/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ArrayUtils.h" #include #include #include "nsTArray.h" #include "nsAutoPtr.h" #include "nsStringAPI.h" #include "nsDirectoryServiceDefs.h" #include "nsDirectoryServiceUtils.h" #include "nsComponentManagerUtils.h" #include "nsXPCOM.h" #include "nsIFile.h" using namespace mozilla; namespace TestTArray { // Define this so we can use test_basic_array in test_comptr_array template inline bool operator<(const nsCOMPtr& lhs, const nsCOMPtr& rhs) { return lhs.get() < rhs.get(); } //---- template static bool test_basic_array(ElementType *data, uint32_t dataLen, const ElementType& extra) { nsTArray ary; ary.AppendElements(data, dataLen); if (ary.Length() != dataLen) { return false; } if (!(ary == ary)) { return false; } uint32_t i; for (i = 0; i < ary.Length(); ++i) { if (ary[i] != data[i]) return false; } for (i = 0; i < ary.Length(); ++i) { if (ary.SafeElementAt(i, extra) != data[i]) return false; } if (ary.SafeElementAt(ary.Length(), extra) != extra || ary.SafeElementAt(ary.Length() * 10, extra) != extra) return false; // ensure sort results in ascending order ary.Sort(); uint32_t j = 0, k = ary.IndexOfFirstElementGt(extra); if (k != 0 && ary[k-1] == extra) return false; for (i = 0; i < ary.Length(); ++i) { k = ary.IndexOfFirstElementGt(ary[i]); if (k == 0 || ary[k-1] != ary[i]) return false; if (k < j) return false; j = k; } for (i = ary.Length(); --i; ) { if (ary[i] < ary[i - 1]) return false; if (ary[i] == ary[i - 1]) ary.RemoveElementAt(i); } if (!(ary == ary)) { return false; } for (i = 0; i < ary.Length(); ++i) { if (ary.BinaryIndexOf(ary[i]) != i) return false; } if (ary.BinaryIndexOf(extra) != ary.NoIndex) return false; uint32_t oldLen = ary.Length(); ary.RemoveElement(data[dataLen / 2]); if (ary.Length() != (oldLen - 1)) return false; if (!(ary == ary)) return false; uint32_t index = ary.Length() / 2; if (!ary.InsertElementAt(index, extra)) return false; if (!(ary == ary)) return false; if (ary[index] != extra) return false; if (ary.IndexOf(extra) == UINT32_MAX) return false; if (ary.LastIndexOf(extra) == UINT32_MAX) return false; // ensure proper searching if (ary.IndexOf(extra) > ary.LastIndexOf(extra)) return false; if (ary.IndexOf(extra, index) != ary.LastIndexOf(extra, index)) return false; nsTArray copy(ary); if (!(ary == copy)) return false; for (i = 0; i < copy.Length(); ++i) { if (ary[i] != copy[i]) return false; } if (!ary.AppendElements(copy)) return false; uint32_t cap = ary.Capacity(); ary.RemoveElementsAt(copy.Length(), copy.Length()); ary.Compact(); if (ary.Capacity() == cap) return false; ary.Clear(); if (ary.IndexOf(extra) != UINT32_MAX) return false; if (ary.LastIndexOf(extra) != UINT32_MAX) return false; ary.Clear(); if (!ary.IsEmpty() || ary.Elements() == nullptr) return false; if (!(ary == nsTArray())) return false; if (ary == copy) return false; if (ary.SafeElementAt(0, extra) != extra || ary.SafeElementAt(10, extra) != extra) return false; ary = copy; if (!