/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=2 sw=2 et tw=78: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * structures that represent things to be painted (ordered in z-order), * used during painting and hit testing */ #ifndef NSDISPLAYLIST_H_ #define NSDISPLAYLIST_H_ #include "nsCOMPtr.h" #include "nsIFrame.h" #include "nsPoint.h" #include "nsRect.h" #include "nsISelection.h" #include "nsCaret.h" #include "plarena.h" #include "Layers.h" #include "nsRegion.h" #include "FrameLayerBuilder.h" #include "nsThemeConstants.h" #include "ImageLayers.h" #include "mozilla/StandardInteger.h" #include class nsIPresShell; class nsIContent; class nsRenderingContext; class nsDeviceContext; class nsDisplayTableItem; class nsDisplayItem; /* * An nsIFrame can have many different visual parts. For example an image frame * can have a background, border, and outline, the image itself, and a * translucent selection overlay. In general these parts can be drawn at * discontiguous z-levels; see CSS2.1 appendix E: * http://www.w3.org/TR/CSS21/zindex.html * * We construct a display list for a frame tree that contains one item * for each visual part. The display list is itself a tree since some items * are containers for other items; however, its structure does not match * the structure of its source frame tree. The display list items are sorted * by z-order. A display list can be used to paint the frames, to determine * which frame is the target of a mouse event, and to determine what areas * need to be repainted when scrolling. The display lists built for each task * may be different for efficiency; in particular some frames need special * display list items only for event handling, and do not create these items * when the display list will be used for painting (the common case). For * example, when painting we avoid creating nsDisplayBackground items for * frames that don't display a visible background, but for event handling * we need those backgrounds because they are not transparent to events. * * We could avoid constructing an explicit display list by traversing the * frame tree multiple times in clever ways. However, reifying the display list * reduces code complexity and reduces the number of times each frame must be * traversed to one, which seems to be good for performance. It also means * we can share code for painting, event handling and scroll analysis. * * Display lists are short-lived; content and frame trees cannot change * between a display list being created and destroyed. Display lists should * not be created during reflow because the frame tree may be in an * inconsistent state (e.g., a frame's stored overflow-area may not include * the bounds of all its children). However, it should be fine to create * a display list while a reflow is pending, before it starts. * * A display list covers the "extended" frame tree; the display list for a frame * tree containing FRAME/IFRAME elements can include frames from the subdocuments. */ // All types are defined in nsDisplayItemTypes.h #ifdef MOZ_DUMP_PAINTING #define NS_DISPLAY_DECL_NAME(n, e) \ virtual const char* Name() { return n; } \ virtual Type GetType() { return e; } #else #define NS_DISPLAY_DECL_NAME(n, e) \ virtual Type GetType() { return e; } #endif /** * This manages a display list and is passed as a parameter to * nsIFrame::BuildDisplayList. * It contains the parameters that don't change from frame to frame and manages * the display list memory using a PLArena. It also establishes the reference * coordinate system for all display list items. Some of the parameters are * available from the prescontext/presshell, but we copy them into the builder * for faster/more convenient access. */ class nsDisplayListBuilder { public: typedef mozilla::FramePropertyDescriptor FramePropertyDescriptor; typedef mozilla::FrameLayerBuilder FrameLayerBuilder; typedef nsIWidget::ThemeGeometry ThemeGeometry; /** * @param aReferenceFrame the frame at the root of the subtree; its origin * is the origin of the reference coordinate system for this display list * @param aIsForEvents true if we're creating this list in order to * determine which frame is under the mouse position * @param aBuildCaret whether or not we should include the caret in any * display lists that we make. */ enum Mode { PAINTING, EVENT_DELIVERY, PLUGIN_GEOMETRY, OTHER }; nsDisplayListBuilder(nsIFrame* aReferenceFrame, Mode aMode, bool aBuildCaret); ~nsDisplayListBuilder(); /** * @return true if the display is being built in order to determine which * frame is under the mouse position. */ bool IsForEventDelivery() { return mMode == EVENT_DELIVERY; } /** * @return true if the display list is being built to compute geometry * for plugins. */ bool IsForPluginGeometry() { return mMode == PLUGIN_GEOMETRY; } /** * @return true if the display list is being built for painting. */ bool IsForPainting() { return mMode == PAINTING; } /** * @return true if "painting is suppressed" during page load and we * should paint only the background of the document. */ bool IsBackgroundOnly() { NS_ASSERTION(mPresShellStates.Length() > 0, "don't call this if we're not in a presshell"); return CurrentPresShellState()->mIsBackgroundOnly; } /** * @return true if the currently active BuildDisplayList call is being * applied to a frame at the root of a pseudo stacking context. A pseudo * stacking context is either a real stacking context or basically what * CSS2.1 appendix E refers to with "treat the element as if it created * a new stacking context */ bool IsAtRootOfPseudoStackingContext() { return mIsAtRootOfPseudoStackingContext; } /** * @return the selection that painting should be restricted to (or nsnull * in the normal unrestricted case) */ nsISelection* GetBoundingSelection() { return mBoundingSelection; } /** * @return the root of the display list's frame (sub)tree, whose origin * establishes the coordinate system for the display list */ nsIFrame* ReferenceFrame() const { return mReferenceFrame; } /** * @return a point pt such that adding pt to a coordinate relative to aFrame * makes it relative to ReferenceFrame(), i.e., returns * aFrame->GetOffsetToCrossDoc(ReferenceFrame()). The returned point is in * the appunits of aFrame. It may be optimized to be faster than * aFrame->GetOffsetToCrossDoc(ReferenceFrame()) (but currently isn't). */ const nsPoint& ToReferenceFrame(const nsIFrame* aFrame) { if (aFrame != mCachedOffsetFrame) { mCachedOffsetFrame = aFrame; mCachedOffset = aFrame->GetOffsetToCrossDoc(ReferenceFrame()); } return mCachedOffset; } /** * When building the display list, the scrollframe aFrame will be "ignored" * for the purposes of clipping, and its scrollbars will be hidden. We use * this to allow RenderOffscreen to render a whole document without beign * clipped by the viewport or drawing the viewport scrollbars. */ void SetIgnoreScrollFrame(nsIFrame* aFrame) { mIgnoreScrollFrame = aFrame; } /** * Get the scrollframe to ignore, if any. */ nsIFrame* GetIgnoreScrollFrame() { return mIgnoreScrollFrame; } /** * Calling this setter makes us include all out-of-flow descendant * frames in the display list, wherever they may be positioned (even * outside the dirty rects). */ void SetIncludeAllOutOfFlows() { mIncludeAllOutOfFlows = true; } bool GetIncludeAllOutOfFlows() const { return mIncludeAllOutOfFlows; } /** * Calling this setter makes us exclude all leaf frames that aren't * selected. */ void SetSelectedFramesOnly() { mSelectedFramesOnly = true; } bool GetSelectedFramesOnly() { return mSelectedFramesOnly; } /** * Calling this setter makes us compute accurate visible regions at the cost * of performance if regions get very complex. */ void SetAccurateVisibleRegions() { mAccurateVisibleRegions = true; } bool GetAccurateVisibleRegions() { return mAccurateVisibleRegions; } /** * Allows callers to selectively override the regular paint suppression checks, * so that methods like GetFrameForPoint work when painting is suppressed. */ void IgnorePaintSuppression() { mIgnoreSuppression = true; } /** * @return Returns if this builder will ignore paint suppression. */ bool IsIgnoringPaintSuppression() { return mIgnoreSuppression; } /** * @return Returns if this builder had to ignore painting suppression on some * document when building the display list. */ bool GetHadToIgnorePaintSuppression() { return mHadToIgnoreSuppression; } /** * Call this if we're doing normal painting to the window. */ void SetPaintingToWindow(bool aToWindow) { mIsPaintingToWindow = aToWindow; } bool IsPaintingToWindow() const { return mIsPaintingToWindow; } /** * Display the caret if needed. */ nsresult DisplayCaret(nsIFrame* aFrame, const nsRect& aDirtyRect, nsDisplayList* aList) { nsIFrame* frame = GetCaretFrame(); if (aFrame != frame) { return NS_OK; } return frame->DisplayCaret(this, aDirtyRect, aList); } /** * Get the frame that the caret is supposed to draw in. * If the caret is currently invisible, this will be null. */ nsIFrame* GetCaretFrame() { return CurrentPresShellState()->mCaretFrame; } /** * Get the caret associated with the current presshell. */ nsCaret* GetCaret(); /** * Notify the display list builder that we're entering a presshell. * aReferenceFrame should be a frame in the new presshell and aDirtyRect * should be the current dirty rect in aReferenceFrame's coordinate space. */ void EnterPresShell(nsIFrame* aReferenceFrame, const nsRect& aDirtyRect); /** * Notify the display list builder that we're leaving a presshell. */ void LeavePresShell(nsIFrame* aReferenceFrame, const nsRect& aDirtyRect); /** * Returns true if we're currently building a display list that's * directly or indirectly under an nsDisplayTransform or SVG * foreignObject. */ bool IsInTransform() { return mInTransform; } /** * Indicate whether or not we're directly or indirectly under and * nsDisplayTransform or SVG foreignObject. */ void SetInTransform(bool aInTransform) { mInTransform = aInTransform; } /** * Call this if using display port for scrolling. */ void SetDisplayPort(const nsRect& aDisplayPort); const nsRect* GetDisplayPort() { return mHasDisplayPort ? &mDisplayPort : nsnull; } /** * Call this if ReferenceFrame() is a viewport frame with fixed-position * children, or when we construct an item which will return true from * ShouldFixToViewport() */ void SetHasFixedItems() { mHasFixedItems = true; } bool GetHasFixedItems() { return mHasFixedItems; } /** * @return true if images have been set to decode synchronously. */ bool ShouldSyncDecodeImages() { return mSyncDecodeImages; } /** * Indicates whether we should synchronously decode images. If true, we decode * and draw whatever image data has been loaded. If false, we just draw * whatever has already been decoded. */ void SetSyncDecodeImages(bool aSyncDecodeImages) { mSyncDecodeImages = aSyncDecodeImages; } /** * Helper method to generate background painting flags based on the * information available in the display list builder. Currently only * accounts for mSyncDecodeImages. */ PRUint32 GetBackgroundPaintFlags(); /** * Subtracts aRegion from *aVisibleRegion. We avoid letting * aVisibleRegion become overcomplex by simplifying it if necessary --- * unless mAccurateVisibleRegions is set, in which case we let it * get arbitrarily complex. */ void SubtractFromVisibleRegion(nsRegion* aVisibleRegion, const nsRegion& aRegion); /** * Mark the frames in aFrames to be displayed if they intersect aDirtyRect * (which is relative to aDirtyFrame). If the frames have placeholders * that might not be displayed, we mark the placeholders and their ancestors * to ensure that display list construction descends into them * anyway. nsDisplayListBuilder will take care of unmarking them when it is * destroyed. */ void MarkFramesForDisplayList(nsIFrame* aDirtyFrame, const nsFrameList& aFrames, const nsRect& aDirtyRect); /** * Mark all child frames that Preserve3D() as needing display. * Because these frames include transforms set on their parent, dirty rects * for intermediate frames may be empty, yet child frames could still be visible. */ void MarkPreserve3DFramesForDisplayList(nsIFrame* aDirtyFrame, const nsRect& aDirtyRect); /** * Get the area of the final transparent region. */ const nsRegion* GetFinalTransparentRegion() { return mFinalTransparentRegion; } /** * Record the area of the final transparent region after all visibility * calculations were performed. */ void SetFinalTransparentRegion(const nsRegion& aFinalTransparentRegion) { mFinalTransparentRegion = &aFinalTransparentRegion; } const nsTArray& GetThemeGeometries() { return mThemeGeometries; } /** * Returns true if we need to descend into this frame when building * the display list, even though it doesn't intersect the dirty * rect, because it may have out-of-flows that do so. */ bool ShouldDescendIntoFrame(nsIFrame* aFrame) const { return (aFrame->GetStateBits() & NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO) || GetIncludeAllOutOfFlows(); } /** * Notifies the builder that a particular themed widget exists * at the given rectangle within the currently built display list. * For certain appearance values (currently only * NS_THEME_MOZ_MAC_UNIFIED_TOOLBAR and NS_THEME_TOOLBAR) this gets * called during every display list construction, for every themed widget of * the right type within the display list, except for themed widgets which * are transformed or have effects applied to them (e.g. CSS opacity or * filters). * * @param aWidgetType the -moz-appearance value for the themed widget * @param aRect the device-pixel rect relative to the widget's displayRoot * for the themed widget */ void RegisterThemeGeometry(PRUint8 aWidgetType, const nsIntRect& aRect) { if (mIsPaintingToWindow && mPresShellStates.Length() == 1) { ThemeGeometry geometry(aWidgetType, aRect); mThemeGeometries.AppendElement(geometry); } } /** * Allocate memory in our arena. It will only be freed when this display list * builder is destroyed. This memory holds nsDisplayItems. nsDisplayItem * destructors are called as soon as the item is no longer used. */ void* Allocate(size_t aSize); /** * A helper class to temporarily set the value of * mIsAtRootOfPseudoStackingContext and temporarily update * mCachedOffsetFrame/mCachedOffset from a frame to its child. */ class AutoBuildingDisplayList; friend class AutoBuildingDisplayList; class AutoBuildingDisplayList { public: AutoBuildingDisplayList(nsDisplayListBuilder* aBuilder, bool aIsRoot) : mBuilder(aBuilder), mPrevCachedOffsetFrame(aBuilder->mCachedOffsetFrame), mPrevCachedOffset(aBuilder->mCachedOffset), mPrevIsAtRootOfPseudoStackingContext(aBuilder->mIsAtRootOfPseudoStackingContext) { aBuilder->mIsAtRootOfPseudoStackingContext = aIsRoot; } AutoBuildingDisplayList(nsDisplayListBuilder* aBuilder, nsIFrame* aForChild, bool aIsRoot) : mBuilder(aBuilder), mPrevCachedOffsetFrame(aBuilder->mCachedOffsetFrame), mPrevCachedOffset(aBuilder->mCachedOffset), mPrevIsAtRootOfPseudoStackingContext(aBuilder->mIsAtRootOfPseudoStackingContext) { if (mPrevCachedOffsetFrame == aForChild->GetParent()) { aBuilder->mCachedOffset += aForChild->GetPosition(); } else { aBuilder->mCachedOffset = aForChild->GetOffsetToCrossDoc(aBuilder->ReferenceFrame()); } aBuilder->mCachedOffsetFrame = aForChild; aBuilder->mIsAtRootOfPseudoStackingContext = aIsRoot; } ~AutoBuildingDisplayList() { mBuilder->mCachedOffsetFrame = mPrevCachedOffsetFrame; mBuilder->mCachedOffset = mPrevCachedOffset; mBuilder->mIsAtRootOfPseudoStackingContext = mPrevIsAtRootOfPseudoStackingContext; } private: nsDisplayListBuilder* mBuilder; const nsIFrame* mPrevCachedOffsetFrame; nsPoint mPrevCachedOffset; bool mPrevIsAtRootOfPseudoStackingContext; }; /** * A helper class to temporarily set the value of mInTransform. */ class AutoInTransformSetter; friend class AutoInTransformSetter; class AutoInTransformSetter { public: AutoInTransformSetter(nsDisplayListBuilder* aBuilder, bool aInTransform) : mBuilder(aBuilder), mOldValue(aBuilder->mInTransform) { aBuilder->mInTransform = aInTransform; } ~AutoInTransformSetter() { mBuilder->mInTransform = mOldValue; } private: nsDisplayListBuilder* mBuilder; bool mOldValue; }; // Helpers for tables nsDisplayTableItem* GetCurrentTableItem() { return mCurrentTableItem; } void SetCurrentTableItem(nsDisplayTableItem* aTableItem) { mCurrentTableItem = aTableItem; } NS_DECLARE_FRAME_PROPERTY(OutOfFlowDirtyRectProperty, nsIFrame::DestroyRect) NS_DECLARE_FRAME_PROPERTY(Preserve3DDirtyRectProperty, nsIFrame::DestroyRect) nsPresContext* CurrentPresContext() { return CurrentPresShellState()->mPresShell->GetPresContext(); } /** * Accumulates the bounds of box frames that have moz-appearance * -moz-win-exclude-glass style. Used in setting glass margins on * Windows. */ void AddExcludedGlassRegion(nsRect &bounds) { mExcludedGlassRegion.Or(mExcludedGlassRegion, bounds); } const nsRegion& GetExcludedGlassRegion() { return mExcludedGlassRegion; } void SetGlassDisplayItem(nsDisplayItem* aItem) { if (mGlassDisplayItem) { // Web pages or extensions could trigger this by using // -moz-appearance:win-borderless-glass etc on their own elements. // Keep the first one, since that will be the background of the root // window NS_WARNING("Multiple glass backgrounds found?"); } else { mGlassDisplayItem = aItem; } } bool NeedToForceTransparentSurfaceForItem(nsDisplayItem* aItem) { return aItem == mGlassDisplayItem; } private: void MarkOutOfFlowFrameForDisplay(nsIFrame* aDirtyFrame, nsIFrame* aFrame, const nsRect& aDirtyRect); struct PresShellState { nsIPresShell* mPresShell; nsIFrame* mCaretFrame; PRUint32 mFirstFrameMarkedForDisplay; bool mIsBackgroundOnly; }; PresShellState* CurrentPresShellState() { NS_ASSERTION(mPresShellStates.Length() > 0, "Someone forgot to enter a presshell"); return &mPresShellStates[mPresShellStates.Length() - 1]; } nsIFrame* mReferenceFrame; nsIFrame* mIgnoreScrollFrame; PLArenaPool mPool; nsCOMPtr mBoundingSelection; nsAutoTArray mPresShellStates; nsAutoTArray mFramesMarkedForDisplay; nsAutoTArray mThemeGeometries; nsDisplayTableItem* mCurrentTableItem; const nsRegion* mFinalTransparentRegion; // When mCachedOffsetFrame is non-null, mCachedOffset is the offset from // mCachedOffsetFrame to mReferenceFrame. const nsIFrame* mCachedOffsetFrame; nsPoint mCachedOffset; nsRect mDisplayPort; nsRegion mExcludedGlassRegion; // The display item for the Windows window glass background, if any nsDisplayItem* mGlassDisplayItem; Mode mMode; bool mBuildCaret; bool mIgnoreSuppression; bool mHadToIgnoreSuppression; bool mIsAtRootOfPseudoStackingContext; bool mIncludeAllOutOfFlows; bool mSelectedFramesOnly; bool mAccurateVisibleRegions; // True when we're building a display list that's directly or indirectly // under an nsDisplayTransform bool mInTransform; bool mSyncDecodeImages; bool mIsPaintingToWindow; bool mHasDisplayPort; bool mHasFixedItems; }; class nsDisplayItem; class nsDisplayList; /** * nsDisplayItems are put in singly-linked lists rooted in an nsDisplayList. * nsDisplayItemLink holds the link. The lists are linked from lowest to * highest in z-order. */ class nsDisplayItemLink { // This is never instantiated directly, so no need to count constructors and // destructors. protected: nsDisplayItemLink() : mAbove(nsnull) {} nsDisplayItem* mAbove; friend