 d = mInfo.fps_denominator; PRInt64 f; if (!MulOverflow(1000, d, f)) { return mActive = PR_FALSE; } f /= n; if (f > PR_UINT32_MAX) { return mActive = PR_FALSE; } mFrameDuration = static_cast(f); n = mInfo.aspect_numerator; d = mInfo.aspect_denominator; mPixelAspectRatio = (n == 0 || d == 0) ? 1.0f : static_cast(n) / static_cast(d); // Ensure the frame isn't larger than our prescribed maximum. PRUint32 pixels; if (!MulOverflow32(mInfo.pic_width, mInfo.pic_height, pixels) || pixels > MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT || pixels == 0) { return mActive = PR_FALSE; } return PR_TRUE; } PRBool nsTheoraState::DecodeHeader(ogg_packet* aPacket) { mPacketCount++; int ret = th_decode_headerin(&mInfo, &mComment, &mSetup, aPacket); // We must determine when we've read the last header packet. // th_decode_headerin() does not tell us when it's read the last header, so // we must keep track of the headers externally. // // There are 3 header packets, the Identification, Comment, and Setup // headers, which must be in that order. If they're out of order, the file // is invalid. If we've successfully read a header, and it's the setup // header, then we're done reading headers. The first byte of each packet // determines it's type as follows: // 0x80 -> Identification header // 0x81 -> Comment header // 0x82 -> Setup header // See http://www.theora.org/doc/Theora.pdf Chapter 6, "Bitstream Headers", // for more details of the Ogg/Theora containment scheme. PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x82; if (ret < 0 || mPacketCount > 3) { // We've received an error, or the first three packets weren't valid // header packets, assume bad input, and don't activate the bitstream. mDoneReadingHeaders = PR_TRUE; } else if (ret > 0 && isSetupHeader && mPacketCount == 3) { // Successfully read the three header packets. mDoneReadingHeaders = PR_TRUE; mActive = PR_TRUE; } return mDoneReadingHeaders; } PRInt64 nsTheoraState::Time(PRInt64 granulepos) { if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) { return -1; } PRInt64 t = 0; PRInt64 frameno = th_granule_frame(mCtx, granulepos); if (!AddOverflow(frameno, 1, t)) return -1; if (!MulOverflow(t, 1000, t)) return -1; if (!MulOverflow(t, mInfo.fps_denominator, t)) return -1; return t / mInfo.fps_numerator; } PRInt64 nsTheoraState::StartTime(PRInt64 granulepos) { if (granulepos < 0 || !mActive || mInfo.fps_numerator == 0) { return -1; } PRInt64 t = 0; PRInt64 frameno = th_granule_frame(mCtx, granulepos); if (!MulOverflow(frameno, 1000, t)) return -1; if (!MulOverflow(t, mInfo.fps_denominator, t)) return -1; return t / mInfo.fps_numerator; } PRInt64 nsTheoraState::MaxKeyframeOffset() { // Determine the maximum time in milliseconds by which a key frame could // offset for the theora bitstream. Theora granulepos encode time as: // ((key_frame_number << granule_shift) + frame_offset). // Therefore the maximum possible time by which any frame could be offset // from a keyframe is the duration of (1 << granule_shift) - 1) frames. PRInt64 frameDuration; PRInt64 keyframeDiff; PRInt64 shift = mInfo.keyframe_granule_shift; // Max number of frames keyframe could possibly be offset. keyframeDiff = (1 << shift) - 1; // Length of frame in ms. PRInt64 d = 0; // d will be 0 if multiplication overflows. MulOverflow(1000, mInfo.fps_denominator, d); frameDuration = d / mInfo.fps_numerator; // Total time in ms keyframe can be offset from any given frame. return frameDuration * keyframeDiff; } nsresult nsVorbisState::Reset() { nsresult res = NS_OK; if (mActive && vorbis_synthesis_restart(&mDsp) != 0) { res = NS_ERROR_FAILURE; } if (NS_FAILED(nsOggCodecState::Reset())) { return NS_ERROR_FAILURE; } return res; } nsVorbisState::nsVorbisState(ogg_page* aBosPage) : nsOggCodecState(aBosPage) { MOZ_COUNT_CTOR(nsVorbisState); vorbis_info_init(&mInfo); vorbis_comment_init(&mComment); memset(&mDsp, 0, sizeof(vorbis_dsp_state)); memset(&mBlock, 0, sizeof(vorbis_block)); } nsVorbisState::~nsVorbisState() { MOZ_COUNT_DTOR(nsVorbisState); vorbis_block_clear(&mBlock); vorbis_dsp_clear(&mDsp); vorbis_info_clear(&mInfo); vorbis_comment_clear(&mComment); } PRBool nsVorbisState::DecodeHeader(ogg_packet* aPacket) { mPacketCount++; int ret = vorbis_synthesis_headerin(&mInfo, &mComment, aPacket); // We must determine when we've read the last header packet. // vorbis_synthesis_headerin() does not tell us when it's read the last // header, so we must keep track of the headers externally. // // There are 3 header packets, the Identification, Comment, and Setup // headers, which must be in that order. If they're out of order, the file // is invalid. If we've successfully read a header, and it's the setup // header, then we're done reading headers. The first byte of each packet // determines it's