/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * JS math package. */ #include #include "jstypes.h" #include "jsstdint.h" #include "jslong.h" #include "prmjtime.h" #include "jsapi.h" #include "jsatom.h" #include "jsbuiltins.h" #include "jscntxt.h" #include "jsversion.h" #include "jslock.h" #include "jsmath.h" #include "jsnum.h" #include "jslibmath.h" #include "jscompartment.h" using namespace js; #ifndef M_E #define M_E 2.7182818284590452354 #endif #ifndef M_LOG2E #define M_LOG2E 1.4426950408889634074 #endif #ifndef M_LOG10E #define M_LOG10E 0.43429448190325182765 #endif #ifndef M_LN2 #define M_LN2 0.69314718055994530942 #endif #ifndef M_LN10 #define M_LN10 2.30258509299404568402 #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880 #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440 #endif static JSConstDoubleSpec math_constants[] = { {M_E, "E", 0, {0,0,0}}, {M_LOG2E, "LOG2E", 0, {0,0,0}}, {M_LOG10E, "LOG10E", 0, {0,0,0}}, {M_LN2, "LN2", 0, {0,0,0}}, {M_LN10, "LN10", 0, {0,0,0}}, {M_PI, "PI", 0, {0,0,0}}, {M_SQRT2, "SQRT2", 0, {0,0,0}}, {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}}, {0,0,0,{0,0,0}} }; MathCache::MathCache() { memset(table, 0, sizeof(table)); /* See comments in lookup(). */ JS_ASSERT(JSDOUBLE_IS_NEGZERO(-0.0)); JS_ASSERT(!JSDOUBLE_IS_NEGZERO(+0.0)); JS_ASSERT(hash(-0.0) != hash(+0.0)); } Class js_MathClass = { js_Math_str, JSCLASS_HAS_CACHED_PROTO(JSProto_Math), PropertyStub, /* addProperty */ PropertyStub, /* delProperty */ PropertyStub, /* getProperty */ PropertyStub, /* setProperty */ EnumerateStub, ResolveStub, ConvertStub }; JSBool js_math_abs(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; z = fabs(x); vp->setNumber(z); return JS_TRUE; } static JSBool math_acos(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; #if defined(SOLARIS) && defined(__GNUC__) if (x < -1 || 1 < x) { vp->setDouble(js_NaN); return JS_TRUE; } #endif MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(acos, x); vp->setDouble(z); return JS_TRUE; } static JSBool math_asin(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; #if defined(SOLARIS) && defined(__GNUC__) if (x < -1 || 1 < x) { vp->setDouble(js_NaN); return JS_TRUE; } #endif MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(asin, x); vp->setDouble(z); return JS_TRUE; } static JSBool math_atan(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(atan, x); vp->setDouble(z); return JS_TRUE; } static inline jsdouble JS_FASTCALL math_atan2_kernel(jsdouble x, jsdouble y) { #if defined(_MSC_VER) /* * MSVC's atan2 does not yield the result demanded by ECMA when both x * and y are infinite. * - The result is a multiple of pi/4. * - The sign of x determines the sign of the result. * - The sign of y determines the multiplicator, 1 or 3. */ if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) { jsdouble z = js_copysign(M_PI / 4, x); if (y < 0) z *= 3; return z; } #endif #if defined(SOLARIS) && defined(__GNUC__) if (x == 0) { if (JSDOUBLE_IS_NEGZERO(y)) return js_copysign(M_PI, x); if (y == 0) return x; } #endif return atan2(x, y); } static JSBool math_atan2(JSContext *cx, uintN argc, Value *vp) { jsdouble x, y, z; if (argc <= 1) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; if (!ValueToNumber(cx, vp[3], &y)) return JS_FALSE; z = math_atan2_kernel(x, y); vp->setDouble(z); return JS_TRUE; } jsdouble js_math_ceil_impl(jsdouble x) { #ifdef __APPLE__ if (x < 0 && x > -1.0) return js_copysign(0, -1); #endif return ceil(x); } JSBool js_math_ceil(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; z = js_math_ceil_impl(x); vp->setNumber(z); return JS_TRUE; } static JSBool math_cos(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(cos, x); vp->setDouble(z); return