class nsDisplayList; }; /** * This is the unit of rendering and event testing. Each instance of this * class represents an entity that can be drawn on the screen, e.g., a * frame's CSS background, or a frame's text string. * * nsDisplayListItems can be containers --- i.e., they can perform hit testing * and painting by recursively traversing a list of child items. * * These are arena-allocated during display list construction. A typical * subclass would just have a frame pointer, so its object would be just three * pointers (vtable, next-item, frame). * * Display items belong to a list at all times (except temporarily as they * move from one list to another). */ class nsDisplayItem : public nsDisplayItemLink { public: typedef mozilla::FrameLayerBuilder::ContainerParameters ContainerParameters; typedef mozilla::layers::FrameMetrics::ViewID ViewID; typedef mozilla::layers::Layer Layer; typedef mozilla::layers::LayerManager LayerManager; typedef mozilla::LayerState LayerState; // This is never instantiated directly (it has pure virtual methods), so no // need to count constructors and destructors. nsDisplayItem(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : mFrame(aFrame) #ifdef MOZ_DUMP_PAINTING , mPainted(false) #endif { if (aFrame) { mToReferenceFrame = aBuilder->ToReferenceFrame(aFrame); } } nsDisplayItem(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsPoint& aToReferenceFrame) : mFrame(aFrame) , mToReferenceFrame(aToReferenceFrame) #ifdef MOZ_DUMP_PAINTING , mPainted(false) #endif { } virtual ~nsDisplayItem() {} void* operator new(size_t aSize, nsDisplayListBuilder* aBuilder) CPP_THROW_NEW { return aBuilder->Allocate(aSize); } // Contains all the type integers for each display list item type #include "nsDisplayItemTypes.h" struct HitTestState { typedef nsTArray ShadowArray; HitTestState(ShadowArray* aShadows = NULL) : mShadows(aShadows) { } ~HitTestState() { NS_ASSERTION(mItemBuffer.Length() == 0, "mItemBuffer should have been cleared"); } nsAutoTArray mItemBuffer; // It is sometimes useful to hit test for frames that are not in this // process. Display items may append IDs into this array if it is // non-null. ShadowArray* mShadows; }; /** * Some consecutive items should be rendered together as a unit, e.g., * outlines for the same element. For this, we need a way for items to * identify their type. We use the type for other purposes too. */ virtual Type GetType() = 0; /** * If this returns a non-zero value, then pairing this with the * GetUnderlyingFrame() pointer gives a key that uniquely identifies * this display item in the display item tree. * This will only return a zero value for items which wrap display lists * and do not create a CSS stacking context, therefore requiring * display items to be individually wrapped --- currently nsDisplayClip * and nsDisplayClipRoundedRect only. */ virtual PRUint32 GetPerFrameKey() { return PRUint32(GetType()); } /** * This is called after we've constructed a display list for event handling. * When this is called, we've already ensured that aRect intersects the * item's bounds. * * @param aRect the point or rect being tested, relative to the reference * frame. If the width and height are both 1 app unit, it indicates we're * hit testing a point, not a rect. * @param aState must point to a HitTestState. If you don't have one, * just create one with the default constructor and pass it in. * @param aOutFrames each item appends the frame(s) in this display item that * the rect is considered over (if any) to aOutFrames. */ virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames) {} /** * @return the frame that this display item is based on. This is used to sort * items by z-index and content order and for some other uses. For some items * that wrap item lists, this could return nsnull because there is no single * underlying frame; for leaf items it will never return nsnull. */ inline nsIFrame* GetUnderlyingFrame() const { return mFrame; } /** * The default bounds is the frame border rect. * @param aSnap *aSnap is set to true if the returned rect will be * snapped to nearest device pixel edges during actual drawing. * It might be set to false and snap anyway, so code computing the set of * pixels affected by this display item needs to round outwards to pixel * boundaries when *aSnap is set to false. * @return a rectangle relative to aBuilder->ReferenceFrame() that * contains the area drawn by this display item */ virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; return nsRect(ToReferenceFrame(), GetUnderlyingFrame()->GetSize()); } /** * @param aSnap set to true if the edges of the rectangles of the opaque * region would be snapped to device pixels when drawing * @return a region of the item that is opaque --- that is, every pixel * that is visible (according to ComputeVisibility) is painted with an opaque * color. This is useful for determining when one piece * of content completely obscures another so that we can do occlusion * culling. */ virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; return nsRegion(); } /** * If this returns true, then aColor is set to the uniform color * @return true if the item is guaranteed to paint every pixel in its * bounds with the same (possibly translucent) color */ virtual bool IsUniform(nsDisplayListBuilder* aBuilder, nscolor* aColor) { return false; } /** * @return false if the painting performed by the item is invariant * when the item's underlying frame is moved relative to aFrame. * In other words, if you render the item at locations P and P', the rendering * only differs by the translation. * It return true for all wrapped lists. */ virtual bool IsVaryingRelativeToMovingFrame(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) { return false; } /** * @return true if the contents of this item are rendered fixed relative * to the nearest viewport *and* they cover the viewport's scrollport. * Only return true if the contents actually vary when scrolling in the viewport. */ virtual bool ShouldFixToViewport(nsDisplayListBuilder* aBuilder) { return false; } /** * @return LAYER_NONE if BuildLayer will return null. In this case * there is no layer for the item, and Paint should be called instead * to paint the content using Thebes. * Return LAYER_INACTIVE if there is a layer --- BuildLayer will * not return null (unless there's an error) --- but the layer contents * are not changing frequently. In this case it makes sense to composite * the layer into a ThebesLayer with other content, so we don't have to * recomposite it every time we paint. * Note: GetLayerState is only allowed to return LAYER_INACTIVE if all * descendant display items returned LAYER_INACTIVE or LAYER_NONE. Also, * all descendant display item frames must have an active scrolled root * that's either the same as this item's frame's active scrolled root, or * a descendant of this item's frame. This ensures that the entire * set of display items can be collapsed onto a single ThebesLayer. * Return LAYER_ACTIVE if the layer is active, that is, its contents are * changing frequently. In this case it makes sense to keep the layer * as a separate buffer in VRAM and composite it into the destination * every time we paint. */ virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters) { return mozilla::LAYER_NONE; } /** * Actually paint this item to some rendering context. * Content outside mVisibleRect need not be painted. * aCtx must be set up as for nsDisplayList::Paint. */ virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) {} #ifdef MOZ_DUMP_PAINTING /** * Mark this display item as being painted via FrameLayerBuilder::DrawThebesLayer. */ bool Painted() { return mPainted; } /** * Check if this display item has been painted. */ void SetPainted() { mPainted = true; } #endif /** * Get the layer drawn by this display item. Call this only if * GetLayerState() returns something other than LAYER_NONE. * If GetLayerState returned LAYER_NONE then Paint will be called * instead. * This is called while aManager is in the construction phase. * * The caller (nsDisplayList) is responsible for setting the visible * region of the layer. * * @param aContainerParameters should be passed to * FrameLayerBuilder::BuildContainerLayerFor if a ContainerLayer is * constructed. */ virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters) { return nsnull; } /** * On entry, aVisibleRegion contains the region (relative to ReferenceFrame()) * which may be visible. If the display item opaquely covers an area, it * can remove that area from aVisibleRegion before returning. * nsDisplayList::ComputeVisibility automatically subtracts the region * returned by GetOpaqueRegion, and automatically removes items whose bounds * do not intersect the visible area, so implementations of * nsDisplayItem::ComputeVisibility do not need to do these things. * nsDisplayList::ComputeVisibility will already have set mVisibleRect on * this item to the intersection of *aVisibleRegion and this item's bounds. * We rely on that, so this should only be called by * nsDisplayList::ComputeVisibility or nsDisplayItem::RecomputeVisibility. * aAllowVisibleRegionExpansion is a rect where we are allowed to * expand the visible region and is only used for making sure the * background behind a plugin is visible. * * @return true if the item is visible, false if no part of the item * is visible. */ virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion) { return !mVisibleRect.IsEmpty(); } /** * Try to merge with the other item (which is below us in the display * list). This gets used by nsDisplayClip to coalesce