/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsAtomTable.h" #include "nsAutoPtr.h" #include "nsCOMPtr.h" #include "nsCOMArray.h" #include "nsServiceManagerUtils.h" #include "nsMemoryReporterManager.h" #include "nsITimer.h" #include "nsThreadUtils.h" #include "nsIDOMWindow.h" #include "nsPIDOMWindow.h" #include "nsIObserverService.h" #include "nsIGlobalObject.h" #include "nsIXPConnect.h" #if defined(XP_LINUX) || defined(__FreeBSD__) #include "nsMemoryInfoDumper.h" #endif #include "mozilla/Attributes.h" #include "mozilla/PodOperations.h" #include "mozilla/Services.h" #include "mozilla/Telemetry.h" #include "mozilla/dom/PMemoryReportRequestParent.h" // for dom::MemoryReport #ifndef XP_WIN #include #endif using namespace mozilla; #if defined(MOZ_MEMORY) # define HAVE_JEMALLOC_STATS 1 # include "mozmemory.h" #endif // MOZ_MEMORY #if defined(XP_LINUX) static nsresult GetProcSelfStatmField(int aField, int64_t* aN) { // There are more than two fields, but we're only interested in the first // two. static const int MAX_FIELD = 2; size_t fields[MAX_FIELD]; MOZ_ASSERT(aField < MAX_FIELD, "bad field number"); FILE* f = fopen("/proc/self/statm", "r"); if (f) { int nread = fscanf(f, "%zu %zu", &fields[0], &fields[1]); fclose(f); if (nread == MAX_FIELD) { *aN = fields[aField] * getpagesize(); return NS_OK; } } return NS_ERROR_FAILURE; } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult VsizeDistinguishedAmount(int64_t* aN) { return GetProcSelfStatmField(0, aN); } static nsresult ResidentDistinguishedAmount(int64_t* aN) { return GetProcSelfStatmField(1, aN); } static nsresult ResidentFastDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmount(aN); } #define HAVE_RESIDENT_UNIQUE_REPORTER class ResidentUniqueReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { // You might be tempted to calculate USS by subtracting the "shared" // value from the "resident" value in /proc//statm. But at least // on Linux, statm's "shared" value actually counts pages backed by // files, which has little to do with whether the pages are actually // shared. /proc/self/smaps on the other hand appears to give us the // correct information. FILE* f = fopen("/proc/self/smaps", "r"); if (NS_WARN_IF(!f)) { return NS_ERROR_UNEXPECTED; } int64_t amount = 0; char line[256]; while (fgets(line, sizeof(line), f)) { long long val = 0; if (sscanf(line, "Private_Dirty: %lld kB", &val) == 1 || sscanf(line, "Private_Clean: %lld kB", &val) == 1) { amount += val * 1024; // convert from kB to bytes } } fclose(f); return MOZ_COLLECT_REPORT( "resident-unique", KIND_OTHER, UNITS_BYTES, amount, "Memory mapped by the process that is present in physical memory and not " "shared with any other processes. This is also known as the process's unique " "set size (USS). This is the amount of RAM we'd expect to be freed if we " "closed this process."); } }; NS_IMPL_ISUPPORTS1(ResidentUniqueReporter, nsIMemoryReporter) #elif defined(__DragonFly__) || defined(__FreeBSD__) \ || defined(__NetBSD__) || defined(__OpenBSD__) \ || defined(__FreeBSD_kernel__) #include #include #if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) #include #endif #include #if defined(__NetBSD__) #undef KERN_PROC #define KERN_PROC KERN_PROC2 #define KINFO_PROC struct kinfo_proc2 #else #define KINFO_PROC struct kinfo_proc #endif #if defined(__DragonFly__) #define KP_SIZE(kp) (kp.kp_vm_map_size) #define KP_RSS(kp) (kp.kp_vm_rssize * getpagesize()) #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) #define KP_SIZE(kp) (kp.ki_size) #define KP_RSS(kp) (kp.ki_rssize * getpagesize()) #elif defined(__NetBSD__) #define KP_SIZE(kp) (kp.p_vm_msize * getpagesize()) #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) #elif defined(__OpenBSD__) #define KP_SIZE(kp) ((kp.p_vm_dsize + kp.p_vm_ssize \ + kp.p_vm_tsize) * getpagesize()) #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) #endif static nsresult GetKinfoProcSelf(KINFO_PROC* aProc) { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid(), #if defined(__NetBSD__) || defined(__OpenBSD__) sizeof(KINFO_PROC), 1, #endif }; u_int miblen = sizeof(mib) / sizeof(mib[0]); size_t size = sizeof(KINFO_PROC); if (sysctl(mib, miblen, aProc, &size, nullptr, 0)) { return NS_ERROR_FAILURE; } return NS_OK; } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult VsizeDistinguishedAmount(int64_t* aN) { KINFO_PROC proc; nsresult rv = GetKinfoProcSelf(&proc); if (NS_SUCCEEDED(rv)) { *aN = KP_SIZE(proc); } return rv; } static nsresult ResidentDistinguishedAmount(int64_t* aN) { KINFO_PROC proc; nsresult rv = GetKinfoProcSelf(&proc); if (NS_SUCCEEDED(rv)) { *aN = KP_RSS(proc); } return rv; } static nsresult ResidentFastDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmount(aN); } #ifdef __FreeBSD__ #include #include static nsresult GetKinfoVmentrySelf(int64_t* aPrss, uint64_t* aMaxreg) { int cnt; struct kinfo_vmentry *vmmap, *kve; if ((vmmap = kinfo_getvmmap(getpid(), &cnt)) == nullptr) { return NS_ERROR_FAILURE; } if (aPrss) { *aPrss = 0; } if (aMaxreg) { *aMaxreg = 0; } for (int i = 0; i < cnt; i++) { kve = &vmmap[i]; if (aPrss) { *aPrss += kve->kve_private_resident; } if (aMaxreg) { *aMaxreg = std::max(*aMaxreg, kve->kve_end - kve->kve_start); } } free(vmmap); return NS_OK; } #define HAVE_PRIVATE_REPORTER static nsresult PrivateDistinguishedAmount(int64_t* aN) { int64_t priv; nsresult rv = GetKinfoVmentrySelf(&priv, nullptr); NS_ENSURE_SUCCESS(rv, rv); *aN = priv * getpagesize(); return NS_OK; } #define HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER 1 static nsresult