(ary == copy)) return false; for (i = 0; i < copy.Length(); ++i) { if (ary[i] != copy[i]) return false; } if (!ary.InsertElementsAt(0, copy)) return false; if (ary == copy) return false; ary.RemoveElementsAt(0, copy.Length()); for (i = 0; i < copy.Length(); ++i) { if (ary[i] != copy[i]) return false; } // These shouldn't crash! nsTArray empty; ary.AppendElements(reinterpret_cast(0), 0); ary.AppendElements(empty); // See bug 324981 ary.RemoveElement(extra); ary.RemoveElement(extra); return true; } static bool test_int_array() { int data[] = {4,6,8,2,4,1,5,7,3}; return test_basic_array(data, ArrayLength(data), int(14)); } static bool test_int64_array() { int64_t data[] = {4,6,8,2,4,1,5,7,3}; return test_basic_array(data, ArrayLength(data), int64_t(14)); } static bool test_char_array() { char data[] = {4,6,8,2,4,1,5,7,3}; return test_basic_array(data, ArrayLength(data), char(14)); } static bool test_uint32_array() { uint32_t data[] = {4,6,8,2,4,1,5,7,3}; return test_basic_array(data, ArrayLength(data), uint32_t(14)); } //---- class Object { public: Object() : mNum(0) { } Object(const char *str, uint32_t num) : mStr(str), mNum(num) { } Object(const Object& other) : mStr(other.mStr), mNum(other.mNum) { } ~Object() {} Object& operator=(const Object& other) { mStr = other.mStr; mNum = other.mNum; return *this; } bool operator==(const Object& other) const { return mStr == other.mStr && mNum == other.mNum; } bool operator<(const Object& other) const { // sort based on mStr only return mStr.Compare(other.mStr) < 0; } const char *Str() const { return mStr.get(); } uint32_t Num() const { return mNum; } private: nsCString mStr; uint32_t mNum; }; static bool test_object_array() { nsTArray objArray; const char kdata[] = "hello world"; uint32_t i; for (i = 0; i < ArrayLength(kdata); ++i) { char x[] = {kdata[i],'\0'}; if (!objArray.AppendElement(Object(x, i))) return false; } for (i = 0; i < ArrayLength(kdata); ++i) { if (objArray[i].Str()[0] != kdata[i]) return false; if (objArray[i].Num() != i) return false; } objArray.Sort(); const char ksorted[] = "\0 dehllloorw"; for (i = 0; i < ArrayLength(kdata)-1; ++i) { if (objArray[i].Str()[0] != ksorted[i]) return false; } return true; } // nsTArray> is not supported #if 0 static bool test_autoptr_array() { nsTArray< nsAutoPtr > objArray; const char kdata[] = "hello world"; for (uint32_t i = 0; i < ArrayLength(kdata); ++i) { char x[] = {kdata[i],'\0'}; nsAutoPtr obj(new Object(x,i)); if (!objArray.AppendElement(obj)) // XXX does not call copy-constructor for nsAutoPtr!!! return false; if (obj.get() == nullptr) return false; obj.forget(); // the array now owns the reference } for (uint32_t i = 0; i < ArrayLength(kdata); ++i) { if (objArray[i]->Str()[0] != kdata[i]) return false; if (objArray[i]->Num() != i) return false; } return true; } #endif //---- static bool test_string_array() { nsTArray strArray; const char kdata[] = "hello world"; uint32_t i; for (i = 0; i < ArrayLength(kdata); ++i) { nsCString str; str.Assign(kdata[i]); if (!strArray.AppendElement(str)) return false; } for (i = 0; i < ArrayLength(kdata); ++i) { if (strArray[i].CharAt(0) != kdata[i]) return false; } const char kextra[] = "foo bar"; uint32_t oldLen = strArray.Length(); if (!strArray.AppendElement(kextra)) return false; strArray.RemoveElement(kextra); if (oldLen != strArray.Length()) return false; if (strArray.IndexOf("e") != 1) return false; strArray.Sort(); const char ksorted[] = "\0 dehllloorw"; for (i = ArrayLength(kdata); i--; ) { if (strArray[i].CharAt(0) != ksorted[i]) return false; if (i > 0 && strArray[i] == strArray[i - 1]) strArray.RemoveElementAt(i); } for (i = 