JS_TRUE; } static double math_exp_body(double d) { #ifdef _WIN32 if (!JSDOUBLE_IS_NaN(d)) { if (d == js_PositiveInfinity) return js_PositiveInfinity; if (d == js_NegativeInfinity) return 0.0; } #endif return exp(d); } static JSBool math_exp(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(math_exp_body, x); vp->setNumber(z); return JS_TRUE; } jsdouble js_math_floor_impl(jsdouble x) { return floor(x); } JSBool js_math_floor(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; z = js_math_floor_impl(x); vp->setNumber(z); return JS_TRUE; } static JSBool math_log(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; #if defined(SOLARIS) && defined(__GNUC__) if (x < 0) { vp->setDouble(js_NaN); return JS_TRUE; } #endif MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(log, x); vp->setNumber(z); return JS_TRUE; } JSBool js_math_max(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z = js_NegativeInfinity; Value *argv; uintN i; if (argc == 0) { vp->setDouble(js_NegativeInfinity); return JS_TRUE; } argv = vp + 2; for (i = 0; i < argc; i++) { if (!ValueToNumber(cx, argv[i], &x)) return JS_FALSE; if (JSDOUBLE_IS_NaN(x)) { vp->setDouble(js_NaN); return JS_TRUE; } if (x == 0 && x == z) { if (js_copysign(1.0, z) == -1) z = x; } else { z = (x > z) ? x : z; } } vp->setNumber(z); return JS_TRUE; } JSBool js_math_min(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z = js_PositiveInfinity; Value *argv; uintN i; if (argc == 0) { vp->setDouble(js_PositiveInfinity); return JS_TRUE; } argv = vp + 2; for (i = 0; i < argc; i++) { if (!ValueToNumber(cx, argv[i], &x)) return JS_FALSE; if (JSDOUBLE_IS_NaN(x)) { vp->setDouble(js_NaN); return JS_TRUE; } if (x == 0 && x == z) { if (js_copysign(1.0, x) == -1) z = x; } else { z = (x < z) ? x : z; } } vp->setNumber(z); return JS_TRUE; } static jsdouble powi(jsdouble x, jsint y) { jsuint n = (y < 0) ? -y : y; jsdouble m = x; jsdouble p = 1; while (true) { if ((n & 1) != 0) p *= m; n >>= 1; if (n == 0) { if (y < 0) { // Unfortunately, we have to be careful when p has reached // infinity in the computation, because sometimes the higher // internal precision in the pow() implementation would have // given us a finite p. This happens very rarely. jsdouble result = 1.0 / p; return (result == 0 && JSDOUBLE_IS_INFINITE(p)) ? pow(x, static_cast(y)) // Avoid pow(double, int). : result; } return p; } m *= m; } } static JSBool math_pow(JSContext *cx, uintN argc, Value *vp) { jsdouble x, y, z; if (argc <= 1) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; if (!ValueToNumber(cx, vp[3], &y)) return JS_FALSE; /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (JSDOUBLE_IS_FINITE(x) && x != 0.0) { if (y == 0.5) { vp->setNumber(sqrt(x)); return JS_TRUE; } if (y == -0.5) { vp->setNumber(1.0/sqrt(x)); return JS_TRUE; } } /* * Because C99 and ECMA specify different behavior for pow(), * we need to wrap the libm call to make it ECMA compliant. */ if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) { vp->setDouble(js_NaN); return JS_TRUE; } /* pow(x, +-0) is always 1, even for x = NaN. */ if (y == 0) { vp->setInt32(1); return JS_TRUE; } if (vp[3].isInt32()) z = powi(x, vp[3].toInt32()); else z = pow(x, y); vp->setNumber(z); return JS_TRUE; } static const int64 RNG_MULTIPLIER = 0x5DEECE66DLL; static const int64 RNG_ADDEND = 0xBLL; static const int64 RNG_MASK = (1LL << 48) - 1; static const jsdouble RNG_DSCALE = jsdouble(1LL << 53); /* * Math.random() support, lifted from java.util.Random.java. */ static inline void random_setSeed(JSContext *cx, int64 seed) { cx->rngSeed = (seed ^ RNG_MULTIPLIER) & RNG_MASK; } void js_InitRandom(JSContext *cx) { /* * Set the seed from current time. Since we have a RNG per context and we