VsizeMaxContiguousDistinguishedAmount(int64_t* aN) { uint64_t biggestRegion; nsresult rv = GetKinfoVmentrySelf(nullptr, &biggestRegion); if (NS_SUCCEEDED(rv)) { *aN = biggestRegion; } return NS_OK; } #endif // FreeBSD #elif defined(SOLARIS) #include #include #include static void XMappingIter(int64_t& aVsize, int64_t& aResident) { aVsize = -1; aResident = -1; int mapfd = open("/proc/self/xmap", O_RDONLY); struct stat st; prxmap_t* prmapp = nullptr; if (mapfd >= 0) { if (!fstat(mapfd, &st)) { int nmap = st.st_size / sizeof(prxmap_t); while (1) { // stat(2) on /proc//xmap returns an incorrect value, // prior to the release of Solaris 11. // Here is a workaround for it. nmap *= 2; prmapp = (prxmap_t*)malloc((nmap + 1) * sizeof(prxmap_t)); if (!prmapp) { // out of memory break; } int n = pread(mapfd, prmapp, (nmap + 1) * sizeof(prxmap_t), 0); if (n < 0) { break; } if (nmap >= n / sizeof(prxmap_t)) { aVsize = 0; aResident = 0; for (int i = 0; i < n / sizeof(prxmap_t); i++) { aVsize += prmapp[i].pr_size; aResident += prmapp[i].pr_rss * prmapp[i].pr_pagesize; } break; } free(prmapp); } free(prmapp); } close(mapfd); } } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult VsizeDistinguishedAmount(int64_t* aN) { int64_t vsize, resident; XMappingIter(vsize, resident); if (vsize == -1) { return NS_ERROR_FAILURE; } *aN = vsize; return NS_OK; } static nsresult ResidentDistinguishedAmount(int64_t* aN) { int64_t vsize, resident; XMappingIter(vsize, resident); if (resident == -1) { return NS_ERROR_FAILURE; } *aN = resident; return NS_OK; } static nsresult ResidentFastDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmount(aN); } #elif defined(XP_MACOSX) #include #include static bool GetTaskBasicInfo(struct task_basic_info* aTi) { mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT; kern_return_t kr = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)aTi, &count); return kr == KERN_SUCCESS; } // The VSIZE figure on Mac includes huge amounts of shared memory and is always // absurdly high, eg. 2GB+ even at start-up. But both 'top' and 'ps' report // it, so we might as well too. #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult VsizeDistinguishedAmount(int64_t* aN) { task_basic_info ti; if (!GetTaskBasicInfo(&ti)) { return NS_ERROR_FAILURE; } *aN = ti.virtual_size; return NS_OK; } // If we're using jemalloc on Mac, we need to instruct jemalloc to purge the // pages it has madvise(MADV_FREE)'d before we read our RSS in order to get // an accurate result. The OS will take away MADV_FREE'd pages when there's // memory pressure, so ideally, they shouldn't count against our RSS. // // Purging these pages can take a long time for some users (see bug 789975), // so we provide the option to get the RSS without purging first. static nsresult ResidentDistinguishedAmountHelper(int64_t* aN, bool aDoPurge) { #ifdef HAVE_JEMALLOC_STATS if (aDoPurge) { Telemetry::AutoTimer timer; jemalloc_purge_freed_pages(); } #endif task_basic_info ti; if (!GetTaskBasicInfo(&ti)) { return NS_ERROR_FAILURE; } *aN = ti.resident_size; return NS_OK; } static nsresult ResidentFastDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmountHelper(aN, /* doPurge = */ false); } static nsresult ResidentDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmountHelper(aN, /* doPurge = */ true); } #elif defined(XP_WIN) #include #include #include #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult VsizeDistinguishedAmount(int64_t* aN) { MEMORYSTATUSEX s; s.dwLength = sizeof(s); if (!GlobalMemoryStatusEx(&s)) { return NS_ERROR_FAILURE; } *aN = s.ullTotalVirtual - s.ullAvailVirtual; return NS_OK; } static nsresult ResidentDistinguishedAmount(int64_t* aN) { PROCESS_MEMORY_COUNTERS pmc; pmc.cb = sizeof(PROCESS_MEMORY_COUNTERS); if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { return NS_ERROR_FAILURE; } *aN = pmc.WorkingSetSize; return NS_OK; } static nsresult ResidentFastDistinguishedAmount(int64_t* aN) { return ResidentDistinguishedAmount(aN); } #define HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER 1 static nsresult VsizeMaxContiguousDistinguishedAmount(int64_t* aN) { SIZE_T biggestRegion = 0; MEMORY_BASIC_INFORMATION vmemInfo = { 0 }; for (size_t currentAddress = 0; ; ) { if (!VirtualQuery((LPCVOID)currentAddress, &vmemInfo, sizeof(vmemInfo))) { // Something went wrong, just return whatever we've got already. break; } if (vmemInfo.State == MEM_FREE) { biggestRegion = std::max(biggestRegion, vmemInfo.RegionSize); } SIZE_T lastAddress = currentAddress; currentAddress += vmemInfo.RegionSize; // If we overflow, we've examined all of the address space. if (currentAddress < lastAddress) { break; } } *aN = biggestRegion; return NS_OK; } #define HAVE_PRIVATE_REPORTER static nsresult PrivateDistinguishedAmount(int64_t* aN) { PROCESS_MEMORY_COUNTERS_EX pmcex; pmcex.cb = sizeof(PROCESS_MEMORY_COUNTERS_EX); if (!GetProcessMemoryInfo(GetCurrentProcess(), (PPROCESS_MEMORY_COUNTERS) &pmcex, sizeof(pmcex))) { return NS_ERROR_FAILURE; } *aN = pmcex.PrivateUsage; return NS_OK; } #endif // XP_ #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER class VsizeMaxContiguousReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { int64_t amount; nsresult rv = VsizeMaxContiguousDistinguishedAmount(&amount); NS_ENSURE_SUCCESS(rv, rv); return MOZ_COLLECT_REPORT( "vsize-max-contiguous", KIND_OTHER, UNITS_BYTES, amount, "Size of the maximum contiguous block of available virtual " "memory."); } }; NS_IMPL_ISUPPORTS1(VsizeMaxContiguousReporter, nsIMemoryReporter) #endif #ifdef HAVE_PRIVATE_REPORTER class PrivateReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { int64_t amount; nsresult rv = PrivateDistinguishedAmount(&amount); NS_ENSURE_SUCCESS(rv, rv); return MOZ_COLLECT_REPORT( "private", KIND_OTHER, UNITS_BYTES, amount, "Memory that cannot be shared with other processes, including memory that is " "committed and marked MEM_PRIVATE, data that is not mapped, and executable " "pages that have been written to."); } }; NS_IMPL_ISUPPORTS1(PrivateReporter, nsIMemoryReporter) #endif #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS class VsizeReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { int64_t amount; nsresult rv = VsizeDistinguishedAmount(&amount); NS_ENSURE_SUCCESS(rv, rv); return MOZ_COLLECT_REPORT( "vsize", KIND_OTHER, UNITS_BYTES, amount, "Memory mapped by the process, including code and data segments, the heap, " "thread stacks, memory explicitly mapped by the process via mmap and similar " "operations, and memory shared with other processes. This is the vsize figure " "as reported by 'top' and 'ps'. This figure is of limited use on Mac, where " "processes share huge amounts of memory with one another. But even on other " "operating systems, 'resident' is a much better measure of the memory " "resources used by the process."); } }; NS_IMPL_ISUPPORTS1(VsizeReporter, nsIMemoryReporter) class ResidentReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { int64_t amount; nsresult rv = ResidentDistinguishedAmount(&amount); NS_ENSURE_SUCCESS(rv, rv); return MOZ_COLLECT_REPORT( "resident", KIND_OTHER, UNITS_BYTES, amount, "Memory mapped by the process that is present in physical memory, also known " "as the resident set size (RSS). This is the best single figure to use when " "considering the memory resources used by the process, but it depends both on " "other processes being run and details of the OS kernel and so is best used " "for comparing the memory usage of a single process at different points in " "time."); } }; NS_IMPL_ISUPPORTS1(ResidentReporter, nsIMemoryReporter) #endif // HAVE_VSIZE_AND_RESIDENT_REPORTERS #ifdef XP_UNIX #include #define HAVE_PAGE_FAULT_REPORTERS 1 class PageFaultsSoftReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { struct rusage usage; int err = getrusage(RUSAGE_SELF, &usage); if (err != 0) { return NS_ERROR_FAILURE; } int64_t amount = usage.ru_minflt; return MOZ_COLLECT_REPORT( "page-faults-soft", KIND_OTHER, UNITS_COUNT_CUMULATIVE, amount, "The number of soft page faults (also known as 'minor page faults') that " "have occurred since the process started. A soft page fault occurs when the " "process tries to access a page which is present in physical memory but is " "not mapped into the process's address space. For instance, a process might " "observe soft page faults when it loads a shared library which is already " "present in physical memory. A process may experience many thousands of soft " "page faults even when the machine has plenty of available physical memory, " "and because the OS services a soft page fault without accessing the disk, " "they impact performance much less than hard page faults."); } }; NS_IMPL_ISUPPORTS1(PageFaultsSoftReporter, nsIMemoryReporter) static nsresult PageFaultsHardDistinguishedAmount(int64_t* aAmount) { struct rusage usage; int err = getrusage(RUSAGE_SELF, &usage); if (err != 0) { return NS_ERROR_FAILURE; } *aAmount = usage.ru_majflt; return NS_OK; } class PageFaultsHardReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { int64_t amount = 0; nsresult rv = PageFaultsHardDistinguishedAmount(&amount); NS_ENSURE_SUCCESS(rv, rv); return MOZ_COLLECT_REPORT( "page-faults-hard", KIND_OTHER, UNITS_COUNT_CUMULATIVE, amount, "The number of hard page faults (also known as 'major page faults') that have " "occurred since the process started. A hard page fault occurs when a process " "tries to access a page which is not present in physical memory. The " "operating system must access the disk in order to fulfill a hard page fault. " "When memory is plentiful, you should see very few hard page faults. But if " "the process tries to use more memory than your machine has available, you " "may see many thousands of hard page faults. Because accessing the disk is up " "to a million times slower than accessing RAM, the program may run very " "slowly when it is experiencing more than 100 or so hard page faults a " "second."); } }; NS_IMPL_ISUPPORTS1(PageFaultsHardReporter, nsIMemoryReporter) #endif // HAVE_PAGE_FAULT_REPORTERS /** ** memory reporter implementation for jemalloc and OSX malloc, ** to obtain info on total memory in use (that we know about, ** at least -- on OSX, there are sometimes other zones in use). **/ #ifdef HAVE_JEMALLOC_STATS // This has UNITS_PERCENTAGE, so it is multiplied by 100. static int64_t HeapOverheadRatio(jemalloc_stats_t* aStats) { return (int64_t) 10000 * (aStats->waste + aStats->bookkeeping + aStats->page_cache) / ((double)aStats->allocated); } class JemallocHeapReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { jemalloc_stats_t stats; jemalloc_stats(&stats); nsresult rv; rv = MOZ_COLLECT_REPORT( "heap-allocated", KIND_OTHER, UNITS_BYTES, stats.allocated, "Memory mapped by the heap allocator that is currently allocated to the " "application. This may exceed the amount of memory requested by the " "application because the allocator regularly rounds up request sizes. (The " "exact amount requested is not recorded.)"); NS_ENSURE_SUCCESS(rv, rv); // We mark this and the other heap-overhead reporters as KIND_NONHEAP // because KIND_HEAP memory means "counted in heap-allocated", which // this is not. rv = MOZ_COLLECT_REPORT( "explicit/heap-overhead/waste", KIND_NONHEAP, UNITS_BYTES, stats.waste, "Committed bytes which do not correspond to an active allocation and which the " "allocator is not intentionally keeping alive (i.e., not 'heap-bookkeeping' or " "'heap-page-cache'). Although the allocator will waste some space under any " "circumstances, a large value here may indicate that the heap is highly " "fragmented, or that allocator is performing poorly for some other reason."); NS_ENSURE_SUCCESS(rv, rv); rv = MOZ_COLLECT_REPORT( "explicit/heap-overhead/bookkeeping", KIND_NONHEAP, UNITS_BYTES, stats.bookkeeping, "Committed bytes which the heap allocator uses for internal data structures."); NS_ENSURE_SUCCESS(rv, rv); rv = MOZ_COLLECT_REPORT( "explicit/heap-overhead/page-cache", KIND_NONHEAP, UNITS_BYTES, stats.page_cache, "Memory which the allocator could return to the operating system, but hasn't. " "The allocator keeps this memory around as an optimization, so it doesn't " "have to ask the OS the next time it needs to fulfill a request. This value " "is typically not larger than a few megabytes."); NS_ENSURE_SUCCESS(rv, rv); rv = MOZ_COLLECT_REPORT( "heap-committed", KIND_OTHER, UNITS_BYTES, stats.allocated + stats.waste + stats.bookkeeping + stats.page_cache, "Memory mapped by the heap allocator that is committed, i.e. in physical " "memory or paged to disk. This value corresponds to 'heap-allocated' + " "'heap-waste' + 'heap-bookkeeping' + 'heap-page-cache', but because " "these values are read at different times, the result probably won't match " "exactly."); NS_ENSURE_SUCCESS(rv, rv); rv = MOZ_COLLECT_REPORT( "heap-overhead-ratio", KIND_OTHER, UNITS_PERCENTAGE, HeapOverheadRatio(&stats), "Ratio of committed, unused bytes to allocated bytes; i.e., " "'heap-overhead' / 'heap-allocated'. This measures the overhead of " "the heap allocator relative to amount of memory allocated."); NS_ENSURE_SUCCESS(rv, rv); return NS_OK; } }; NS_IMPL_ISUPPORTS1(JemallocHeapReporter, nsIMemoryReporter) #endif // HAVE_JEMALLOC_STATS // Why is this here? At first glance, you'd think it could be defined and // registered with nsMemoryReporterManager entirely within nsAtomTable.cpp. // However, the obvious time to register it is when the table is initialized, // and that happens before XPCOM components are initialized, which means the // RegisterStrongMemoryReporter call fails. So instead we do it here. class AtomTablesReporter MOZ_FINAL : public nsIMemoryReporter { MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf) public: NS_DECL_ISUPPORTS NS_METHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { return MOZ_COLLECT_REPORT( "explicit/atom-tables", KIND_HEAP, UNITS_BYTES, NS_SizeOfAtomTablesIncludingThis(MallocSizeOf), "Memory used by the dynamic and static atoms tables."); } }; NS_IMPL_ISUPPORTS1(AtomTablesReporter, nsIMemoryReporter) #ifdef MOZ_DMD namespace mozilla { namespace dmd { class DMDReporter MOZ_FINAL : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData) { dmd::Sizes sizes; dmd::SizeOf(&sizes); #define REPORT(_path, _amount, _desc) \ do { \ nsresult rv; \ rv = aHandleReport->Callback(EmptyCString(), NS_LITERAL_CSTRING(_path), \ KIND_HEAP, UNITS_BYTES, _amount, \ NS_LITERAL_CSTRING(_desc), aData); \ if (NS_WARN_IF(NS_FAILED(rv))) { \ return rv; \ } \ } while (0) REPORT("explicit/dmd/stack-traces/used", sizes.mStackTracesUsed, "Memory used by stack traces which correspond to at least " "one heap block DMD is tracking."); REPORT("explicit/dmd/stack-traces/unused", sizes.mStackTracesUnused, "Memory used by stack traces which don't correspond to any heap " "blocks DMD is currently tracking."); REPORT("explicit/dmd/stack-traces/table", sizes.mStackTraceTable, "Memory used by DMD's stack trace table."); REPORT("explicit/dmd/block-table", sizes.mBlockTable, "Memory used by DMD's live block table."); #undef REPORT return NS_OK; } }; NS_IMPL_ISUPPORTS1(DMDReporter, nsIMemoryReporter) } // namespace dmd } // namespace mozilla #endif // MOZ_DMD /** ** nsMemoryReporterManager implementation **/ NS_IMPL_ISUPPORTS1(nsMemoryReporterManager, nsIMemoryReporterManager) NS_IMETHODIMP nsMemoryReporterManager::Init() { #if defined(HAVE_JEMALLOC_STATS) && defined(XP_LINUX) if (!jemalloc_stats) { return NS_ERROR_FAILURE; } #endif #ifdef HAVE_JEMALLOC_STATS RegisterStrongReporter(new JemallocHeapReporter()); #endif #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS RegisterStrongReporter(new VsizeReporter()); RegisterStrongReporter(new ResidentReporter()); #endif #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER RegisterStrongReporter(new VsizeMaxContiguousReporter()); #endif #ifdef HAVE_RESIDENT_UNIQUE_REPORTER RegisterStrongReporter(new ResidentUniqueReporter()); #endif #ifdef HAVE_PAGE_FAULT_REPORTERS RegisterStrongReporter(new PageFaultsSoftReporter()); RegisterStrongReporter(new PageFaultsHardReporter()); #endif #ifdef HAVE_PRIVATE_REPORTER RegisterStrongReporter(new PrivateReporter()); #endif RegisterStrongReporter(new AtomTablesReporter()); #ifdef MOZ_DMD RegisterStrongReporter(new mozilla::dmd::DMDReporter()); #endif #if defined(XP_LINUX) || defined(__FreeBSD__) nsMemoryInfoDumper::Initialize(); #endif return NS_OK; } nsMemoryReporterManager::nsMemoryReporterManager() : mMutex("nsMemoryReporterManager::mMutex") , mIsRegistrationBlocked(false) , mStrongReporters(new StrongReportersTable()) , mWeakReporters(new WeakReportersTable()) , mSavedStrongReporters(nullptr) , mSavedWeakReporters(nullptr) , mNumChildProcesses(0) , mNextGeneration(1) , mGetReportsState(nullptr) { } nsMemoryReporterManager::~nsMemoryReporterManager() { delete