/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_image_Decoder_h #define mozilla_image_Decoder_h #include "FrameAnimator.h" #include "RasterImage.h" #include "mozilla/RefPtr.h" #include "DecodePool.h" #include "ImageMetadata.h" #include "Orientation.h" #include "SourceBuffer.h" namespace mozilla { namespace Telemetry { enum ID : uint32_t; } namespace image { class Decoder : public IResumable { public: explicit Decoder(RasterImage* aImage); /** * Initialize an image decoder. Decoders may not be re-initialized. */ void Init(); /** * Initializes a decoder whose image and observer is already being used by a * parent decoder. Decoders may not be re-initialized. * * Notifications Sent: TODO */ void InitSharedDecoder(uint8_t* aImageData, uint32_t aImageDataLength, uint32_t* aColormap, uint32_t aColormapSize, RawAccessFrameRef&& aFrameRef); /** * Decodes, reading all data currently available in the SourceBuffer. If more * If aBuffer is null and aCount is 0, Write() flushes any buffered data to * the decoder. Data is buffered if the decoder wasn't able to completely * decode it because it needed a new frame. If it's necessary to flush data, * NeedsToFlushData() will return true. * * data is needed, Decode() automatically ensures that it will be called again * on a DecodePool thread when the data becomes available. * * Any errors are reported by setting the appropriate state on the decoder. */ nsresult Decode(); /** * Cleans up the decoder's state and notifies our image about success or * failure. May only be called on the main thread. */ void Finish(); /** * Given a maximum number of bytes we're willing to decode, @aByteLimit, * returns true if we should attempt to run this decoder synchronously. */ bool ShouldSyncDecode(size_t aByteLimit); /** * Informs the shared decoder that all the data has been written. * Should only be used if InitSharedDecoder was useed * * Notifications Sent: TODO */ void FinishSharedDecoder(); /** * Gets the invalidation region accumulated by the decoder so far, and clears * the decoder's invalidation region. This means that each call to * TakeInvalidRect() returns only the invalidation region accumulated since * the last call to TakeInvalidRect(). */ nsIntRect TakeInvalidRect() { nsIntRect invalidRect = mInvalidRect; mInvalidRect.SetEmpty(); return invalidRect; } /** * Gets the progress changes accumulated by the decoder so far, and clears * them. This means that each call to TakeProgress() returns only the changes * accumulated since the last call to TakeProgress(). */ Progress TakeProgress() { Progress progress = mProgress; mProgress = NoProgress; return progress; } /** * Returns true if there's any progress to report. */ bool HasProgress() const { return mProgress != NoProgress || !mInvalidRect.IsEmpty(); } // We're not COM-y, so we don't get refcounts by default NS_INLINE_DECL_THREADSAFE_REFCOUNTING(Decoder, override) // Implement IResumable. virtual void Resume() override; /* * State. */ // If we're doing a "size decode", we more or less pass through the image // data, stopping only to scoop out the image dimensions. A size decode // must be enabled by SetSizeDecode() _before_calling Init(). bool IsSizeDecode() { return mSizeDecode; } void SetSizeDecode(bool aSizeDecode) { MOZ_ASSERT(!mInitialized, "Shouldn't be initialized yet"); mSizeDecode = aSizeDecode; } /** * If this decoder supports downscale-during-decode, sets the target size that * this image should be decoded to. * * If this decoder *doesn't* support downscale-during-decode, returns * NS_ERROR_NOT_AVAILABLE. If the provided size is unacceptable, returns * another error. * * Returning NS_OK from this method is a promise that the decoder will decode * the image to the requested target size unless it encounters an error. * * This must be called before Init() is called. */ virtual nsresult SetTargetSize(const nsIntSize& aSize) { return NS_ERROR_NOT_AVAILABLE; } /** * Set whether should send partial invalidations. * * If @aSend is true, we'll send partial invalidations when decoding the first * frame of the image, so image notifications observers will be able to * gradually draw in the image as it downloads. * * If @aSend is false (the default), we'll only send an invalidation when we * complete the first frame. * * This must be called before Init() is called. */ void SetSendPartialInvalidations(bool aSend) { MOZ_ASSERT(!mInitialized, "Shouldn't be initialized yet"); mSendPartialInvalidations = aSend; } /** * Set an iterator to the SourceBuffer which will feed data to this decoder. * * This should be called for almost all decoders; the exceptions are the * contained decoders of an nsICODecoder, which will be fed manually via Write * instead. * * This must be called before Init() is called. */ void SetIterator(SourceBufferIterator&& aIterator) { MOZ_ASSERT(!mInitialized, "Shouldn't be initialized yet"); mIterator.emplace(Move(aIterator)); } /** * Set whether this decoder is associated with a transient image. The decoder * may choose to avoid certain optimizations that don't pay off for * short-lived