/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla code. * * The Initial Developer of the Original Code is the Mozilla Corporation. * Portions created by the Initial Developer are Copyright (C) 2010 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Matthew Gregan * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "nsAlgorithm.h" #include "nsWebMBufferedParser.h" #include "nsTimeRanges.h" #include "nsThreadUtils.h" using mozilla::ReentrantMonitorAutoEnter; static const double NS_PER_S = 1e9; static PRUint32 VIntLength(unsigned char aFirstByte, PRUint32* aMask) { PRUint32 count = 1; PRUint32 mask = 1 << 7; while (count < 8) { if ((aFirstByte & mask) != 0) { break; } mask >>= 1; count += 1; } if (aMask) { *aMask = mask; } NS_ASSERTION(count >= 1 && count <= 8, "Insane VInt length."); return count; } void nsWebMBufferedParser::Append(const unsigned char* aBuffer, PRUint32 aLength, nsTArray& aMapping, ReentrantMonitor& aReentrantMonitor) { static const unsigned char CLUSTER_ID[] = { 0x1f, 0x43, 0xb6, 0x75 }; static const unsigned char TIMECODE_ID = 0xe7; static const unsigned char BLOCKGROUP_ID = 0xa0; static const unsigned char BLOCK_ID = 0xa1; static const unsigned char SIMPLEBLOCK_ID = 0xa3; const unsigned char* p = aBuffer; // Parse each byte in aBuffer one-by-one, producing timecodes and updating // aMapping as we go. Parser pauses at end of stream (which may be at any // point within the parse) and resumes parsing the next time Append is // called with new data. while (p < aBuffer + aLength) { switch (mState) { case CLUSTER_SYNC: if (*p++ == CLUSTER_ID[mClusterIDPos]) { mClusterIDPos += 1; } else { mClusterIDPos = 0; } // Cluster ID found, it's likely this is a valid sync point. If this // is a spurious match, the later parse steps will encounter an error // and return to CLUSTER_SYNC. if (mClusterIDPos == sizeof(CLUSTER_ID)) { mClusterIDPos = 0; mState = READ_VINT; mNextState = TIMECODE_SYNC; } break; case READ_VINT: { unsigned char c = *p++; PRUint32 mask; mVIntLength = VIntLength(c, &mask); mVIntLeft = mVIntLength - 1; mVInt = c & ~mask; mState = READ_VINT_REST; break; } case READ_VINT_REST: if (mVIntLeft) { mVInt <<= 8; mVInt |= *p++; mVIntLeft -= 1; } else { mState = mNextState; } break; case TIMECODE_SYNC: if (*p++ != TIMECODE_ID) { p -= 1; mState = CLUSTER_SYNC; break; } mClusterTimecode = 0; mState = READ_VINT; mNextState = READ_CLUSTER_TIMECODE; break; case READ_CLUSTER_TIMECODE: if (mVInt) { mClusterTimecode <<= 8; mClusterTimecode |= *p++; mVInt -= 1; } else { mState = ANY_BLOCK_SYNC; } break; case ANY_BLOCK_SYNC: { unsigned char c = *p++; if (c == BLOCKGROUP_ID) { mState = READ_VINT; mNextState = ANY_BLOCK_SYNC; } else if (c == SIMPLEBLOCK_ID || c == BLOCK_ID) { mBlockOffset = mCurrentOffset + (p - aBuffer) - 1; mState = READ_VINT; mNextState = READ_BLOCK; } else { PRUint32 length = VIntLength(c, nsnull); if (length == 4) { p -= 1; mState = CLUSTER_SYNC; } else { mState = READ_VINT; mNextState = SKIP_ELEMENT; } } break; } case READ_BLOCK: mBlockSize = mVInt; mBlockTimecode = 0; mBlockTimecodeLength = 2; mState = READ_VINT; mNextState = READ_BLOCK_TIMECODE; break; case READ_BLOCK_TIMECODE: if (mBlockTimecodeLength) { mBlockTimecode <<= 8; mBlockTimecode |= *p++; mBlockTimecodeLength -= 1; } else { // It's possible we've parsed this data before, so avoid inserting // duplicate nsWebMTimeDataOffset entries. { ReentrantMonitorAutoEnter mon(aReentrantMonitor); PRUint32 idx; if (!aMapping.GreatestIndexLtEq(mBlockOffset, idx)) { nsWebMTimeDataOffset entry(mBlockOffset, mClusterTimecode + mBlockTimecode); aMapping.InsertElementAt(idx, entry); } } // Skip