/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: sw=4 ts=4 et : * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Plugin App. * * The Initial Developer of the Original Code is * Chris Jones * Portions created by the Initial Developer are Copyright (C) 2009 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef ipc_glue_RPCChannel_h #define ipc_glue_RPCChannel_h 1 // FIXME/cjones probably shouldn't depend on STL #include #include #include "mozilla/ipc/SyncChannel.h" namespace mozilla { namespace ipc { //----------------------------------------------------------------------------- class RPCChannel : public SyncChannel { public: class /*NS_INTERFACE_CLASS*/ RPCListener : public SyncChannel::SyncListener { public: virtual ~RPCListener() { } virtual Result OnMessageReceived(const Message& aMessage) = 0; virtual Result OnMessageReceived(const Message& aMessage, Message*& aReply) = 0; virtual Result OnCallReceived(const Message& aMessage, Message*& aReply) = 0; }; // What happens if RPC calls race? enum RacyRPCPolicy { RRPError, RRPChildWins, RRPParentWins }; RPCChannel(RPCListener* aListener, RacyRPCPolicy aPolicy=RRPChildWins) : SyncChannel(aListener), mPending(), mStack(), mDeferred(), mRemoteStackDepthGuess(0), mRacePolicy(aPolicy) { } virtual ~RPCChannel() { // FIXME/cjones: impl } // Make an RPC to the other side of the channel bool Call(Message* msg, Message* reply); // Override the SyncChannel handler so we can dispatch RPC // messages. Called on the IO thread only. NS_OVERRIDE virtual void OnMessageReceived(const Message& msg); NS_OVERRIDE virtual void OnChannelError(); private: // Called on worker thread only void MaybeProcessDeferredIncall(); void EnqueuePendingMessages(); void OnMaybeDequeueOne(); void Incall(const Message& call, size_t stackDepth); void DispatchIncall(const Message& call); // Called from both threads size_t StackDepth() { mMutex.AssertCurrentThreadOwns(); return mStack.size(); } void DebugAbort(const char* file, int line, const char* cond, const char* why, const char* type="rpc", bool reply=false); // // Queue of all incoming messages, except for replies to sync // messages, which are delivered directly to the SyncChannel // through its mRecvd member. // // If both this side and the other side are functioning correctly, // the queue can only be in certain configurations. Let // // |A<| be an async in-message, // |S<| be a sync in-message, // |C<| be an RPC in-call, // |R<| be an RPC reply. // // The queue can only match this configuration // // A<* (S< | C< | R< (?{mStack.size() == 1} A<* (S< | C<))) // // The other side can send as many async messages |A<*| as it // wants before sending us a blocking message. // // The first case is |S<|, a sync in-msg. The other side must be // blocked, and thus can't send us any more messages until we // process the sync in-msg. // // The second case is |C<|, an RPC in-call; the other side must be // blocked. (There's a subtlety here: this in-call might have // raced with an out-call, but we detect that with the mechanism // below, |mRemoteStackDepth|, and races don't matter to the // queue.) // // Final case, the other side replied to our most recent out-call // |R<|. If that was the *only* out-call on our stack, // |?{mStack.size() == 1}|, then other side "finished with us," // and went back to its own business. That business might have // included sending any number of async message |A<*| until // sending a blocking message |(S< | C<)|. If we had more than // one RPC call on our stack, the other side *better* not have // sent us another blocking message, because it's blocked on a // reply from us. // std::queue mPending; // // Stack of all the RPC out-calls on which this RPCChannel is // awaiting a response. // std::stack mStack; // // Stack of RPC in-calls that were deferred because of race // conditions. // std::stack mDeferred; // // This is what we think the RPC stack depth is on the "other // side" of this RPC channel. We maintain this variable so that // we can detect racy RPC calls. With each RPC out-call sent, we // send along what *we* think the stack depth of the remote side // is *before* it will receive the RPC call. // // After sending the out-call, our stack depth is "incremented" // by pushing that pending message onto mPending. // // Then when processing an in-call |c|, it must be true that // // mStack.size() == c.remoteDepth // // i.e., my depth is actually the same as what the other side // thought it was when it sent in-call |c|. If this fails to // hold, we have detected racy RPC calls. // // We then increment mRemoteStackDepth *just before* processing // the in-call, since we know the other side is waiting on it, and // decrement it *just after* finishing processing that in-call, // since our response will pop the top of the other side's // |mPending|. // // One nice aspect of this race detection is that it is symmetric; // if one side detects a race, then the other side must also // detect the same race. // size_t mRemoteStackDepthGuess; RacyRPCPolicy mRacePolicy; }; } // namespace ipc } // namespace mozilla #endif // ifndef ipc_glue_RPCChannel_h