mStrongReporters; delete mWeakReporters; NS_ASSERTION(!mSavedStrongReporters, "failed to restore strong reporters"); NS_ASSERTION(!mSavedWeakReporters, "failed to restore weak reporters"); } //#define DEBUG_CHILD_PROCESS_MEMORY_REPORTING 1 #ifdef DEBUG_CHILD_PROCESS_MEMORY_REPORTING #define MEMORY_REPORTING_LOG(format, ...) \ fprintf(stderr, "++++ MEMORY REPORTING: " format, ##__VA_ARGS__); #else #define MEMORY_REPORTING_LOG(...) #endif void nsMemoryReporterManager::IncrementNumChildProcesses() { if (!NS_IsMainThread()) { MOZ_CRASH(); } mNumChildProcesses++; MEMORY_REPORTING_LOG("IncrementNumChildProcesses --> %d\n", mNumChildProcesses); } void nsMemoryReporterManager::DecrementNumChildProcesses() { if (!NS_IsMainThread()) { MOZ_CRASH(); } MOZ_ASSERT(mNumChildProcesses > 0); mNumChildProcesses--; MEMORY_REPORTING_LOG("DecrementNumChildProcesses --> %d\n", mNumChildProcesses); } NS_IMETHODIMP nsMemoryReporterManager::GetReports( nsIHandleReportCallback* aHandleReport, nsISupports* aHandleReportData, nsIFinishReportingCallback* aFinishReporting, nsISupports* aFinishReportingData) { // Memory reporters are not necessarily threadsafe, so this function must // be called from the main thread. if (!NS_IsMainThread()) { MOZ_CRASH(); } uint32_t generation = mNextGeneration++; if (mGetReportsState) { // A request is in flight. Don't start another one. And don't report // an error; just ignore it, and let the in-flight request finish. MEMORY_REPORTING_LOG("GetReports (gen=%u, s->gen=%u): abort\n", generation, mGetReportsState->mGeneration); return NS_OK; } MEMORY_REPORTING_LOG("GetReports (gen=%u, %d child(ren) present)\n", generation, mNumChildProcesses); if (mNumChildProcesses > 0) { // Request memory reports from child processes. We do this *before* // collecting reports for this process so each process can collect // reports in parallel. nsCOMPtr obs = do_GetService("@mozilla.org/observer-service;1"); NS_ENSURE_STATE(obs); // Casting the uint32_t generation to |const char16_t*| is a hack, but // simpler than converting the number to an actual string. obs->NotifyObservers(nullptr, "child-memory-reporter-request", (const char16_t*)(uintptr_t)generation); nsCOMPtr timer = do_CreateInstance(NS_TIMER_CONTRACTID); NS_ENSURE_TRUE(timer, NS_ERROR_FAILURE); nsresult rv = timer->InitWithFuncCallback(TimeoutCallback, this, kTimeoutLengthMS, nsITimer::TYPE_ONE_SHOT); NS_ENSURE_SUCCESS(rv, rv); mGetReportsState = new GetReportsState(generation, timer, mNumChildProcesses, aHandleReport, aHandleReportData, aFinishReporting, aFinishReportingData); } // Get reports for this process. GetReportsForThisProcess(aHandleReport, aHandleReportData); // If there are no child processes, we can finish up immediately. return (mNumChildProcesses == 0) ? aFinishReporting->Callback(aFinishReportingData) : NS_OK; } typedef nsCOMArray MemoryReporterArray; static PLDHashOperator StrongEnumerator(nsRefPtrHashKey* aElem, void* aData) { MemoryReporterArray *allReporters = static_cast(aData); allReporters->AppendElement(aElem->GetKey()); return PL_DHASH_NEXT; } static PLDHashOperator WeakEnumerator(nsPtrHashKey* aElem, void* aData) { MemoryReporterArray *allReporters = static_cast(aData); allReporters->AppendElement(aElem->GetKey()); return PL_DHASH_NEXT; } NS_IMETHODIMP nsMemoryReporterManager::GetReportsForThisProcess( nsIHandleReportCallback* aHandleReport, nsISupports* aHandleReportData) { // Memory reporters are not necessarily threadsafe, so this function must // be called from the main thread. if (!NS_IsMainThread()) { MOZ_CRASH(); } MemoryReporterArray allReporters; { mozilla::MutexAutoLock autoLock(mMutex); mStrongReporters->EnumerateEntries(StrongEnumerator, &allReporters); mWeakReporters->EnumerateEntries(WeakEnumerator, &allReporters); } for (uint32_t i = 0; i < allReporters.Length(); i++) { allReporters[i]->CollectReports(aHandleReport, aHandleReportData); } return NS_OK; } // This function has no return value. If something goes wrong, there's no // clear place to report the problem to, but that's ok -- we will end up // hitting the timeout and executing TimeoutCallback(). void nsMemoryReporterManager::HandleChildReports( const uint32_t& aGeneration, const InfallibleTArray& aChildReports) { // Memory reporting only happens on the main thread. if (!NS_IsMainThread()) { MOZ_CRASH(); } GetReportsState* s = mGetReportsState; if (!s) { // If we reach here, either: // // - A child process reported back too late, and no subsequent request // is in flight. // // - (Unlikely) A "child-memory-reporter-request" notification was // triggered from somewhere other than GetReports(), causing child // processes to report back when the nsMemoryReporterManager wasn't // expecting it. // // Either way, there's nothing to be done. Just ignore it. MEMORY_REPORTING_LOG( "HandleChildReports: no request in flight (aGen=%u)\n", aGeneration); return; } if (aGeneration != s->mGeneration) { // If we reach here, a child process must have reported back, too late, // while a subsequent (higher-numbered) request is in flight. Again, // ignore it. MOZ_ASSERT(aGeneration < s->mGeneration); MEMORY_REPORTING_LOG( "HandleChildReports: gen mismatch (aGen=%u, s->gen=%u)\n", aGeneration, s->mGeneration); return; } // Process the reports from the child process. for (uint32_t i = 0; i < aChildReports.Length(); i++) { const dom::MemoryReport& r = aChildReports[i]; // Child reports should have a non-empty process. MOZ_ASSERT(!r.process().IsEmpty()); // If