images in this case. */ void SetImageIsTransient(bool aIsTransient) { MOZ_ASSERT(!mInitialized, "Shouldn't be initialized yet"); mImageIsTransient = aIsTransient; } /** * Set whether the image is locked for the lifetime of this decoder. We lock * the image during our initial decode to ensure that we don't evict any * surfaces before we realize that the image is animated. */ void SetImageIsLocked() { MOZ_ASSERT(!mInitialized, "Shouldn't be initialized yet"); mImageIsLocked = true; } bool ImageIsLocked() const { return mImageIsLocked; } size_t BytesDecoded() const { return mBytesDecoded; } // The amount of time we've spent inside Write() so far for this decoder. TimeDuration DecodeTime() const { return mDecodeTime; } // The number of times Write() has been called so far for this decoder. uint32_t ChunkCount() const { return mChunkCount; } // The number of frames we have, including anything in-progress. Thus, this // is only 0 if we haven't begun any frames. uint32_t GetFrameCount() { return mFrameCount; } // The number of complete frames we have (ie, not including anything // in-progress). uint32_t GetCompleteFrameCount() { return mInFrame ? mFrameCount - 1 : mFrameCount; } // Error tracking bool HasError() const { return HasDataError() || HasDecoderError(); } bool HasDataError() const { return mDataError; } bool HasDecoderError() const { return NS_FAILED(mFailCode); } nsresult GetDecoderError() const { return mFailCode; } void PostResizeError() { PostDataError(); } bool GetDecodeDone() const { return mDecodeDone || (mSizeDecode && HasSize()) || HasError() || mDataDone; } /** * Returns true if this decoder was aborted. * * This may happen due to a low-memory condition, or because another decoder * was racing with this one to decode the same frames with the same flags and * this decoder lost the race. Either way, this is not a permanent situation * and does not constitute an error, so we don't report any errors when this * happens. */ bool WasAborted() const { return mDecodeAborted; } enum DecodeStyle { PROGRESSIVE, // produce intermediate frames representing the partial // state of the image SEQUENTIAL // decode to final image immediately }; void SetFlags(uint32_t aFlags) { mFlags = aFlags; } uint32_t GetFlags() const { return mFlags; } uint32_t GetDecodeFlags() const { return DecodeFlags(mFlags); } bool HasSize() const { return mImageMetadata.HasSize(); } void SetSizeOnImage(); void SetSize(const nsIntSize& aSize, const Orientation& aOrientation) { PostSize(aSize.width, aSize.height, aOrientation); } nsIntSize GetSize() const { MOZ_ASSERT(HasSize()); return mImageMetadata.GetSize(); } virtual Telemetry::ID SpeedHistogram(); ImageMetadata& GetImageMetadata() { return mImageMetadata; } /** * Returns a weak pointer to the image associated with this decoder. */ RasterImage* GetImage() const { MOZ_ASSERT(mImage); return mImage.get(); } // Tell the decoder infrastructure to allocate a frame. By default, frame 0 // is created as an ARGB frame with no offset and with size width * height. // If decoders need something different, they must ask for it. // This is called by decoders when they need a new frame. These decoders // must then save the data they have been sent but not yet processed and // return from WriteInternal. When the new frame is created, WriteInternal // will be called again with nullptr and 0 as arguments. void NeedNewFrame(uint32_t frameNum, uint32_t x_offset, uint32_t y_offset, uint32_t width, uint32_t height, gfx::SurfaceFormat format, uint8_t palette_depth = 0); virtual bool NeedsNewFrame() const { return mNeedsNewFrame; } // Try to allocate a frame as described in mNewFrameData and return the // status code from that attempt. Clears mNewFrameData. virtual nsresult AllocateFrame(const nsIntSize& aTargetSize = nsIntSize()); already_AddRefed GetCurrentFrame() { nsRefPtr frame = mCurrentFrame.get(); return frame.forget(); } RawAccessFrameRef GetCurrentFrameRef() { return mCurrentFrame ? mCurrentFrame->RawAccessRef() : RawAccessFrameRef(); } /** * Writes data to the decoder. Only public for the benefit of nsICODecoder; * other callers should use Decode(). * * @param aBuffer buffer containing the data to be written * @param aCount the number of bytes to write * * Any errors are reported by setting the appropriate state on the decoder. */ void Write(const char* aBuffer, uint32_t aCount); protected: virtual ~Decoder(); /* * Internal hooks. Decoder implementations may override these and * only these methods. */ virtual void InitInternal(); virtual void WriteInternal(const char* aBuffer, uint32_t aCount); virtual void FinishInternal(); /* * Progress notifications. */ // Called by decoders when they determine the size of the image. Informs // the image of its size and sends notifications. void PostSize(int32_t aWidth, int32_t aHeight, Orientation aOrientation = Orientation()); // Called by decoders if they determine that the image has transparency. // // This should be fired as early as possible to allow observers to do things // that affect content, so it's necessarily pessimistic - if there's a // possibility that the image has transparency, for example because its header // specifies that it has an alpha channel, we fire PostHasTransparency // immediately. PostFrameStop's aFrameOpacity argument, on the other hand, is // only used internally to ImageLib. Because PostFrameStop isn't delivered // until the entire frame has been decoded, decoders may take into account the // actual contents of the frame and give a more accurate result. void PostHasTransparency(); // Called by decoders when they begin a frame. Informs the image, sends // notifications, and does internal book-keeping. void PostFrameStart(); // Called by decoders when they end a frame. Informs the image, sends // notifications, and does internal book-keeping. // Specify whether this frame is opaque as an optimization. // For animated images, specify the disposal, blend method and timeout for // this frame. void PostFrameStop(Opacity aFrameOpacity = Opacity::SOME_TRANSPARENCY, DisposalMethod aDisposalMethod = DisposalMethod::KEEP, int32_t aTimeout = 0, BlendMethod aBlendMethod = BlendMethod::OVER); /** * Called by the decoders when they have a region to invalidate. We may not * actually pass these invalidations on right away. * * @param aRect The invalidation rect in the coordinate system of the unscaled * image (that is, the image at its intrinsic size). * @param aRectAtTargetSize If not Nothing(), the invalidation rect in the * coordinate system of the scaled image (that is, * the image at our target decoding size). This must * be supplied if we're downscaling during decode. */ void PostInvalidation(const nsIntRect& aRect, const Maybe& aRectAtTargetSize = Nothing()); // Called by the decoders when they have successfully decoded the image. This // may occur as the result of the decoder getting to the appropriate point in // the stream, or by us calling FinishInternal(). // // May not be called mid-frame. // // For animated images, specify the loop count. -1 means loop forever, 0 // means a single iteration, stopping on the last frame. void PostDecodeDone(int32_t aLoopCount = 0); // Data errors are the fault of the source data, decoder errors are our fault void PostDataError(); void PostDecoderError(nsresult aFailCode); // Returns true if we may have stored data that we need to flush now that we // have a new frame to decode into. Callers can use Write() to actually // flush the data; see the documentation for that method. bool NeedsToFlushData() const { return mNeedsToFlushData; } /** * CompleteDecode() finishes up the decoding process after Decode() determines * that we're finished. It records final progress and does all the cleanup * that's possible off-main-thread. */ void CompleteDecode(); /** * Ensures that a given frame number exists with the given parameters, and * returns a RawAccessFrameRef for that frame. * It is not possible to create sparse frame arrays; you can only append * frames to the current frame array, or if there is only one frame in the * array, replace that frame. * @aTargetSize specifies the target size we're decoding to. If we're not * downscaling during decode, this will always be the same as the image's * intrinsic size. * * If a non-paletted frame is desired, pass 0 for aPaletteDepth. */ RawAccessFrameRef EnsureFrame(uint32_t aFrameNum, const nsIntSize& aTargetSize, const nsIntRect& aFrameRect, uint32_t aDecodeFlags, gfx::SurfaceFormat aFormat, uint8_t aPaletteDepth, imgFrame* aPreviousFrame); RawAccessFrameRef InternalAddFrame(uint32_t aFrameNum, const nsIntSize& aTargetSize, const nsIntRect& aFrameRect, uint32_t aDecodeFlags, gfx::SurfaceFormat aFormat, uint8_t aPaletteDepth, imgFrame* aPreviousFrame); /* * Member variables. * */ nsRefPtr mImage; Maybe mIterator; RawAccessFrameRef mCurrentFrame; ImageMetadata mImageMetadata; nsIntRect mInvalidRect; // Tracks an invalidation region in the current frame. Progress mProgress; uint8_t* mImageData; // Pointer to image data in either Cairo or 8bit format uint32_t mImageDataLength; uint32_t* mColormap; // Current colormap to be used in Cairo format uint32_t mColormapSize; // Telemetry data for this decoder. TimeDuration mDecodeTime; uint32_t mChunkCount; uint32_t mFlags; size_t mBytesDecoded; bool mSendPartialInvalidations; bool mDataDone; bool mDecodeDone; bool mDataError; bool mDecodeAborted; bool mShouldReportError; bool mImageIsTransient; bool mImageIsLocked; private: uint32_t mFrameCount; // Number of frames, including anything in-progress nsresult mFailCode; struct NewFrameData { NewFrameData() { } NewFrameData(uint32_t aFrameNum, const nsIntRect& aFrameRect, gfx::SurfaceFormat aFormat, uint8_t aPaletteDepth) : mFrameNum(aFrameNum) , mFrameRect(aFrameRect) , mFormat(aFormat) , mPaletteDepth(aPaletteDepth) { } uint32_t mFrameNum; nsIntRect mFrameRect; gfx::SurfaceFormat mFormat; uint8_t mPaletteDepth; }; NewFrameData mNewFrameData; bool mNeedsNewFrame; bool mNeedsToFlushData; bool mInitialized; bool mSizeDecode; bool mInFrame; bool mIsAnimated; }; } // namespace image } // namespace mozilla #endif // mozilla_image_Decoder_h