0; i < strArray.Length(); ++i) { if (strArray.BinaryIndexOf(strArray[i]) != i) return false; } if (strArray.BinaryIndexOf(EmptyCString()) != strArray.NoIndex) return false; nsCString rawArray[MOZ_ARRAY_LENGTH(kdata) - 1]; for (i = 0; i < ArrayLength(rawArray); ++i) rawArray[i].Assign(kdata + i); // substrings of kdata return test_basic_array(rawArray, ArrayLength(rawArray), nsCString("foopy")); } //---- typedef nsCOMPtr FilePointer; class nsFileNameComparator { public: bool Equals(const FilePointer &a, const char *b) const { nsAutoCString name; a->GetNativeLeafName(name); return name.Equals(b); } }; static bool test_comptr_array() { FilePointer tmpDir; NS_GetSpecialDirectory(NS_OS_TEMP_DIR, getter_AddRefs(tmpDir)); if (!tmpDir) return false; const char *kNames[] = { "foo.txt", "bar.html", "baz.gif" }; nsTArray fileArray; uint32_t i; for (i = 0; i < ArrayLength(kNames); ++i) { FilePointer f; tmpDir->Clone(getter_AddRefs(f)); if (!f) return false; if (NS_FAILED(f->AppendNative(nsDependentCString(kNames[i])))) return false; fileArray.AppendElement(f); } if (fileArray.IndexOf(kNames[1], 0, nsFileNameComparator()) != 1) return false; // It's unclear what 'operator<' means for nsCOMPtr, but whatever... return test_basic_array(fileArray.Elements(), fileArray.Length(), tmpDir); } //---- class RefcountedObject { public: RefcountedObject() : rc(0) {} void AddRef() { ++rc; } void Release() { if (--rc == 0) delete this; } ~RefcountedObject() {} private: int32_t rc; }; static bool test_refptr_array() { bool rv = true; nsTArray< nsRefPtr > objArray; RefcountedObject *a = new RefcountedObject(); a->AddRef(); RefcountedObject *b = new RefcountedObject(); b->AddRef(); RefcountedObject *c = new RefcountedObject(); c->AddRef(); objArray.AppendElement(a); objArray.AppendElement(b); objArray.AppendElement(c); if (objArray.IndexOf(b) != 1) rv = false; a->Release(); b->Release(); c->Release(); return rv; } //---- static bool test_ptrarray() { nsTArray ary; if (ary.SafeElementAt(0) != nullptr) return false; if (ary.SafeElementAt(1000) != nullptr) return false; uint32_t a = 10; ary.AppendElement(&a); if (*ary[0] != a) return false; if (*ary.SafeElementAt(0) != a) return false; nsTArray cary; if (cary.SafeElementAt(0) != nullptr) return false; if (cary.SafeElementAt(1000) != nullptr) return false; const uint32_t b = 14; cary.AppendElement(&a); cary.AppendElement(&b); if (*cary[0] != a || *cary[1] != b) return false; if (*cary.SafeElementAt(0) != a || *cary.SafeElementAt(1) != b) return false; return true; } //---- // This test relies too heavily on the existence of DebugGetHeader to be // useful in non-debug builds. #ifdef DEBUG static bool test_autoarray() { uint32_t data[] = {4,6,8,2,4,1,5,7,3}; nsAutoTArray array; void* hdr = array.DebugGetHeader(); if (hdr == nsTArray().DebugGetHeader()) return false; if (hdr == nsAutoTArray().DebugGetHeader()) return false; array.AppendElement(1u); if (hdr != array.DebugGetHeader()) return false; array.RemoveElement(1u); array.AppendElements(data, ArrayLength(data)); if (hdr != array.DebugGetHeader()) return false; array.AppendElement(2u); if (hdr == array.DebugGetHeader()) return false; array.Clear(); array.Compact(); if (hdr != array.DebugGetHeader()) return false; array.AppendElements(data, ArrayLength(data)); if (hdr != array.DebugGetHeader()) return