the call fails, ignore and continue. s->mHandleReport->Callback(r.process(), r.path(), r.kind(), r.units(), r.amount(), r.desc(), s->mHandleReportData); } // If all the child processes have reported, we can cancel the timer and // finish up. Otherwise, just return. s->mNumChildProcessesCompleted++; MEMORY_REPORTING_LOG("HandleChildReports (aGen=%u): completed child %d\n", aGeneration, s->mNumChildProcessesCompleted); if (s->mNumChildProcessesCompleted == s->mNumChildProcesses) { s->mTimer->Cancel(); FinishReporting(); } } /* static */ void nsMemoryReporterManager::TimeoutCallback(nsITimer* aTimer, void* aData) { nsMemoryReporterManager* mgr = static_cast(aData); MOZ_ASSERT(mgr->mGetReportsState); MEMORY_REPORTING_LOG("TimeoutCallback (s->gen=%u)\n", mgr->mGetReportsState->mGeneration); // We don't bother sending any kind of cancellation message to the child // processes that haven't reported back. mgr->FinishReporting(); } void nsMemoryReporterManager::FinishReporting() { // Memory reporting only happens on the main thread. if (!NS_IsMainThread()) { MOZ_CRASH(); } MOZ_ASSERT(mGetReportsState); MEMORY_REPORTING_LOG("FinishReporting (s->gen=%u)\n", mGetReportsState->mGeneration); // Call this before deleting |mGetReportsState|. That way, if // |mFinishReportData| calls GetReports(), it will silently abort, as // required. (void)mGetReportsState->mFinishReporting->Callback( mGetReportsState->mFinishReportingData); delete mGetReportsState; mGetReportsState = nullptr; } static void CrashIfRefcountIsZero(nsISupports* aObj) { // This will probably crash if the object's refcount is 0. uint32_t refcnt = NS_ADDREF(aObj); if (refcnt <= 1) { MOZ_CRASH("CrashIfRefcountIsZero: refcount is zero"); } NS_RELEASE(aObj); } nsresult nsMemoryReporterManager::RegisterReporterHelper( nsIMemoryReporter* aReporter, bool aForce, bool aStrong) { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (mIsRegistrationBlocked && !aForce) { return NS_ERROR_FAILURE; } if (mStrongReporters->Contains(aReporter) || mWeakReporters->Contains(aReporter)) { return NS_ERROR_FAILURE; } // If |aStrong| is true, |aReporter| may have a refcnt of 0, so we take // a kung fu death grip before calling PutEntry. Otherwise, if PutEntry // addref'ed and released |aReporter| before finally addref'ing it for // good, it would free aReporter! The kung fu death grip could itself be // problematic if PutEntry didn't addref |aReporter| (because then when the // death grip goes out of scope, we would delete the reporter). In debug // mode, we check that this doesn't happen. // // If |aStrong| is false, we require that |aReporter| have a non-zero // refcnt. // if (aStrong) { nsCOMPtr kungFuDeathGrip = aReporter; mStrongReporters->PutEntry(aReporter); CrashIfRefcountIsZero(aReporter); } else { CrashIfRefcountIsZero(aReporter); nsCOMPtr jsComponent = do_QueryInterface(aReporter); if (jsComponent) { // We cannot allow non-native reporters (WrappedJS), since we'll be // holding onto a raw pointer, which would point to the wrapper, // and that wrapper is likely to go away as soon as this register // call finishes. This would then lead to subsequent crashes in // CollectReports(). return NS_ERROR_XPC_BAD_CONVERT_JS; } mWeakReporters->PutEntry(aReporter); } return NS_OK; } NS_IMETHODIMP nsMemoryReporterManager::RegisterStrongReporter(nsIMemoryReporter* aReporter) { return RegisterReporterHelper(aReporter, /* force = */ false, /* strong = */ true); } NS_IMETHODIMP nsMemoryReporterManager::RegisterWeakReporter(nsIMemoryReporter* aReporter) { return RegisterReporterHelper(aReporter, /* force = */ false, /* strong = */ false); } NS_IMETHODIMP nsMemoryReporterManager::RegisterStrongReporterEvenIfBlocked( nsIMemoryReporter* aReporter) { return RegisterReporterHelper(aReporter, /* force = */ true, /* strong = */ true); } NS_IMETHODIMP nsMemoryReporterManager::UnregisterStrongReporter(nsIMemoryReporter* aReporter) { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); MOZ_ASSERT(!mWeakReporters->Contains(aReporter)); if (mStrongReporters->Contains(aReporter)) { mStrongReporters->RemoveEntry(aReporter); return NS_OK; } return NS_ERROR_FAILURE; } NS_IMETHODIMP nsMemoryReporterManager::UnregisterWeakReporter(nsIMemoryReporter* aReporter) { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); MOZ_ASSERT(!mStrongReporters->Contains(aReporter)); if (mWeakReporters->Contains(aReporter)) { mWeakReporters->RemoveEntry(aReporter); return NS_OK; } return NS_ERROR_FAILURE; } NS_IMETHODIMP nsMemoryReporterManager::BlockRegistrationAndHideExistingReporters() { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (mIsRegistrationBlocked) { return NS_ERROR_FAILURE; } mIsRegistrationBlocked = true; // Hide the existing reporters, saving them for later restoration. MOZ_ASSERT(!mSavedStrongReporters); MOZ_ASSERT(!mSavedWeakReporters); mSavedStrongReporters = mStrongReporters; mSavedWeakReporters = mWeakReporters; mStrongReporters = new StrongReportersTable(); mWeakReporters = new WeakReportersTable(); return NS_OK; } NS_IMETHODIMP nsMemoryReporterManager::UnblockRegistrationAndRestoreOriginalReporters() { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (!mIsRegistrationBlocked) { return NS_ERROR_FAILURE; } // Banish the current reporters, and restore the hidden ones. delete mStrongReporters; delete mWeakReporters; mStrongReporters = mSavedStrongReporters; mWeakReporters = mSavedWeakReporters; mSavedStrongReporters = nullptr; mSavedWeakReporters = nullptr; mIsRegistrationBlocked = false; return NS_OK; } // This is just a wrapper for int64_t that implements