often bring * up several contexts at the same time, we xor in some additional values, namely * the context and its successor. We don't just use the context because it might be * possible to reverse engineer the context pointer if one guesses the time right. */ random_setSeed(cx, (PRMJ_Now() / 1000) ^ int64(cx) ^ int64(cx->link.next)); } static inline uint64 random_next(JSContext *cx, int bits) { uint64 nextseed = cx->rngSeed * RNG_MULTIPLIER; nextseed += RNG_ADDEND; nextseed &= RNG_MASK; cx->rngSeed = nextseed; return nextseed >> (48 - bits); } static inline jsdouble random_nextDouble(JSContext *cx) { return jsdouble((random_next(cx, 26) << 27) + random_next(cx, 27)) / RNG_DSCALE; } static JSBool math_random(JSContext *cx, uintN argc, Value *vp) { jsdouble z = random_nextDouble(cx); vp->setDouble(z); return JS_TRUE; } #if defined _WIN32 && !defined WINCE && _MSC_VER < 1400 /* Try to work around apparent _copysign bustage in VC7.x. */ double js_copysign(double x, double y) { jsdpun xu, yu; xu.d = x; yu.d = y; xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT; xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT; return xu.d; } #endif jsdouble js_math_round_impl(jsdouble x) { return js_copysign(floor(x + 0.5), x); } JSBool js_math_round(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; z = js_copysign(floor(x + 0.5), x); vp->setNumber(z); return JS_TRUE; } static JSBool math_sin(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(sin, x); vp->setDouble(z); return JS_TRUE; } static JSBool math_sqrt(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(sqrt, x); vp->setDouble(z); return JS_TRUE; } static JSBool math_tan(JSContext *cx, uintN argc, Value *vp) { jsdouble x, z; if (argc == 0) { vp->setDouble(js_NaN); return JS_TRUE; } if (!ValueToNumber(cx, vp[2], &x)) return JS_FALSE; MathCache *mathCache = GetMathCache(cx); if (!mathCache) return JS_FALSE; z = mathCache->lookup(tan, x); vp->setDouble(z); return JS_TRUE; } #if JS_HAS_TOSOURCE static JSBool math_toSource(JSContext *cx, uintN argc, Value *vp) { vp->setString(ATOM_TO_STRING(CLASS_ATOM(cx, Math))); return JS_TRUE; } #endif #ifdef JS_TRACER #define MATH_BUILTIN_1(name, cfun) \ static jsdouble FASTCALL name##_tn(MathCache *cache, jsdouble d) { \ return cache->lookup(cfun, d); \ } \ JS_DEFINE_TRCINFO_1(name, \ (2, (static, DOUBLE, name##_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE))) MATH_BUILTIN_1(js_math_abs, fabs) MATH_BUILTIN_1(math_atan, atan) MATH_BUILTIN_1(math_sin, sin) MATH_BUILTIN_1(math_cos, cos) MATH_BUILTIN_1(math_sqrt, sqrt) MATH_BUILTIN_1(math_tan, tan) static jsdouble FASTCALL math_acos_tn(MathCache *cache, jsdouble d) { #if defined(SOLARIS) && defined(__GNUC__) if (d < -1 || 1 < d) { return js_NaN; } #endif return cache->lookup(acos, d); } static jsdouble FASTCALL math_asin_tn(MathCache *cache, jsdouble d) { #if defined(SOLARIS) && defined(__GNUC__) if (d < -1 || 1 < d) { return js_NaN; } #endif return cache->lookup(asin, d); } static jsdouble FASTCALL math_exp_tn(MathCache *cache, jsdouble d) { return cache->lookup(math_exp_body, d); } JS_DEFINE_TRCINFO_1(math_exp, (2, (static, DOUBLE, math_exp_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE))) static jsdouble FASTCALL math_log_tn(MathCache *cache, jsdouble d) { #if defined(SOLARIS) && defined(__GNUC__) if (d < 0) return js_NaN; #endif return cache->lookup(log, d); } static jsdouble FASTCALL math_max_tn(jsdouble d, jsdouble p) { if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p)) return js_NaN; if (p == 0 && p == d) { // Max prefers 0.0 to -0.0. if (js_copysign(1.0, d) == -1) return p; return d; } return (p > d) ? p : d; } static jsdouble FASTCALL math_min_tn(jsdouble d, jsdouble