false; nsTArray array2; void* emptyHdr = array2.DebugGetHeader(); array.SwapElements(array2); if (emptyHdr == array.DebugGetHeader()) return false; if (hdr == array2.DebugGetHeader()) return false; uint32_t i; for (i = 0; i < ArrayLength(data); ++i) { if (array2[i] != data[i]) return false; } if (!array.IsEmpty()) return false; array.Compact(); array.AppendElements(data, ArrayLength(data)); uint32_t data3[] = {5, 7, 11}; nsAutoTArray array3; array3.AppendElements(data3, ArrayLength(data3)); array.SwapElements(array3); for (i = 0; i < ArrayLength(data); ++i) { if (array3[i] != data[i]) return false; } for (i = 0; i < ArrayLength(data3); ++i) { if (array[i] != data3[i]) return false; } return true; } #endif //---- // IndexOf used to potentially scan beyond the end of the array. Test for // this incorrect behavior by adding a value (5), removing it, then seeing // if IndexOf finds it. static bool test_indexof() { nsTArray array; array.AppendElement(0); // add and remove the 5 array.AppendElement(5); array.RemoveElementAt(1); // we should not find the 5! return array.IndexOf(5, 1) == array.NoIndex; } //---- template static bool is_heap(const Array& ary, uint32_t len) { uint32_t index = 1; while (index < len) { if (ary[index] > ary[(index - 1) >> 1]) return false; index++; } return true; } static bool test_heap() { const int data[] = {4,6,8,2,4,1,5,7,3}; nsTArray ary; ary.AppendElements(data, ArrayLength(data)); // make a heap and make sure it's a heap ary.MakeHeap(); if (!is_heap(ary, ArrayLength(data))) return false; // pop the root and make sure it's still a heap int root = ary[0]; ary.PopHeap(); if (!is_heap(ary, ArrayLength(data) - 1)) return false; // push the previously poped value back on and make sure it's still a heap ary.PushHeap(root); if (!is_heap(ary, ArrayLength(data))) return false; // make sure the heap looks like what we expect const int expected_data[] = {8,7,5,6,4,1,4,2,3}; uint32_t index; for (index = 0; index < ArrayLength(data); index++) if (ary[index] != expected_data[index]) return false; return true; } //---- // An array |arr| is using its auto buffer if |&arr < arr.Elements()| and // |arr.Elements() - &arr| is small. #define IS_USING_AUTO(arr) \ ((uintptr_t) &(arr) < (uintptr_t) arr.Elements() && \ ((ptrdiff_t)arr.Elements() - (ptrdiff_t)&arr) <= 16) #define CHECK_IS_USING_AUTO(arr) \ do { \ if (!(IS_USING_AUTO(arr))) { \ printf("%s:%d CHECK_IS_USING_AUTO(%s) failed.\n", \ __FILE__, __LINE__, #arr); \ return false; \ } \ } while(0) #define CHECK_NOT_USING_AUTO(arr) \ do { \ if (IS_USING_AUTO(arr)) { \ printf("%s:%d CHECK_NOT_USING_AUTO(%s) failed.\n", \ __FILE__, __LINE__, #arr); \ return false; \ } \ } while(0) #define CHECK_USES_SHARED_EMPTY_HDR(arr) \ do { \ nsTArray _empty; \ if (_empty.Elements() != arr.Elements()) { \ printf("%s:%d CHECK_USES_EMPTY_HDR(%s) failed.\n", \ __FILE__, __LINE__, #arr); \ return false; \ } \ } while(0) #define CHECK_EQ_INT(actual, expected) \ do { \ if ((actual) != (expected)) { \ printf("%s:%d CHECK_EQ_INT(%s=%u, %s=%u) failed.\n", \ __FILE__, __LINE__, #actual, (actual), #expected, (expected)); \ return false; \ } \ } while(0) #define CHECK_ARRAY(arr, data) \ do { \ CHECK_EQ_INT((arr).Length(), (uint32_t)ArrayLength(data)); \ for (uint32_t _i = 0; _i < ArrayLength(data); _i++) { \ CHECK_EQ_INT((arr)[_i], (data)[_i]); \ } \ } while(0) static bool test_swap() { // Test nsTArray::SwapElements. Unfortunately there are many cases. int data1[] = {8, 6, 7, 5}; int data2[] = {3, 0, 9}; // Swap two auto arrays. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); b.AppendElements(data2, ArrayLength(data2)); CHECK_IS_USING_AUTO(a); CHECK_IS_USING_AUTO(b); a.SwapElements(b); CHECK_IS_USING_AUTO(a); CHECK_IS_USING_AUTO(b); CHECK_ARRAY(a, data2); CHECK_ARRAY(b, data1); } // Swap two auto arrays -- one whose data lives on the heap, the other whose // data lives on the stack -- which each fits into the other's auto storage. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); a.RemoveElementAt(3); b.AppendElements(data2, ArrayLength(data2)); // Here and elsewhere, we assert that if we start with an auto array // capable of storing N elements, we store N+1 elements into the array, and // then we remove one element, that array is still not using its auto // buffer. // // This isn't at all required by the TArray API. It would be fine if, when // we shrink back to N elements, the TArray frees its heap storage and goes // back to using its stack storage. But we assert here as a check that the // test does what we expect. If the TArray implementation changes, just // change the failing assertions. CHECK_NOT_USING_AUTO(a); // This check had better not change, though. CHECK_IS_USING_AUTO(b); a.SwapElements(b); CHECK_IS_USING_AUTO(b); CHECK_ARRAY(a, data2); int expectedB[] = {8, 6, 7}; CHECK_ARRAY(b, expectedB); } // Swap two auto arrays which are using heap storage such that one fits into // the other's auto storage, but the other needs to stay on the heap. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); a.RemoveElementAt(3); b.AppendElements(data2, ArrayLength(data2)); b.RemoveElementAt(2); CHECK_NOT_USING_AUTO(a); CHECK_NOT_USING_AUTO(b); a.SwapElements(b); CHECK_NOT_USING_AUTO(b); int expected1[] = {3, 0}; int expected2[] = {8, 6, 7}; CHECK_ARRAY(a, expected1); CHECK_ARRAY(b, expected2); } // Swap two arrays, neither of which fits into the other's auto-storage. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); b.AppendElements(data2, ArrayLength(data2)); a.SwapElements(b); CHECK_ARRAY(a, data2); CHECK_ARRAY(b, data1); } // Swap an empty nsTArray with a non-empty nsAutoTArray. { nsTArray a; nsAutoTArray b; b.AppendElements(data2, ArrayLength(data2)); CHECK_IS_USING_AUTO(b); a.SwapElements(b); CHECK_ARRAY(a, data2); CHECK_EQ_INT(b.Length(), 0); CHECK_IS_USING_AUTO(b); } // Swap two big auto arrays. { const unsigned size = 8192; nsAutoTArray a; nsAutoTArray b; for (unsigned i = 0; i < size; i++) { a.AppendElement(i); b.AppendElement(i + 1); } CHECK_IS_USING_AUTO(a); CHECK_IS_USING_AUTO(b); a.SwapElements(b); CHECK_IS_USING_AUTO(a); CHECK_IS_USING_AUTO(b); CHECK_EQ_INT(a.Length(), size); CHECK_EQ_INT(b.Length(), size); for (unsigned i = 0; i < size; i++) { CHECK_EQ_INT(a[i], i + 1); CHECK_EQ_INT(b[i], i); } } // Swap two arrays and make sure that their capacities don't increase // unnecessarily. { nsTArray a; nsTArray b; b.AppendElements(data2, ArrayLength(data2)); CHECK_EQ_INT(a.Capacity(), 0); uint32_t bCapacity = b.Capacity(); a.SwapElements(b); // Make sure that we didn't increase the capacity of either array. CHECK_ARRAY(a, data2); CHECK_EQ_INT(b.Length(), 0); CHECK_EQ_INT(b.Capacity(), 0); CHECK_EQ_INT(a.Capacity(), bCapacity); } // Swap an auto array with a TArray, then clear the auto array and make sure // it doesn't forget the fact that it has an auto buffer. { nsTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); a.SwapElements(b); CHECK_EQ_INT(a.Length(), 0); CHECK_ARRAY(b, data1); b.Clear(); CHECK_USES_SHARED_EMPTY_HDR(a); CHECK_IS_USING_AUTO(b); } // Same thing as the previous test, but with more auto arrays. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); a.SwapElements(b); CHECK_EQ_INT(a.Length(), 0); CHECK_ARRAY(b, data1); b.Clear(); CHECK_IS_USING_AUTO(a); CHECK_IS_USING_AUTO(b); } // Swap an empty nsTArray and an empty nsAutoTArray. { nsAutoTArray a; nsTArray b; a.SwapElements(b); CHECK_IS_USING_AUTO(a); CHECK_NOT_USING_AUTO(b); CHECK_EQ_INT(a.Length(), 0); CHECK_EQ_INT(b.Length(), 0); } // Swap empty auto array with non-empty nsAutoTArray using malloc'ed storage. // I promise, all these tests have a point. { nsAutoTArray a; nsAutoTArray b; a.AppendElements(data1, ArrayLength(data1)); a.SwapElements(b); CHECK_IS_USING_AUTO(a); CHECK_NOT_USING_AUTO(b); CHECK_ARRAY(b, data1); CHECK_EQ_INT(a.Length(), 0); } return true; } static bool test_fallible() { // Test that FallibleTArray works properly; that is, it never OOMs, but // instead eventually returns false. // // This test is only meaningful on 32-bit systems. On a 64-bit system, we // might never OOM. if (sizeof(void*) > 4) { return true; } // Allocate a bunch of 128MB arrays. Larger allocations will fail on some // platforms without actually hitting OOM. // // 36 * 128MB > 4GB, so we should definitely OOM by the 36th array. const unsigned numArrays = 36; FallibleTArray arrays[numArrays]; for (uint32_t i = 0; i < numArrays; i++) { bool success = arrays[i].SetCapacity(128 * 1024 * 1024); if (!success) { // We got our OOM. Check that it didn't come too early. if (i < 8) { printf("test_fallible: Got OOM on iteration %d. Too early!\n", i); return false; } return true; } } // No OOM? That's...weird. printf("test_fallible: Didn't OOM or crash? nsTArray::SetCapacity " "must be lying.\n"); return false; } static bool test_conversion_operator() { FallibleTArray f; const FallibleTArray fconst; AutoFallibleTArray fauto; const AutoFallibleTArray fautoconst; InfallibleTArray i; const InfallibleTArray iconst; AutoInfallibleTArray iauto; const AutoInfallibleTArray iautoconst; nsTArray t; const nsTArray tconst; nsAutoTArray tauto; const nsAutoTArray tautoconst; #define CHECK_ARRAY_CAST(type) \ do { \ const type& z1 = f; \ if ((void*)&z1 != (void*)&f) return false; \ const type& z2 = fconst; \ if ((void*)&z2 != (void*)&fconst) return false; \ const type& z3 = fauto; \ if ((void*)&z3 != (void*)&fauto) return false; \ const type& z4 = fautoconst; \ if ((void*)&z4 != (void*)&fautoconst) return false; \ const type& z5 = i; \ if ((void*)&z5 != (void*)&i) return false; \ const type& z6 = iconst; \ if ((void*)&z6 != (void*)&iconst) return false; \ const type& z7 = iauto; \ if ((void*)&z7 != (void*)&iauto) return false; \ const type& z8 = iautoconst; \ if ((void*)&z8 != (void*)&iautoconst) return false; \ const type& z9 = t; \ if ((void*)&z9 != (void*)&t) return false; \ const type& z10 = tconst; \ if ((void*)&z10 != (void*)&tconst) return