nsISupports, so it can be // passed to nsIMemoryReporter::CollectReports. class Int64Wrapper MOZ_FINAL : public nsISupports { public: NS_DECL_ISUPPORTS Int64Wrapper() : mValue(0) { } int64_t mValue; }; NS_IMPL_ISUPPORTS0(Int64Wrapper) class ExplicitCallback MOZ_FINAL : public nsIHandleReportCallback { public: NS_DECL_ISUPPORTS NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath, int32_t aKind, int32_t aUnits, int64_t aAmount, const nsACString& aDescription, nsISupports* aWrappedExplicit) { // Using the "heap-allocated" reporter here instead of // nsMemoryReporterManager.heapAllocated goes against the usual // pattern. But it's for a good reason: in tests, we can easily // create artificial (i.e. deterministic) reporters -- which allows us // to precisely test nsMemoryReporterManager.explicit -- but we can't // do that for distinguished amounts. if (aPath.Equals("heap-allocated") || (aKind == nsIMemoryReporter::KIND_NONHEAP && PromiseFlatCString(aPath).Find("explicit") == 0)) { Int64Wrapper* wrappedInt64 = static_cast(aWrappedExplicit); wrappedInt64->mValue += aAmount; } return NS_OK; } }; NS_IMPL_ISUPPORTS1(ExplicitCallback, nsIHandleReportCallback) NS_IMETHODIMP nsMemoryReporterManager::GetExplicit(int64_t* aAmount) { if (NS_WARN_IF(!aAmount)) { return NS_ERROR_INVALID_ARG; } *aAmount = 0; #ifndef HAVE_JEMALLOC_STATS return NS_ERROR_NOT_AVAILABLE; #else // For each reporter we call CollectReports and filter out the // non-explicit, non-NONHEAP measurements (except for "heap-allocated"). // That's lots of wasted work, and we used to have a GetExplicitNonHeap() // method which did this more efficiently, but it ended up being more // trouble than it was worth. nsRefPtr handleReport = new ExplicitCallback(); nsRefPtr wrappedExplicitSize = new Int64Wrapper(); GetReportsForThisProcess(handleReport, wrappedExplicitSize); *aAmount = wrappedExplicitSize->mValue; return NS_OK; #endif // HAVE_JEMALLOC_STATS } NS_IMETHODIMP nsMemoryReporterManager::GetVsize(int64_t* aVsize) { #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS return VsizeDistinguishedAmount(aVsize); #else *aVsize = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetVsizeMaxContiguous(int64_t* aAmount) { #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER return VsizeMaxContiguousDistinguishedAmount(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetResident(int64_t* aAmount) { #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS return ResidentDistinguishedAmount(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetResidentFast(int64_t* aAmount) { #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS return ResidentFastDistinguishedAmount(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetHeapAllocated(int64_t* aAmount) { #ifdef HAVE_JEMALLOC_STATS jemalloc_stats_t stats; jemalloc_stats(&stats); *aAmount = stats.allocated; return NS_OK; #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } // This has UNITS_PERCENTAGE, so it is multiplied by 100x. NS_IMETHODIMP nsMemoryReporterManager::GetHeapOverheadRatio(int64_t* aAmount) { #ifdef HAVE_JEMALLOC_STATS jemalloc_stats_t stats; jemalloc_stats(&stats); *aAmount = HeapOverheadRatio(&stats); return NS_OK; #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } static nsresult GetInfallibleAmount(InfallibleAmountFn aAmountFn, int64_t* aAmount) { if (aAmountFn) { *aAmount = aAmountFn(); return NS_OK; } *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeGCHeap(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeGCHeap, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeTemporaryPeak(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeTemporaryPeak, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeCompartmentsSystem(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsSystem, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeCompartmentsUser(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsUser, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetImagesContentUsedUncompressed(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mImagesContentUsedUncompressed, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetStorageSQLite(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mStorageSQLite, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetLowMemoryEventsVirtual(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mLowMemoryEventsVirtual, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetLowMemoryEventsPhysical(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mLowMemoryEventsPhysical, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetGhostWindows(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mGhostWindows, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetPageFaultsHard(int64_t* aAmount) { #ifdef HAVE_PAGE_FAULT_REPORTERS return PageFaultsHardDistinguishedAmount(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetHasMozMallocUsableSize(bool* aHas) { void* p = malloc(16); if (!p) { return NS_ERROR_OUT_OF_MEMORY; } size_t usable = moz_malloc_usable_size(p); free(p); *aHas = !!