clipping operations * (optimization), by nsDisplayOpacity to merge rendering for the same * content element into a single opacity group (correctness), and will be * used by nsDisplayOutline to merge multiple outlines for the same element * (also for correctness). * @return true if the merge was successful and the other item should be deleted */ virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem) { return false; } /** * Appends the underlying frames of all display items that have been * merged into this one (excluding this item's own underlying frame) * to aFrames. */ virtual void GetMergedFrames(nsTArray* aFrames) {} /** * During the visibility computation and after TryMerge, display lists may * return true here to flatten themselves away, removing them. This * flattening is distinctly different from FlattenTo, which occurs before * items are merged together. */ virtual bool ShouldFlattenAway(nsDisplayListBuilder* aBuilder) { return false; } /** * If this is a leaf item we return null, otherwise we return the wrapped * list. */ virtual nsDisplayList* GetList() { return nsnull; } /** * Returns the visible rect. Should only be called after ComputeVisibility * has happened. */ const nsRect& GetVisibleRect() { return mVisibleRect; } #ifdef MOZ_DUMP_PAINTING /** * For debugging and stuff */ virtual const char* Name() = 0; #endif nsDisplayItem* GetAbove() { return mAbove; } /** * Like ComputeVisibility, but does the work that nsDisplayList * does per-item: * -- Intersects GetBounds with aVisibleRegion and puts the result * in mVisibleRect * -- Subtracts bounds from aVisibleRegion if the item is opaque */ bool RecomputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion); /** * Returns the result of aBuilder->ToReferenceFrame(GetUnderlyingFrame()) */ const nsPoint& ToReferenceFrame() const { NS_ASSERTION(mFrame, "No frame?"); return mToReferenceFrame; } /** * Checks if this display item (or any children) contains content that might * be rendered with component alpha (e.g. subpixel antialiasing). Returns the * bounds of the area that needs component alpha, or an empty rect if nothing * in the item does. */ virtual nsRect GetComponentAlphaBounds(nsDisplayListBuilder* aBuilder) { return nsRect(); } /** * Disable usage of component alpha. Currently only relevant for items that have text. */ virtual void DisableComponentAlpha() {} protected: friend class nsDisplayList; nsDisplayItem() { mAbove = nsnull; } nsIFrame* mFrame; // Result of ToReferenceFrame(mFrame), if mFrame is non-null nsPoint mToReferenceFrame; // This is the rectangle that needs to be painted. // nsDisplayList::ComputeVisibility sets this to the visible region // of the item by intersecting the current visible region with the bounds // of the item. Paint implementations can use this to limit their drawing. // Guaranteed to be contained in GetBounds(). nsRect mVisibleRect; #ifdef MOZ_DUMP_PAINTING // True if this frame has been painted. bool mPainted; #endif }; /** * Manages a singly-linked list of display list items. * * mSentinel is the sentinel list value, the first value in the null-terminated * linked list of items. mTop is the last item in the list (whose 'above' * pointer is null). This class has no virtual methods. So list objects are just * two pointers. * * Stepping upward through this list is very fast. Stepping downward is very * slow so we don't support it. The methods that need to step downward * (HitTest(), ComputeVisibility()) internally build a temporary array of all * the items while they do the downward traversal, so overall they're still * linear time. We have optimized for efficient AppendToTop() of both * items and lists, with minimal codesize. AppendToBottom() is efficient too. */ class nsDisplayList { public: typedef mozilla::layers::Layer Layer; typedef mozilla::layers::LayerManager LayerManager; typedef mozilla::layers::ThebesLayer ThebesLayer; /** * Create an empty list. */ nsDisplayList() : mIsOpaque(false) { mTop = &mSentinel; mSentinel.mAbove = nsnull; #ifdef DEBUG mDidComputeVisibility = false; #endif } ~nsDisplayList() { if (mSentinel.mAbove) { NS_WARNING("Nonempty list left over?"); } DeleteAll(); } /** * Append an item to the top of the list. The item must not currently * be in a list and cannot be null. */ void AppendToTop(nsDisplayItem* aItem) { NS_ASSERTION(aItem, "No item to append!"); NS_ASSERTION(!aItem->mAbove, "Already in a list!"); mTop->mAbove = aItem; mTop = aItem; } /** * Append a new item to the top of the list. If the item is null we return * NS_ERROR_OUT_OF_MEMORY. The intended usage is AppendNewToTop(new ...); */ nsresult AppendNewToTop(nsDisplayItem* aItem) { if (!aItem) return NS_ERROR_OUT_OF_MEMORY; AppendToTop(aItem); return NS_OK; } /** * Append a new item to the bottom of the list. If the item is null we return * NS_ERROR_OUT_OF_MEMORY. The intended usage is AppendNewToBottom(new ...); */ nsresult AppendNewToBottom(nsDisplayItem* aItem) { if (!aItem) return NS_ERROR_OUT_OF_MEMORY; AppendToBottom(aItem); return NS_OK; } /** * Append a new item to the bottom of the list. The item must be non-null * and not already in a list. */ void AppendToBottom(nsDisplayItem* aItem) { NS_ASSERTION(aItem, "No item to append!"); NS_ASSERTION(!aItem->mAbove, "Already in a list!"); aItem->mAbove = mSentinel.mAbove; mSentinel.mAbove = aItem; if (mTop == &mSentinel) { mTop = aItem; } } /** * Removes all items from aList and appends them to the top of this list */ void AppendToTop(nsDisplayList* aList) { if (aList->mSentinel.mAbove) { mTop->mAbove = aList->mSentinel.mAbove; mTop = aList->mTop; aList->mTop = &aList->mSentinel; aList->mSentinel.mAbove = nsnull; } } /** * Removes all items from aList and prepends them to the bottom of this list */ void AppendToBottom(nsDisplayList* aList) { if (aList->mSentinel.mAbove) { aList->mTop->mAbove = mSentinel.mAbove; mTop = aList->mTop; mSentinel.mAbove = aList->mSentinel.mAbove; aList->mTop = &aList->mSentinel; aList->mSentinel.mAbove = nsnull; } } /** * Remove an item from the bottom of the list and return it. */ nsDisplayItem* RemoveBottom(); /** * Remove all items from the list and call their destructors. */ void DeleteAll(); /** * @return the item at the top of the list, or null if the list is empty */ nsDisplayItem* GetTop() const { return mTop != &mSentinel ? static_cast(mTop) : nsnull; } /** * @return the item at the bottom of the list, or null if the list is empty */ nsDisplayItem* GetBottom() const { return mSentinel.mAbove; } bool IsEmpty() const { return mTop == &mSentinel; } /** * This is *linear time*! * @return the number of items in the list */ PRUint32 Count() const; /** * Stable sort the list by the z-order of GetUnderlyingFrame() on * each item. 'auto' is counted as zero. Content order is used as the * secondary order. * @param aCommonAncestor a common ancestor of all the content elements * associated with the display items, for speeding up tree order * checks, or nsnull if not known; it's only a hint, if it is not an * ancestor of some elements, then we lose performance but not correctness */ void SortByZOrder(nsDisplayListBuilder* aBuilder, nsIContent* aCommonAncestor); /** * Stable sort the list by the tree order of the content of * GetUnderlyingFrame() on each item. z-index is ignored. * @param aCommonAncestor a common ancestor of all the content elements * associated with the display items, for speeding up tree order * checks, or nsnull if not known; it's only a hint, if it is not an * ancestor of some elements, then we lose performance but not correctness */ void SortByContentOrder(nsDisplayListBuilder* aBuilder, nsIContent* aCommonAncestor); /** * Generic stable sort. Take care, because some of the items might be nsDisplayLists * themselves. * aCmp(item1, item2) should return true if item1 <= item2. We sort the items * into increasing order. */ typedef bool (* SortLEQ)(nsDisplayItem* aItem1, nsDisplayItem* aItem2, void* aClosure); void Sort(nsDisplayListBuilder* aBuilder, SortLEQ aCmp, void* aClosure); /** * Compute visiblity for the items in the list. * We put this logic here so it can be shared by top-level * painting and also display items that maintain child lists. * This is also a good place to put ComputeVisibility-related logic * that must be applied to every display item. In particular, this * sets mVisibleRect on each display item. * This sets mIsOpaque if the entire visible area of this list has * been removed from aVisibleRegion when we return. * This does not remove any items from the list, so we can recompute * visiblity with different regions later (see * FrameLayerBuilder::DrawThebesLayer). * * @param aVisibleRegion the area that is visible, relative to the * reference frame; on return, this contains the area visible under the list. * I.e., opaque contents of this list are subtracted from aVisibleRegion. * @param aListVisibleBounds must be equal to the bounds of the intersection * of aVisibleRegion and GetBounds() for this list. * @return true if any item in the list is visible. */ bool ComputeVisibilityForSublist(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aListVisibleBounds, const nsRect& aAllowVisibleRegionExpansion); /** * As ComputeVisibilityForSublist, but computes visibility for a root * list (a list that does not belong to an nsDisplayItem). * * @param aVisibleRegion the area that is visible */ bool ComputeVisibilityForRoot(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion); /** * Returns true if the visible region output from ComputeVisiblity was * empty, i.e. everything visible in this list is opaque. */ bool IsOpaque() const { NS_ASSERTION(mDidComputeVisibility, "Need to have called ComputeVisibility"); return mIsOpaque; } /** * Returns true if during ComputeVisibility any display item * set the surface to be transparent. */ bool NeedsTransparentSurface() const { NS_ASSERTION(mDidComputeVisibility, "Need to have called ComputeVisibility"); return mForceTransparentSurface; } /** * Paint the list to the rendering context. We assume that (0,0) in aCtx * corresponds to the origin of the reference frame. For best results, * aCtx's current transform should make (0,0) pixel-aligned. The * rectangle in aDirtyRect is painted, which *must* be contained in the * dirty rect used to construct the display list. * * If aFlags contains PAINT_USE_WIDGET_LAYERS and * ShouldUseWidgetLayerManager() is set, then we will paint using * the reference frame's widget's layer manager (and ctx may be null), * otherwise we will use a temporary BasicLayerManager and ctx must * not be null. * * If PAINT_FLUSH_LAYERS is set, we'll force a completely new layer * tree to be created for this paint *and* the next paint. * * If PAINT_EXISTING_TRANSACTION is set, the reference frame's widget's * layer manager has already had BeginTransaction() called on it and * we should not call it again. * * ComputeVisibility must be called before Paint. * * This must only be called on the root display list of the display list * tree. */ enum { PAINT_DEFAULT = 0, PAINT_USE_WIDGET_LAYERS = 0x01, PAINT_FLUSH_LAYERS = 0x02, PAINT_EXISTING_TRANSACTION = 0x04 }; void PaintRoot(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx, PRUint32 aFlags) const; /** * Like PaintRoot, but used for internal display sublists. * aForFrame is the frame that the list is associated with. */ void PaintForFrame(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx, nsIFrame* aForFrame, PRUint32 aFlags) const; /** * Get the bounds. Takes the union of the bounds of all children. */ nsRect GetBounds(nsDisplayListBuilder* aBuilder) const; /** * Find the topmost display item that returns a non-null frame, and return * the frame. */ void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, nsDisplayItem::HitTestState* aState, nsTArray *aOutFrames) const; #ifdef DEBUG bool DidComputeVisibility() const { return mDidComputeVisibility; } #endif private: // This class is only used on stack, so we don't have to worry about leaking // it. Don't let us be heap-allocated! void* operator new(size_t sz) CPP_THROW_NEW; // Utility function used to massage the list during ComputeVisibility. void FlattenTo(nsTArray* aElements); // Utility function used to massage the list during sorting, to rewrite // any wrapper items with null GetUnderlyingFrame void ExplodeAnonymousChildLists(nsDisplayListBuilder* aBuilder); nsDisplayItemLink mSentinel; nsDisplayItemLink* mTop; // This is set by ComputeVisibility nsRect mVisibleRect; // This is set to true by ComputeVisibility if the final visible region // is empty (i.e. everything that was visible is covered by some // opaque content in this list). bool mIsOpaque; // This is set to true by ComputeVisibility if any display item in this // list needs to force the surface containing this list to be transparent. bool mForceTransparentSurface; #ifdef DEBUG bool mDidComputeVisibility; #endif }; /** * This is passed as a parameter to nsIFrame::BuildDisplayList. That method * will put any generated items onto the appropriate list given here. It's * basically just a collection with one list for each separate stacking layer. * The lists themselves are external to this object and thus can be shared * with others. Some of the list pointers may even refer to the same list. */ class nsDisplayListSet { public: /** * @return a list where one should place the border and/or background for * this frame (everything from steps 1 and 2 of CSS 2.1 appendix E) */ nsDisplayList* BorderBackground() const { return mBorderBackground; } /** * @return a list where one should place the borders and/or backgrounds for * block-level in-flow descendants (step 4 of CSS 2.1 appendix E) */ nsDisplayList* BlockBorderBackgrounds() const { return mBlockBorderBackgrounds; } /** * @return a list where one should place descendant floats (step 5 of * CSS 2.1 appendix E) */ nsDisplayList* Floats() const { return mFloats; } /** * @return a list where one should place the (pseudo) stacking contexts * for descendants of this frame (everything from steps 3, 7 and 8 * of CSS 2.1 appendix E) */ nsDisplayList* PositionedDescendants() const { return mPositioned; } /** * @return a list where one should place the outlines * for this frame and its descendants (step 9 of CSS 2.1 appendix E) */ nsDisplayList* Outlines() const { return mOutlines; } /** * @return a list where one should place all other content */ nsDisplayList* Content() const { return mContent; } nsDisplayListSet(nsDisplayList* aBorderBackground, nsDisplayList* aBlockBorderBackgrounds, nsDisplayList* aFloats, nsDisplayList* aContent, nsDisplayList* aPositionedDescendants, nsDisplayList* aOutlines) : mBorderBackground(aBorderBackground), mBlockBorderBackgrounds(aBlockBorderBackgrounds), mFloats(aFloats), mContent(aContent), mPositioned(aPositionedDescendants), mOutlines(aOutlines) { } /** * A copy constructor that lets the caller override the BorderBackground * list. */ nsDisplayListSet(const nsDisplayListSet& aLists, nsDisplayList* aBorderBackground) : mBorderBackground(aBorderBackground), mBlockBorderBackgrounds(aLists.BlockBorderBackgrounds()), mFloats(aLists.Floats()), mContent(aLists.Content()), mPositioned(aLists.PositionedDescendants()), mOutlines(aLists.Outlines()) { } /** * Move all display items in our lists to top of the corresponding lists in the * destination. */ void MoveTo(const nsDisplayListSet& aDestination) const; private: // This class is only used on stack, so we don't have to worry about leaking // it. Don't let us be heap-allocated! void* operator new(size_t sz) CPP_THROW_NEW; protected: nsDisplayList* mBorderBackground; nsDisplayList* mBlockBorderBackgrounds; nsDisplayList* mFloats; nsDisplayList* mContent; nsDisplayList* mPositioned; nsDisplayList* mOutlines; }; /** * A specialization of nsDisplayListSet where the lists are actually internal * to the object, and all distinct. */ struct nsDisplayListCollection : public nsDisplayListSet { nsDisplayListCollection() : nsDisplayListSet(&mLists[0], &mLists[1], &mLists[2], &mLists[3], &mLists[4], &mLists[5]) {} nsDisplayListCollection(nsDisplayList* aBorderBackground) : nsDisplayListSet(aBorderBackground, &mLists[1], &mLists[2], &mLists[3], &mLists[4], &mLists[5]) {} /** * Sort all lists by content order. */ void SortAllByContentOrder(nsDisplayListBuilder* aBuilder, nsIContent* aCommonAncestor) { for (PRInt32 i = 0; i < 6; ++i) { mLists[i].SortByContentOrder(aBuilder, aCommonAncestor); } } private: // This class is only used on stack, so we don't have to worry about leaking // it. Don't let us be heap-allocated! void* operator new(size_t sz) CPP_THROW_NEW; nsDisplayList mLists[6]; }; /** * Use this class to implement not-very-frequently-used display items * that are not opaque, do not receive events, and are bounded by a frame's * border-rect. * * This should not be used for display items which are created frequently, * because each item is one or two pointers bigger than an item from a * custom display item class could be, and fractionally slower. However it does * save code size. We use this for infrequently-used item types. */ class nsDisplayGeneric : public nsDisplayItem { public: typedef void (* PaintCallback)(nsIFrame* aFrame, nsRenderingContext* aCtx, const nsRect& aDirtyRect, nsPoint aFramePt); nsDisplayGeneric(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, PaintCallback aPaint, const char* aName, Type aType) : nsDisplayItem(aBuilder, aFrame), mPaint(aPaint) #ifdef MOZ_DUMP_PAINTING , mName(aName) #endif , mType(aType) { MOZ_COUNT_CTOR(nsDisplayGeneric); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayGeneric() { MOZ_COUNT_DTOR(nsDisplayGeneric); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { mPaint(mFrame, aCtx, mVisibleRect, ToReferenceFrame()); } NS_DISPLAY_DECL_NAME(mName, mType) virtual nsRect GetComponentAlphaBounds(nsDisplayListBuilder* aBuilder) { if (mType == nsDisplayItem::TYPE_HEADER_FOOTER) { bool snap; return GetBounds(aBuilder, &snap); } return nsRect(); } protected: PaintCallback mPaint; #ifdef MOZ_DUMP_PAINTING const char* mName; #endif Type mType; }; #if defined(MOZ_REFLOW_PERF_DSP) && defined(MOZ_REFLOW_PERF) /** * This class implements painting of reflow counts. Ideally, we would simply * make all the frame names be those returned by nsFrame::GetFrameName * (except that tosses in the content tag name!) and support only one color * and eliminate this class altogether in favor of nsDisplayGeneric, but for * the time being we can't pass args to a PaintCallback, so just have a * separate class to do the right thing. Sadly, this alsmo means we need to * hack all leaf frame classes to handle this. * * XXXbz the color thing is a bit of a mess, but 0 basically means "not set" * here... I could switch it all to nscolor, but why bother? */ class nsDisplayReflowCount : public nsDisplayItem { public: nsDisplayReflowCount(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const char* aFrameName, PRUint32 aColor = 0) : nsDisplayItem(aBuilder, aFrame), mFrameName(aFrameName), mColor(aColor) { MOZ_COUNT_CTOR(nsDisplayReflowCount); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayReflowCount() { MOZ_COUNT_DTOR(nsDisplayReflowCount); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { mFrame->PresContext()->PresShell()->PaintCount(mFrameName, aCtx, mFrame->PresContext(), mFrame, ToReferenceFrame(), mColor); } NS_DISPLAY_DECL_NAME("nsDisplayReflowCount", TYPE_REFLOW_COUNT) protected: const char* mFrameName; nscolor mColor; }; #define DO_GLOBAL_REFLOW_COUNT_DSP(_name) \ PR_BEGIN_MACRO \ if (!aBuilder->IsBackgroundOnly() && !aBuilder->IsForEventDelivery() && \ PresContext()->PresShell()->IsPaintingFrameCounts()) { \ nsresult _rv = \ aLists.Outlines()->AppendNewToTop( \ new (aBuilder) nsDisplayReflowCount(aBuilder, this, _name)); \ NS_ENSURE_SUCCESS(_rv, _rv); \ } \ PR_END_MACRO #define DO_GLOBAL_REFLOW_COUNT_DSP_COLOR(_name, _color) \ PR_BEGIN_MACRO \ if (!aBuilder->IsBackgroundOnly() && !aBuilder->IsForEventDelivery() && \ PresContext()->PresShell()->IsPaintingFrameCounts()) { \ nsresult _rv = \ aLists.Outlines()->AppendNewToTop( \ new (aBuilder) nsDisplayReflowCount(aBuilder, this, _name, _color)); \ NS_ENSURE_SUCCESS(_rv, _rv); \ } \ PR_END_MACRO /* Macro to be used for classes that don't actually implement BuildDisplayList */ #define DECL_DO_GLOBAL_REFLOW_COUNT_DSP(_class, _super) \ NS_IMETHOD BuildDisplayList(nsDisplayListBuilder* aBuilder, \ const nsRect& aDirtyRect, \ const nsDisplayListSet& aLists) { \ DO_GLOBAL_REFLOW_COUNT_DSP(#_class); \ return _super::BuildDisplayList(aBuilder, aDirtyRect, aLists); \ } #else // MOZ_REFLOW_PERF_DSP && MOZ_REFLOW_PERF #define DO_GLOBAL_REFLOW_COUNT_DSP(_name) #define DO_GLOBAL_REFLOW_COUNT_DSP_COLOR(_name, _color) #define DECL_DO_GLOBAL_REFLOW_COUNT_DSP(_class, _super) #endif // MOZ_REFLOW_PERF_DSP && MOZ_REFLOW_PERF class nsDisplayCaret : public nsDisplayItem { public: nsDisplayCaret(nsDisplayListBuilder* aBuilder, nsIFrame* aCaretFrame, nsCaret *aCaret) : nsDisplayItem(aBuilder, aCaretFrame), mCaret(aCaret) { MOZ_COUNT_CTOR(nsDisplayCaret); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayCaret() { MOZ_COUNT_DTOR(nsDisplayCaret); } #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; // The caret returns a rect in the coordinates of mFrame. return mCaret->GetCaretRect() + ToReferenceFrame(); } virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("Caret", TYPE_CARET) protected: nsRefPtr mCaret; }; /** * The standard display item to paint the CSS borders of a frame. */ class nsDisplayBorder : public nsDisplayItem { public: nsDisplayBorder(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayBorder); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayBorder() { MOZ_COUNT_DTOR(nsDisplayBorder); } #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); NS_DISPLAY_DECL_NAME("Border", TYPE_BORDER) }; /** * A simple display item that just renders a solid color across the * specified bounds. For canvas frames (in the CSS sense) we split off the * drawing of the background color into this class (from nsDisplayBackground * via nsDisplayCanvasBackground). This is done so that we can always draw a * background color to avoid ugly flashes of white when we can't draw a full * frame tree (ie when a page is loading). The bounds can differ from the * frame's bounds -- this is needed when a frame/iframe is loading and there * is not yet a frame tree to go in the frame/iframe so we use the subdoc * frame of the parent document as a standin. */ class nsDisplaySolidColor : public nsDisplayItem { public: nsDisplaySolidColor(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aBounds, nscolor aColor) : nsDisplayItem(aBuilder, aFrame), mBounds(aBounds), mColor(aColor) { NS_ASSERTION(NS_GET_A(aColor) > 0, "Don't create invisible nsDisplaySolidColors!"); MOZ_COUNT_CTOR(nsDisplaySolidColor); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplaySolidColor() { MOZ_COUNT_DTOR(nsDisplaySolidColor); } #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; nsRegion result; if (NS_GET_A(mColor) == 255) { result = GetBounds(aBuilder, aSnap); } return result; } virtual bool IsUniform(nsDisplayListBuilder* aBuilder, nscolor* aColor) { *aColor = mColor; return true; } virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("SolidColor", TYPE_SOLID_COLOR) private: nsRect mBounds; nscolor mColor; }; /** * The standard display item to paint the CSS background of a frame. */ class nsDisplayBackground : public nsDisplayItem { public: nsDisplayBackground(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayBackground() { MOZ_COUNT_DTOR(nsDisplayBackground); } #endif virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual bool IsVaryingRelativeToMovingFrame(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame); virtual bool IsUniform(nsDisplayListBuilder* aBuilder, nscolor* aColor); virtual bool ShouldFixToViewport(nsDisplayListBuilder* aBuilder); virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("Background", TYPE_BACKGROUND) // Returns the value of GetUnderlyingFrame()->IsThemed(), but cached bool IsThemed() { return mIsThemed; } protected: typedef class mozilla::layers::ImageContainer ImageContainer; typedef class mozilla::layers::ImageLayer ImageLayer; nsRegion GetInsideClipRegion(nsPresContext* aPresContext, PRUint8 aClip, const nsRect& aRect, bool* aSnap); bool TryOptimizeToImageLayer(nsDisplayListBuilder* aBuilder); void ConfigureLayer(ImageLayer* aLayer); /* Used to cache mFrame->IsThemed() since it isn't a cheap call */ bool mIsThemed; nsITheme::Transparency mThemeTransparency; /* If this background can be a simple image layer, we store the format here. */ nsRefPtr mImageContainer; gfxRect mDestRect; }; /** * The standard display item to paint the outer CSS box-shadows of a frame. */ class nsDisplayBoxShadowOuter : public nsDisplayItem { public: nsDisplayBoxShadowOuter(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayBoxShadowOuter); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayBoxShadowOuter() { MOZ_COUNT_DTOR(nsDisplayBoxShadowOuter); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); NS_DISPLAY_DECL_NAME("BoxShadowOuter", TYPE_BOX_SHADOW_OUTER) private: nsRegion mVisibleRegion; }; /** * The standard display item to paint the inner CSS box-shadows of a frame. */ class nsDisplayBoxShadowInner : public nsDisplayItem { public: nsDisplayBoxShadowInner(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayBoxShadowInner); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayBoxShadowInner() { MOZ_COUNT_DTOR(nsDisplayBoxShadowInner); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); NS_DISPLAY_DECL_NAME("BoxShadowInner", TYPE_BOX_SHADOW_INNER) private: nsRegion mVisibleRegion; }; /** * The standard display item to paint the CSS outline of a frame. */ class nsDisplayOutline : public nsDisplayItem { public: nsDisplayOutline(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayOutline); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayOutline() { MOZ_COUNT_DTOR(nsDisplayOutline); } #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); NS_DISPLAY_DECL_NAME("Outline", TYPE_OUTLINE) }; /** * A class that lets you receive events within the frame bounds but never paints. */ class nsDisplayEventReceiver : public nsDisplayItem { public: nsDisplayEventReceiver(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayEventReceiver); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayEventReceiver() { MOZ_COUNT_DTOR(nsDisplayEventReceiver); } #endif virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); NS_DISPLAY_DECL_NAME("EventReceiver", TYPE_EVENT_RECEIVER) }; /** * A class that lets you wrap a display list as a display item. * * GetUnderlyingFrame() is troublesome for wrapped lists because if the wrapped * list has many items, it's not clear which one has the 'underlying frame'. * Thus we force the creator to specify what the underlying frame is. The * underlying frame should be the root of a stacking context, because sorting * a list containing this item will not get at the children. * * In some cases (e.g., clipping) we want to wrap a list but we don't have a * particular underlying frame that is a stacking context root. In that case * we allow the frame to be nsnull. Callers to GetUnderlyingFrame must * detect and handle this case. */ class nsDisplayWrapList : public nsDisplayItem { // This is never instantiated directly, so no need to count constructors and // destructors. public: /** * Takes all the items from aList and puts them in our list. */ nsDisplayWrapList(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList); nsDisplayWrapList(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayItem* aItem); nsDisplayWrapList(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayItem* aItem, const nsPoint& aToReferenceFrame); nsDisplayWrapList(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame) {} virtual ~nsDisplayWrapList(); /** * Call this if the wrapped list is changed. */ void UpdateBounds(nsDisplayListBuilder* aBuilder) { mBounds = mList.GetBounds(aBuilder); } virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual bool IsUniform(nsDisplayListBuilder* aBuilder, nscolor* aColor); virtual bool IsVaryingRelativeToMovingFrame(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem) { NS_WARNING("This list should already have been flattened!!!"); return false; } virtual void GetMergedFrames(nsTArray* aFrames) { aFrames->AppendElements(mMergedFrames); } NS_DISPLAY_DECL_NAME("WrapList", TYPE_WRAP_LIST) virtual nsRect GetComponentAlphaBounds(nsDisplayListBuilder* aBuilder); virtual nsDisplayList* GetList() { return &mList; } /** * This creates a copy of this item, but wrapping aItem instead of * our existing list. Only gets called if this item returned nsnull * for GetUnderlyingFrame(). aItem is guaranteed to return non-null from * GetUnderlyingFrame(). */ virtual nsDisplayWrapList* WrapWithClone(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem) { NS_NOTREACHED("We never returned nsnull for GetUnderlyingFrame!"); return nsnull; } /** * Returns true if all descendant display items can be placed in the same * ThebesLayer --- GetLayerState returns LAYER_INACTIVE or LAYER_NONE, * and they all have the given aActiveScrolledRoot. */ static bool ChildrenCanBeInactive(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters, const nsDisplayList& aList, nsIFrame* aActiveScrolledRoot); protected: nsDisplayWrapList() {} void MergeFrom(nsDisplayWrapList* aOther) { mList.AppendToBottom(&aOther->mList); mBounds.UnionRect(mBounds, aOther->mBounds); } void MergeFromTrackingMergedFrames(nsDisplayWrapList* aOther) { MergeFrom(aOther); mMergedFrames.AppendElement(aOther->mFrame); mMergedFrames.MoveElementsFrom(aOther->mMergedFrames); } nsDisplayList mList; // The frames from items that have been merged into this item, excluding // this item's own frame. nsTArray mMergedFrames; nsRect mBounds; }; /** * We call WrapDisplayList on the in-flow lists: BorderBackground(), * BlockBorderBackgrounds() and Content(). * We call WrapDisplayItem on each item of Outlines(), PositionedDescendants(), * and Floats(). This is done to support special wrapping processing for frames * that may not be in-flow descendants of the current frame. */ class nsDisplayWrapper { public: // This is never instantiated directly (it has pure virtual methods), so no // need to count constructors and destructors. virtual bool WrapBorderBackground() { return true; } virtual nsDisplayItem* WrapList(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList) = 0; virtual nsDisplayItem* WrapItem(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem) = 0; nsresult WrapLists(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsDisplayListSet& aIn, const nsDisplayListSet& aOut); nsresult WrapListsInPlace(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsDisplayListSet& aLists); protected: nsDisplayWrapper() {} }; /** * The standard display item to paint a stacking context with translucency * set by the stacking context root frame's 'opacity' style. */ class nsDisplayOpacity : public nsDisplayWrapList { public: nsDisplayOpacity(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayOpacity(); #endif virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); NS_DISPLAY_DECL_NAME("Opacity", TYPE_OPACITY) }; /** * A display item that has no purpose but to ensure its contents get * their own layer. */ class nsDisplayOwnLayer : public nsDisplayWrapList { public: nsDisplayOwnLayer(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayOwnLayer(); #endif virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters) { return mozilla::LAYER_ACTIVE; } virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem) { // Don't allow merging, each sublist must have its own layer return false; } NS_DISPLAY_DECL_NAME("OwnLayer", TYPE_OWN_LAYER) }; /** * A display item used to represent fixed position elements. This will ensure * the contents gets its own layer, and that the built layer will have * position-related metadata set on it. */ class nsDisplayFixedPosition : public nsDisplayOwnLayer { public: nsDisplayFixedPosition(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayFixedPosition(); #endif virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); NS_DISPLAY_DECL_NAME("FixedPosition", TYPE_FIXED_POSITION) }; /** * This potentially creates a layer for the given list of items, whose * visibility is determined by the displayport for the given frame instead of * what is passed in to ComputeVisibility. * * Here in content, we can use this to render more content than is actually * visible. Then, the compositing process can manipulate the generated layer * through transformations so that asynchronous scrolling can be implemented. * * Note that setting the displayport will not change any hit testing! The * content process will know nothing about what the user is actually seeing, * so it can only do hit testing for what is supposed to be the visible region. * * It is possible for scroll boxes to have content that can be both above and * below content outside of the scroll box. We cannot create layers for these * cases. This is accomplished by wrapping display items with * nsDisplayScrollLayers. nsDisplayScrollLayers with the same scroll frame will * be merged together. If more than one nsDisplayScrollLayer exists after * merging, all nsDisplayScrollLayers will be flattened out so that no new * layer is created at all. */ class nsDisplayScrollLayer : public nsDisplayWrapList { public: /** * @param aScrolledFrame This will determine what the displayport is. It should be * the root content frame of the scrolled area. Note * that nsDisplayScrollLayer will expect for * ScrollLayerCount to be defined on aScrolledFrame. * @param aScrollFrame The viewport frame you see this content through. */ nsDisplayScrollLayer(nsDisplayListBuilder* aBuilder, nsDisplayList* aList, nsIFrame* aForFrame, nsIFrame* aScrolledFrame, nsIFrame* aScrollFrame); nsDisplayScrollLayer(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem, nsIFrame* aForFrame, nsIFrame* aScrolledFrame, nsIFrame* aScrollFrame); nsDisplayScrollLayer(nsDisplayListBuilder* aBuilder, nsIFrame* aForFrame, nsIFrame* aScrolledFrame, nsIFrame* aScrollFrame); NS_DISPLAY_DECL_NAME("ScrollLayer", TYPE_SCROLL_LAYER) #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayScrollLayer(); #endif virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); virtual bool ShouldFlattenAway(nsDisplayListBuilder* aBuilder); // Get the number of nsDisplayScrollLayers for a scroll frame. Note that this // number does not include nsDisplayScrollInfoLayers. If this number is not 1 // after merging, all the nsDisplayScrollLayers should flatten away. intptr_t GetScrollLayerCount(); intptr_t RemoveScrollLayerCount(); private: nsIFrame* mScrollFrame; nsIFrame* mScrolledFrame; }; /** * Like nsDisplayScrollLayer, but only has metadata on the scroll frame. This * creates a layer that has no Thebes child layer, but still allows the * compositor process to know of the scroll frame's existence. * * After visibility computation, nsDisplayScrollInfoLayers should only exist if * nsDisplayScrollLayers were all flattened away. * * Important!! Add info layers to the bottom of the list so they are only * considered after the others have flattened out! */ class nsDisplayScrollInfoLayer : public nsDisplayScrollLayer { public: nsDisplayScrollInfoLayer(nsDisplayListBuilder* aBuilder, nsIFrame* aScrolledFrame, nsIFrame* aScrollFrame); NS_DISPLAY_DECL_NAME("ScrollInfoLayer", TYPE_SCROLL_INFO_LAYER) #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayScrollInfoLayer(); #endif virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); virtual bool ShouldFlattenAway(nsDisplayListBuilder* aBuilder); }; /** * nsDisplayClip can clip a list of items, but we take a single item * initially and then later merge other items into it when we merge * adjacent matching nsDisplayClips */ class nsDisplayClip : public nsDisplayWrapList { public: /** * @param aFrame the frame that should be considered the underlying * frame for this content, e.g. the frame whose z-index we have. This * is *not* the frame that is inducing the clipping. */ nsDisplayClip(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayItem* aItem, const nsRect& aRect); nsDisplayClip(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList, const nsRect& aRect); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayClip(); #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); NS_DISPLAY_DECL_NAME("Clip", TYPE_CLIP) virtual PRUint32 GetPerFrameKey() { return 0; } const nsRect& GetClipRect() { return mClip; } void SetClipRect(const nsRect& aRect) { mClip = aRect; } virtual nsDisplayWrapList* WrapWithClone(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); protected: nsRect mClip; }; /** * A display item to clip a list of items to the border-radius of a * frame. */ class nsDisplayClipRoundedRect : public nsDisplayClip { public: /** * @param aFrame the frame that should be considered the underlying * frame for this content, e.g. the frame whose z-index we have. This * is *not* the frame that is inducing the clipping. */ nsDisplayClipRoundedRect(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayItem* aItem, const nsRect& aRect, nscoord aRadii[8]); nsDisplayClipRoundedRect(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList, const nsRect& aRect, nscoord aRadii[8]); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayClipRoundedRect(); #endif virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); NS_DISPLAY_DECL_NAME("ClipRoundedRect", TYPE_CLIP_ROUNDED_RECT) virtual nsDisplayWrapList* WrapWithClone(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); void GetRadii(nscoord aRadii[8]) { memcpy(aRadii, mRadii, sizeof(mRadii)); } private: nscoord mRadii[8]; }; /** * nsDisplayZoom is used for subdocuments that have a different full zoom than * their parent documents. This item creates a container layer. */ class nsDisplayZoom : public nsDisplayOwnLayer { public: /** * @param aFrame is the root frame of the subdocument. * @param aList contains the display items for the subdocument. * @param aAPD is the app units per dev pixel ratio of the subdocument. * @param aParentAPD is the app units per dev pixel ratio of the parent * document. */ nsDisplayZoom(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList, PRInt32 aAPD, PRInt32 