false; \ const type& z11 = tauto; \ if ((void*)&z11 != (void*)&tauto) return false; \ const type& z12 = tautoconst; \ if ((void*)&z12 != (void*)&tautoconst) return false; \ } while (0) CHECK_ARRAY_CAST(FallibleTArray); CHECK_ARRAY_CAST(InfallibleTArray); CHECK_ARRAY_CAST(nsTArray); #undef CHECK_ARRAY_CAST return true; } template struct BufAccessor : public T { void* GetHdr() { return T::mHdr; } }; static bool test_SetLengthAndRetainStorage_no_ctor() { // 1050 because sizeof(int)*1050 is more than a page typically. const int N = 1050; FallibleTArray f; AutoFallibleTArray fauto; InfallibleTArray i; AutoInfallibleTArray iauto; nsTArray t; nsAutoTArray tauto; #define LPAREN ( #define RPAREN ) #define FOR_EACH(pre, post) \ do { \ pre f post; \ pre fauto post; \ pre i post; \ pre iauto post; \ pre t post; \ pre tauto post; \ } while (0) // Setup test arrays. FOR_EACH(;, .SetLength(N)); for (int n = 0; n < N; ++n) { FOR_EACH(;, [n] = n); } void* initial_Hdrs[] = { static_cast >&>(f).GetHdr(), static_cast >&>(fauto).GetHdr(), static_cast >&>(i).GetHdr(), static_cast >&>(iauto).GetHdr(), static_cast >&>(t).GetHdr(), static_cast >&>(tauto).GetHdr(), nullptr }; // SetLengthAndRetainStorage(n), should NOT overwrite memory when T hasn't // a default constructor. FOR_EACH(;, .SetLengthAndRetainStorage(8)); FOR_EACH(;, .SetLengthAndRetainStorage(12)); for (int n = 0; n < 12; ++n) { FOR_EACH(if LPAREN, [n] != n RPAREN return false); } FOR_EACH(;, .SetLengthAndRetainStorage(0)); FOR_EACH(;, .SetLengthAndRetainStorage(N)); for (int n = 0; n < N; ++n) { FOR_EACH(if LPAREN, [n] != n RPAREN return false); } void* current_Hdrs[] = { static_cast >&>(f).GetHdr(), static_cast >&>(fauto).GetHdr(), static_cast >&>(i).GetHdr(), static_cast >&>(iauto).GetHdr(), static_cast >&>(t).GetHdr(), static_cast >&>(tauto).GetHdr(), nullptr }; // SetLengthAndRetainStorage(n) should NOT have reallocated the internal // memory. if (sizeof(initial_Hdrs) != sizeof(current_Hdrs)) return false; for (size_t n = 0; n < sizeof(current_Hdrs) / sizeof(current_Hdrs[0]); ++n) { if (current_Hdrs[n] != initial_Hdrs[n]) { return false; } } #undef FOR_EACH #undef LPAREN #undef RPAREN return true; } //---- typedef bool (*TestFunc)(); #define DECL_TEST(name) { #name, name } static const struct Test { const char* name; TestFunc func; } tests[] = { DECL_TEST(test_int_array), DECL_TEST(test_int64_array), DECL_TEST(test_char_array), DECL_TEST(test_uint32_array), DECL_TEST(test_object_array), DECL_TEST(test_string_array), DECL_TEST(test_comptr_array), DECL_TEST(test_refptr_array), DECL_TEST(test_ptrarray), #ifdef DEBUG DECL_TEST(test_autoarray), #endif DECL_TEST(test_indexof), DECL_TEST(test_heap), DECL_TEST(test_swap), DECL_TEST(test_fallible), DECL_TEST(test_conversion_operator), DECL_TEST(test_SetLengthAndRetainStorage_no_ctor), { nullptr, nullptr } }; } using namespace TestTArray; int main(int argc, char **argv) { int count = 1; if (argc > 1) count = atoi(argv[1]); if (NS_FAILED(NS_InitXPCOM2(nullptr, nullptr, nullptr))) return -1; bool success = true; while (count--) { for (const Test* t = tests; t->name != nullptr; ++t) { bool test_result = t->func(); printf("%25s : %s\n", t->name, test_result ? "SUCCESS" : "FAILURE"); if (!test_result) success = false; } } NS_ShutdownXPCOM(nullptr); return success ? 0 : -1; }