type as follows: // 0x1 -> Identification header // 0x3 -> Comment header // 0x5 -> Setup header // For more details of the Vorbis/Ogg containment scheme, see the Vorbis I // Specification, Chapter 4, Codec Setup and Packet Decode: // http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-580004 PRBool isSetupHeader = aPacket->bytes > 0 && aPacket->packet[0] == 0x5; if (ret < 0 || mPacketCount > 3) { // We've received an error, or the first three packets weren't valid // header packets, assume bad input, and don't activate the bitstream. mDoneReadingHeaders = PR_TRUE; } else if (ret == 0 && isSetupHeader && mPacketCount == 3) { // Successfully read the three header packets, activate the bitstream. mDoneReadingHeaders = PR_TRUE; mActive = PR_TRUE; } return mDoneReadingHeaders; } PRBool nsVorbisState::Init() { if (!mActive) return PR_FALSE; int ret = vorbis_synthesis_init(&mDsp, &mInfo); if (ret != 0) { NS_WARNING("vorbis_synthesis_init() failed initializing vorbis bitstream"); return mActive = PR_FALSE; } ret = vorbis_block_init(&mDsp, &mBlock); if (ret != 0) { NS_WARNING("vorbis_block_init() failed initializing vorbis bitstream"); if (mActive) { vorbis_dsp_clear(&mDsp); } return mActive = PR_FALSE; } return PR_TRUE; } PRInt64 nsVorbisState::Time(PRInt64 granulepos) { if (granulepos == -1 || !mActive || mDsp.vi->rate == 0) { return -1; } PRInt64 t = 0; MulOverflow(1000, granulepos, t); return t / mDsp.vi->rate; } nsSkeletonState::nsSkeletonState(ogg_page* aBosPage) : nsOggCodecState(aBosPage) { MOZ_COUNT_CTOR(nsSkeletonState); } nsSkeletonState::~nsSkeletonState() { MOZ_COUNT_DTOR(nsSkeletonState); } PRBool nsSkeletonState::DecodeHeader(ogg_packet* aPacket) { if (aPacket->e_o_s) { mActive = PR_TRUE; mDoneReadingHeaders = PR_TRUE; } return mDoneReadingHeaders; } // Adds two 64bit numbers, retuns PR_TRUE if addition succeeded, or PR_FALSE // if addition would result in an overflow. static PRBool AddOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult) { if (b < 1) { if (PR_INT64_MIN - b <= a) { aResult = a + b; return PR_TRUE; } } else if (PR_INT64_MAX - b >= a) { aResult = a + b; return PR_TRUE; } return PR_FALSE; } // 64 bit integer multiplication with overflow checking. Returns PR_TRUE // if the multiplication was successful, or PR_FALSE if the operation resulted // in an integer overflow. static PRBool MulOverflow(PRInt64 a, PRInt64 b, PRInt64& aResult) { // We break a multiplication a * b into of sign_a * sign_b * abs(a) * abs(b) // // This is equivalent to: // // (sign_a * sign_b) * ((a_hi * 2^32) + a_lo) * ((b_hi * 2^32) + b_lo) // // Which is equivalent to: // // (sign_a * sign_b) * // ((a_hi * b_hi << 64) + // (a_hi * b_lo << 32) + (a_lo * b_hi << 32) + // a_lo * b_lo) // // So to check if a*b overflows, we must check each sub part of the above // sum. // // Note: -1 * PR_INT64_MIN == PR_INT64_MIN ; we can't negate PR_INT64_MIN! // Note: Shift of negative numbers is undefined. // // Figure out the sign after multiplication. Then we can just work with // unsigned numbers. PRInt64 sign = (!(a < 0) == !(b < 0)) ? 1 : -1; PRInt64 abs_a = (a < 0) ? -a : a; PRInt64 abs_b = (b < 0) ? -b : b; if (abs_a < 0) { NS_ASSERTION(a == PR_INT64_MIN, "How else can this happen?"); if (b == 0 || b == 1) { aResult = a * b; return PR_TRUE; } else { return PR_FALSE; } } if (abs_b < 0) { NS_ASSERTION(b == PR_INT64_MIN, "How else can this happen?"); if (a == 0 || a == 1) { aResult = a * b; return PR_TRUE; } else { return PR_FALSE; } } NS_ASSERTION(abs_a >= 0 && abs_b >= 0, "abs values must be non-negative"); PRInt64 a_hi = abs_a >> 32; PRInt64 a_lo = abs_a & 0xFFFFFFFF; PRInt64 b_hi = abs_b >> 32; PRInt64 b_lo = abs_b & 0xFFFFFFFF; NS_ASSERTION((a_hi<<32) + a_lo == abs_a, "Partition must be correct"); NS_ASSERTION((b_hi<<32) + b_lo == abs_b, "Partition must be correct"); // In the sub-equation (a_hi * b_hi << 64), if a_hi or b_hi // are non-zero, this will overflow as it's shifted by 64. // Abort if this overflows. if (a_hi != 0 && b_hi != 0) { return PR_FALSE; } // We can now assume that either a_hi or b_hi is 0. NS_ASSERTION(a_hi == 0 || b_hi == 0, "One of these must be 0"); // Next we calculate: // (a_hi * b_lo << 32) + (a_lo * b_hi << 32) // We can factor this as: // (a_hi * b_lo + a_lo * b_hi) << 32 PRInt64 q = a_hi * b_lo + a_lo * b_hi; if (q > PR_INT32_MAX) { // q will overflow when we shift by 32; abort. return PR_FALSE; } q <<= 32; // Both a_lo and b_lo are less than INT32_MAX, so can't overflow. PRUint64 lo = a_lo * b_lo; if (lo > PR_INT64_MAX) { return PR_FALSE; } // Add the final result. We must check for overflow during addition. if (!AddOverflow(q, static_cast(lo), aResult)) { return PR_FALSE; } aResult *= sign; NS_ASSERTION(a * b == aResult, "We didn't overflow, but result is wrong!"); return PR_TRUE; }