p) { if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p)) return js_NaN; if (p == 0 && p == d) { // Min prefers -0.0 to 0.0. if (js_copysign (1.0, p) == -1) return p; return d; } return (p < d) ? p : d; } static jsdouble FASTCALL math_pow_tn(jsdouble d, jsdouble p) { /* * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) * when x = -0.0, so we have to guard for this. */ if (JSDOUBLE_IS_FINITE(d) && d != 0.0) { if (p == 0.5) return sqrt(d); if (p == -0.5) return 1.0/sqrt(d); } if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0)) return js_NaN; if (p == 0) return 1.0; int32_t i; if (JSDOUBLE_IS_INT32(p, &i)) return powi(d, i); return pow(d, p); } static jsdouble FASTCALL math_random_tn(JSContext *cx) { return random_nextDouble(cx); } static jsdouble FASTCALL math_round_tn(jsdouble x) { return js_math_round_impl(x); } static jsdouble FASTCALL math_ceil_tn(jsdouble x) { return js_math_ceil_impl(x); } static jsdouble FASTCALL math_floor_tn(jsdouble x) { return js_math_floor_impl(x); } JS_DEFINE_TRCINFO_1(math_acos, (2, (static, DOUBLE, math_acos_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(math_asin, (2, (static, DOUBLE, math_asin_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(math_atan2, (2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(js_math_floor, (1, (static, DOUBLE, math_floor_tn, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(math_log, (2, (static, DOUBLE, math_log_tn, MATHCACHE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(js_math_max, (2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(js_math_min, (2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(math_pow, (2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(math_random, (1, (static, DOUBLE, math_random_tn, CONTEXT, 0, nanojit::ACCSET_STORE_ANY))) JS_DEFINE_TRCINFO_1(js_math_round, (1, (static, DOUBLE, math_round_tn, DOUBLE, 1, nanojit::ACCSET_NONE))) JS_DEFINE_TRCINFO_1(js_math_ceil, (1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, nanojit::ACCSET_NONE))) #endif /* JS_TRACER */ static JSFunctionSpec math_static_methods[] = { #if JS_HAS_TOSOURCE JS_FN(js_toSource_str, math_toSource, 0, 0), #endif JS_TN("abs", js_math_abs, 1, 0, &js_math_abs_trcinfo), JS_TN("acos", math_acos, 1, 0, &math_acos_trcinfo), JS_TN("asin", math_asin, 1, 0, &math_asin_trcinfo), JS_TN("atan", math_atan, 1, 0, &math_atan_trcinfo), JS_TN("atan2", math_atan2, 2, 0, &math_atan2_trcinfo), JS_TN("ceil", js_math_ceil, 1, 0, &js_math_ceil_trcinfo), JS_TN("cos", math_cos, 1, 0, &math_cos_trcinfo), JS_TN("exp", math_exp, 1, 0, &math_exp_trcinfo), JS_TN("floor", js_math_floor, 1, 0, &js_math_floor_trcinfo), JS_TN("log", math_log, 1, 0, &math_log_trcinfo), JS_TN("max", js_math_max, 2, 0, &js_math_max_trcinfo), JS_TN("min", js_math_min, 2, 0, &js_math_min_trcinfo), JS_TN("pow", math_pow, 2, 0, &math_pow_trcinfo), JS_TN("random", math_random, 0, 0, &math_random_trcinfo), JS_TN("round", js_math_round, 1, 0, &js_math_round_trcinfo), JS_TN("sin", math_sin, 1, 0, &math_sin_trcinfo), JS_TN("sqrt", math_sqrt, 1, 0, &math_sqrt_trcinfo), JS_TN("tan", math_tan, 1, 0, &math_tan_trcinfo), JS_FS_END }; bool js_IsMathFunction(JSNative native) { for (size_t i=0; math_static_methods[i].name != NULL; i++) { if (native == math_static_methods[i].call) return true; } return false; } JSObject * js_InitMathClass(JSContext *cx, JSObject *obj) { JSObject *Math; Math = JS_NewObject(cx, Jsvalify(&js_MathClass), NULL, obj); if (!Math) return NULL; if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math), JS_PropertyStub, JS_PropertyStub, 0)) { return NULL; } if (!JS_DefineFunctions(cx, Math, math_static_methods)) return NULL; if (!JS_DefineConstDoubles(cx, Math, math_constants)) return NULL; return Math; }