aParentAPD); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayZoom(); #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); NS_DISPLAY_DECL_NAME("Zoom", TYPE_ZOOM) // Get the app units per dev pixel ratio of the child document. PRInt32 GetChildAppUnitsPerDevPixel() { return mAPD; } // Get the app units per dev pixel ratio of the parent document. PRInt32 GetParentAppUnitsPerDevPixel() { return mParentAPD; } private: PRInt32 mAPD, mParentAPD; }; /** * A display item to paint a stacking context with effects * set by the stacking context root frame's style. */ class nsDisplaySVGEffects : public nsDisplayWrapList { public: nsDisplaySVGEffects(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsDisplayList* aList); #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplaySVGEffects(); #endif virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder* aBuilder, bool* aSnap); virtual void HitTest(nsDisplayListBuilder* aBuilder, const nsRect& aRect, HitTestState* aState, nsTArray *aOutFrames); virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; return mEffectsBounds + ToReferenceFrame(); } virtual bool ComputeVisibility(nsDisplayListBuilder* aBuilder, nsRegion* aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder* aBuilder, nsDisplayItem* aItem); NS_DISPLAY_DECL_NAME("SVGEffects", TYPE_SVG_EFFECTS) virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); void PaintAsLayer(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx, LayerManager* aManager); #ifdef MOZ_DUMP_PAINTING void PrintEffects(FILE* aOutput); #endif private: // relative to mFrame nsRect mEffectsBounds; }; /* A display item that applies a transformation to all of its descendant * elements. This wrapper should only be used if there is a transform applied * to the root element. * * The reason that a "bounds" rect is involved in transform calculations is * because CSS-transforms allow percentage values for the x and y components * of s, where percentages are percentages of the element's * border box. * * INVARIANT: The wrapped frame is transformed. * INVARIANT: The wrapped frame is non-null. */ class nsDisplayTransform: public nsDisplayItem { public: /* Constructor accepts a display list, empties it, and wraps it up. It also * ferries the underlying frame to the nsDisplayItem constructor. */ nsDisplayTransform(nsDisplayListBuilder* aBuilder, nsIFrame *aFrame, nsDisplayList *aList, PRUint32 aIndex = 0) : nsDisplayItem(aBuilder, aFrame), mStoredList(aBuilder, aFrame, aList), mIndex(aIndex) { MOZ_COUNT_CTOR(nsDisplayTransform); NS_ABORT_IF_FALSE(aFrame, "Must have a frame!"); } nsDisplayTransform(nsDisplayListBuilder* aBuilder, nsIFrame *aFrame, nsDisplayItem *aItem, PRUint32 aIndex = 0) : nsDisplayItem(aBuilder, aFrame), mStoredList(aBuilder, aFrame, aItem), mIndex(aIndex) { MOZ_COUNT_CTOR(nsDisplayTransform); NS_ABORT_IF_FALSE(aFrame, "Must have a frame!"); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayTransform() { MOZ_COUNT_DTOR(nsDisplayTransform); } #endif NS_DISPLAY_DECL_NAME("nsDisplayTransform", TYPE_TRANSFORM) virtual nsRect GetComponentAlphaBounds(nsDisplayListBuilder* aBuilder) { if (mStoredList.GetComponentAlphaBounds(aBuilder).IsEmpty()) return nsRect(); bool snap; return GetBounds(aBuilder, &snap); } nsDisplayWrapList* GetStoredList() { return &mStoredList; } virtual void HitTest(nsDisplayListBuilder *aBuilder, const nsRect& aRect, HitTestState *aState, nsTArray *aOutFrames); virtual nsRect GetBounds(nsDisplayListBuilder *aBuilder, bool* aSnap); virtual nsRegion GetOpaqueRegion(nsDisplayListBuilder *aBuilder, bool* aSnap); virtual bool IsUniform(nsDisplayListBuilder *aBuilder, nscolor* aColor); virtual LayerState GetLayerState(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aParameters); virtual already_AddRefed BuildLayer(nsDisplayListBuilder* aBuilder, LayerManager* aManager, const ContainerParameters& aContainerParameters); virtual bool ComputeVisibility(nsDisplayListBuilder *aBuilder, nsRegion *aVisibleRegion, const nsRect& aAllowVisibleRegionExpansion); virtual bool TryMerge(nsDisplayListBuilder *aBuilder, nsDisplayItem *aItem); virtual PRUint32 GetPerFrameKey() { return (mIndex << nsDisplayItem::TYPE_BITS) | nsDisplayItem::GetPerFrameKey(); } enum { INDEX_MAX = PR_UINT32_MAX >> nsDisplayItem::TYPE_BITS }; const gfx3DMatrix& GetTransform(float aAppUnitsPerPixel); float GetHitDepthAtPoint(const nsPoint& aPoint); /** * TransformRect takes in as parameters a rectangle (in aFrame's coordinate * space) and returns the smallest rectangle (in aFrame's coordinate space) * containing the transformed image of that rectangle. That is, it takes * the four corners of the rectangle, transforms them according to the * matrix associated with the specified frame, then returns the smallest * rectangle containing the four transformed points. * * @param untransformedBounds The rectangle (in app units) to transform. * @param aFrame The frame whose transformation should be applied. This * function raises an assertion if aFrame is null or doesn't have a * transform applied to it. * @param aOrigin The origin of the transform relative to aFrame's local * coordinate space. * @param aBoundsOverride (optional) Rather than using the frame's computed * bounding rect as frame bounds, use this rectangle instead. Pass * nsnull (or nothing at all) to use the default. */ static nsRect TransformRect(const nsRect &aUntransformedBounds, const nsIFrame* aFrame, const nsPoint &aOrigin, const nsRect* aBoundsOverride = nsnull); static nsRect TransformRectOut(const nsRect &aUntransformedBounds, const nsIFrame* aFrame, const nsPoint &aOrigin, const nsRect* aBoundsOverride = nsnull); /* UntransformRect is like TransformRect, except that it inverts the * transform. */ static bool UntransformRect(const nsRect &aUntransformedBounds, const nsIFrame* aFrame, const nsPoint &aOrigin, nsRect* aOutRect); static bool UntransformRectMatrix(const nsRect &aUntransformedBounds, const gfx3DMatrix& aMatrix, float aAppUnitsPerPixel, nsRect* aOutRect); /** * Returns the bounds of a frame as defined for resolving percentage * s in CSS transforms. If * UNIFIED_CONTINUATIONS is not defined, this is simply the frame's bounding * rectangle, translated to the origin. Otherwise, returns the smallest * rectangle containing a frame and all of its continuations. For example, * if there is a element with several continuations split over * several lines, this function will return the rectangle containing all of * those continuations. This rectangle is relative to the origin of the * frame's local coordinate space. * * @param aFrame The frame to get the bounding rect for. * @return The frame's bounding rect, as described above. */ static nsRect GetFrameBoundsForTransform(const nsIFrame* aFrame); /** * Given a frame with the -moz-transform property or an SVG transform, * returns the transformation matrix for that frame. * * @param aFrame The frame to get the matrix from. * @param aOrigin Relative to which point this transform should be applied. * @param aAppUnitsPerPixel The number of app units per graphics unit. * @param aBoundsOverride [optional] If this is nsnull (the default), the * computation will use the value of GetFrameBoundsForTransform(aFrame) * for the frame's bounding rectangle. Otherwise, it will use the * value of aBoundsOverride. This is mostly for internal use and in * most cases you will not need to specify a value. */ static gfx3DMatrix GetResultingTransformMatrix(const nsIFrame* aFrame, const nsPoint& aOrigin, float aAppUnitsPerPixel, const nsRect* aBoundsOverride = nsnull, nsIFrame** aOutAncestor = nsnull); /** * Return true when we should try to prerender the entire contents of the * transformed frame even when it's not completely visible (yet). */ static bool ShouldPrerenderTransformedContent(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame); private: nsDisplayWrapList mStoredList; gfx3DMatrix mTransform; float mCachedAppUnitsPerPixel; PRUint32 mIndex; }; /** * This class adds basic support for limiting the rendering to the part inside * the specified edges. It's a base class for the display item classes that * does the actual work. The two members, mLeftEdge and mRightEdge, are * relative to the edges of the frame's scrollable overflow rectangle and is * the amount to suppress on each side. * * Setting none, both or only one edge is allowed. * The values must be non-negative. * The default value for both edges is zero, which means everything is painted. */ class nsCharClipDisplayItem : public nsDisplayItem { public: nsCharClipDisplayItem(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame) : nsDisplayItem(aBuilder, aFrame), mLeftEdge(0), mRightEdge(0) {} struct ClipEdges { ClipEdges(const nsDisplayItem& aItem, nscoord aLeftEdge, nscoord aRightEdge) { nsRect r = aItem.GetUnderlyingFrame()->GetScrollableOverflowRect() + aItem.ToReferenceFrame(); mX = aLeftEdge > 0 ? r.x + aLeftEdge : nscoord_MIN; mXMost = aRightEdge > 0 ? NS_MAX(r.XMost() - aRightEdge, mX) : nscoord_MAX; } void Intersect(nscoord* aX, nscoord* aWidth) const { nscoord xmost1 = *aX + *aWidth; *aX = NS_MAX(*aX, mX); *aWidth = NS_MAX(NS_MIN(xmost1, mXMost) - *aX, 0); } nscoord mX; nscoord mXMost; }; ClipEdges Edges() const { return ClipEdges(*this, mLeftEdge, mRightEdge); } static nsCharClipDisplayItem* CheckCast(nsDisplayItem* aItem) { nsDisplayItem::Type t = aItem->GetType(); return (t == nsDisplayItem::TYPE_TEXT || t == nsDisplayItem::TYPE_TEXT_DECORATION || t == nsDisplayItem::TYPE_TEXT_SHADOW) ? static_cast(aItem) : nsnull; } nscoord mLeftEdge; // length from the left side nscoord mRightEdge; // length from the right side }; #endif /*NSDISPLAYLIST_H_*/