rest of block header and the block's payload. mBlockSize -= mVIntLength; mBlockSize -= 2; mSkipBytes = PRUint32(mBlockSize); mState = SKIP_DATA; mNextState = ANY_BLOCK_SYNC; } break; case SKIP_DATA: if (mSkipBytes) { PRUint32 left = aLength - (p - aBuffer); left = NS_MIN(left, mSkipBytes); p += left; mSkipBytes -= left; } else { mState = mNextState; } break; case SKIP_ELEMENT: mSkipBytes = PRUint32(mVInt); mState = SKIP_DATA; mNextState = ANY_BLOCK_SYNC; break; } } NS_ASSERTION(p == aBuffer + aLength, "Must have parsed to end of data."); mCurrentOffset += aLength; } void nsWebMBufferedState::CalculateBufferedForRange(nsTimeRanges* aBuffered, PRInt64 aStartOffset, PRInt64 aEndOffset, PRUint64 aTimecodeScale, PRInt64 aStartTimeOffsetNS) { ReentrantMonitorAutoEnter mon(mReentrantMonitor); // Find the first nsWebMTimeDataOffset at or after aStartOffset. PRUint32 start; mTimeMapping.GreatestIndexLtEq(aStartOffset, start); if (start == mTimeMapping.Length()) { return; } // Find the first nsWebMTimeDataOffset at or before aEndOffset. PRUint32 end; if (!mTimeMapping.GreatestIndexLtEq(aEndOffset, end) && end > 0) { // No exact match, so adjust end to be the first entry before // aEndOffset. end -= 1; } // Range is empty. if (end <= start) { return; } NS_ASSERTION(mTimeMapping[start].mOffset >= aStartOffset && mTimeMapping[end].mOffset <= aEndOffset, "Computed time range must lie within data range."); if (start > 0) { NS_ASSERTION(mTimeMapping[start - 1].mOffset <= aStartOffset, "Must have found least nsWebMTimeDataOffset for start"); } if (end < mTimeMapping.Length() - 1) { NS_ASSERTION(mTimeMapping[end + 1].mOffset >= aEndOffset, "Must have found greatest nsWebMTimeDataOffset for end"); } // The timestamp of the first media sample, in ns. We must subtract this // from the ranges' start and end timestamps, so that those timestamps are // normalized in the range [0,duration]. double startTime = (mTimeMapping[start].mTimecode * aTimecodeScale - aStartTimeOffsetNS) / NS_PER_S; double endTime = (mTimeMapping[end].mTimecode * aTimecodeScale - aStartTimeOffsetNS) / NS_PER_S; aBuffered->Add(startTime, endTime); } void nsWebMBufferedState::NotifyDataArrived(const char* aBuffer, PRUint32 aLength, PRInt64 aOffset) { NS_ASSERTION(NS_IsMainThread(), "Should be on main thread."); PRUint32 idx; if (!mRangeParsers.GreatestIndexLtEq(aOffset, idx)) { // If the incoming data overlaps an already parsed range, adjust the // buffer so that we only reparse the new data. It's also possible to // have an overlap where the end of the incoming data is within an // already parsed range, but we don't bother handling that other than by // avoiding storing duplicate timecodes when the parser runs. if (idx != mRangeParsers.Length() && mRangeParsers[idx].mStartOffset <= aOffset) { // Complete overlap, skip parsing. if (aOffset + aLength <= mRangeParsers[idx].mCurrentOffset) { return; } // Partial overlap, adjust the buffer to parse only the new data. PRInt64 adjust = mRangeParsers[idx].mCurrentOffset - aOffset; NS_ASSERTION(adjust >= 0, "Overlap detection bug."); aBuffer += adjust; aLength -= PRUint32(adjust); } else { mRangeParsers.InsertElementAt(idx, nsWebMBufferedParser(aOffset)); } } mRangeParsers[idx].Append(reinterpret_cast(aBuffer), aLength, mTimeMapping, mReentrantMonitor); // Merge parsers with overlapping regions and clean up the remnants. PRUint32 i = 0; while (i + 1 < mRangeParsers.Length()) { if (mRangeParsers[i].mCurrentOffset >= mRangeParsers[i + 1].mStartOffset) { mRangeParsers[i + 1].mStartOffset = mRangeParsers[i].mStartOffset; mRangeParsers.RemoveElementAt(i); } else { i += 1; } } }