(usable > 0); return NS_OK; } namespace { /** * This runnable lets us implement * nsIMemoryReporterManager::MinimizeMemoryUsage(). We fire a heap-minimize * notification, spin the event loop, and repeat this process a few times. * * When this sequence finishes, we invoke the callback function passed to the * runnable's constructor. */ class MinimizeMemoryUsageRunnable : public nsRunnable { public: MinimizeMemoryUsageRunnable(nsIRunnable* aCallback) : mCallback(aCallback) , mRemainingIters(sNumIters) {} NS_IMETHOD Run() { nsCOMPtr os = services::GetObserverService(); if (!os) { return NS_ERROR_FAILURE; } if (mRemainingIters == 0) { os->NotifyObservers(nullptr, "after-minimize-memory-usage", MOZ_UTF16("MinimizeMemoryUsageRunnable")); if (mCallback) { mCallback->Run(); } return NS_OK; } os->NotifyObservers(nullptr, "memory-pressure", MOZ_UTF16("heap-minimize")); mRemainingIters--; NS_DispatchToMainThread(this); return NS_OK; } private: // Send sNumIters heap-minimize notifications, spinning the event // loop after each notification (see bug 610166 comment 12 for an // explanation), because one notification doesn't cut it. static const uint32_t sNumIters = 3; nsCOMPtr mCallback; uint32_t mRemainingIters; }; } // anonymous namespace NS_IMETHODIMP nsMemoryReporterManager::MinimizeMemoryUsage(nsIRunnable* aCallback) { nsRefPtr runnable = new MinimizeMemoryUsageRunnable(aCallback); return NS_DispatchToMainThread(runnable); } NS_IMETHODIMP nsMemoryReporterManager::SizeOfTab(nsIDOMWindow* aTopWindow, int64_t* aJSObjectsSize, int64_t* aJSStringsSize, int64_t* aJSOtherSize, int64_t* aDomSize, int64_t* aStyleSize, int64_t* aOtherSize, int64_t* aTotalSize, double* aJSMilliseconds, double* aNonJSMilliseconds) { nsCOMPtr global = do_QueryInterface(aTopWindow); nsCOMPtr piWindow = do_QueryInterface(aTopWindow); if (NS_WARN_IF(!global) || NS_WARN_IF(!piWindow)) { return NS_ERROR_FAILURE; } TimeStamp t1 = TimeStamp::Now(); // Measure JS memory consumption (and possibly some non-JS consumption, via // |jsPrivateSize|). size_t jsObjectsSize, jsStringsSize, jsPrivateSize, jsOtherSize; nsresult rv = mSizeOfTabFns.mJS(global->GetGlobalJSObject(), &jsObjectsSize, &jsStringsSize, &jsPrivateSize, &jsOtherSize); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } TimeStamp t2 = TimeStamp::Now(); // Measure non-JS memory consumption. size_t domSize, styleSize, otherSize; mSizeOfTabFns.mNonJS(piWindow, &domSize, &styleSize, &otherSize); TimeStamp t3 = TimeStamp::Now(); *aTotalSize = 0; #define DO(aN, n) { *aN = (n); *aTotalSize += (n); } DO(aJSObjectsSize, jsObjectsSize); DO(aJSStringsSize, jsStringsSize); DO(aJSOtherSize, jsOtherSize); DO(aDomSize, jsPrivateSize + domSize); DO(aStyleSize, styleSize); DO(aOtherSize, otherSize); #undef DO *aJSMilliseconds = (t2 - t1).ToMilliseconds(); *aNonJSMilliseconds = (t3 - t2).ToMilliseconds(); return NS_OK; } namespace mozilla { nsresult RegisterStrongMemoryReporter(nsIMemoryReporter* aReporter) { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); if (!mgr) { return NS_ERROR_FAILURE; } return mgr->RegisterStrongReporter(aReporter); } nsresult RegisterWeakMemoryReporter(nsIMemoryReporter* aReporter) { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); if (!mgr) { return NS_ERROR_FAILURE; } return mgr->RegisterWeakReporter(aReporter); } nsresult UnregisterWeakMemoryReporter(nsIMemoryReporter* aReporter) { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); if (!mgr) { return NS_ERROR_FAILURE; } return mgr->UnregisterWeakReporter(aReporter); } #define GET_MEMORY_REPORTER_MANAGER(mgr) \ nsRefPtr mgr = \ nsMemoryReporterManager::GetOrCreate(); \ if (!mgr) { \ return NS_ERROR_FAILURE; \ } // Macro for generating functions that register distinguished amount functions // with the memory reporter manager. #define DEFINE_REGISTER_DISTINGUISHED_AMOUNT(kind, name) \ nsresult \ Register##name##DistinguishedAmount(kind##AmountFn aAmountFn) \ { \ GET_MEMORY_REPORTER_MANAGER(mgr) \ mgr->mAmountFns.m##name = aAmountFn; \ return NS_OK; \ } #define DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(name) \ nsresult \ Unregister##name##DistinguishedAmount() \ { \ GET_MEMORY_REPORTER_MANAGER(mgr) \ mgr->mAmountFns.m##name = nullptr; \ return NS_OK; \ } DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeGCHeap) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeTemporaryPeak) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsSystem) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsUser) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, ImagesContentUsedUncompressed) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, StorageSQLite) DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(StorageSQLite) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsVirtual) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsPhysical) DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, GhostWindows) #undef DEFINE_REGISTER_DISTINGUISHED_AMOUNT #undef DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT #define DEFINE_REGISTER_SIZE_OF_TAB(name) \ nsresult \ Register##name##SizeOfTab(name##SizeOfTabFn aSizeOfTabFn) \ { \ GET_MEMORY_REPORTER_MANAGER(mgr) \ mgr->mSizeOfTabFns.m##name = aSizeOfTabFn; \ return NS_OK; \ } DEFINE_REGISTER_SIZE_OF_TAB(JS); DEFINE_REGISTER_SIZE_OF_TAB(NonJS); #undef DEFINE_REGISTER_SIZE_OF_TAB #undef GET_MEMORY_REPORTER_MANAGER } #if defined(MOZ_DMD) namespace mozilla { namespace dmd { class DoNothingCallback MOZ_FINAL : public nsIHandleReportCallback { public: NS_DECL_ISUPPORTS NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath, int32_t aKind, int32_t aUnits, int64_t aAmount, const nsACString& aDescription, nsISupports* aData) { // Do nothing; the reporter has already reported to DMD. return NS_OK; } }; NS_IMPL_ISUPPORTS1(DoNothingCallback, nsIHandleReportCallback) void RunReportersForThisProcess() { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); nsRefPtr doNothing = new DoNothingCallback(); mgr->GetReportsForThisProcess(doNothing, nullptr); } } // namespace dmd } // namespace mozilla #endif // defined(MOZ_DMD)