/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ClientTiledPaintedLayer.h" #include "FrameMetrics.h" // for FrameMetrics #include "Units.h" // for ScreenIntRect, CSSPoint, etc #include "UnitTransforms.h" // for TransformTo #include "ClientLayerManager.h" // for ClientLayerManager, etc #include "gfxPlatform.h" // for gfxPlatform #include "gfxPrefs.h" // for gfxPrefs #include "gfxRect.h" // for gfxRect #include "mozilla/Assertions.h" // for MOZ_ASSERT, etc #include "mozilla/gfx/BaseSize.h" // for BaseSize #include "mozilla/gfx/Rect.h" // for Rect, RectTyped #include "mozilla/layers/CompositorChild.h" #include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper #include "mozilla/layers/LayersMessages.h" #include "mozilla/mozalloc.h" // for operator delete, etc #include "nsISupportsImpl.h" // for MOZ_COUNT_CTOR, etc #include "LayersLogging.h" namespace mozilla { namespace layers { ClientTiledPaintedLayer::ClientTiledPaintedLayer(ClientLayerManager* const aManager, ClientLayerManager::PaintedLayerCreationHint aCreationHint) : PaintedLayer(aManager, static_cast(this), aCreationHint) , mContentClient() { MOZ_COUNT_CTOR(ClientTiledPaintedLayer); mPaintData.mLastScrollOffset = ParentLayerPoint(0, 0); mPaintData.mFirstPaint = true; } ClientTiledPaintedLayer::~ClientTiledPaintedLayer() { MOZ_COUNT_DTOR(ClientTiledPaintedLayer); } void ClientTiledPaintedLayer::ClearCachedResources() { if (mContentClient) { mContentClient->ClearCachedResources(); } mValidRegion.SetEmpty(); mContentClient = nullptr; } void ClientTiledPaintedLayer::FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { aAttrs = PaintedLayerAttributes(GetValidRegion()); } static LayerRect ApplyParentLayerToLayerTransform(const gfx::Matrix4x4& aTransform, const ParentLayerRect& aParentLayerRect) { return TransformTo(aTransform, aParentLayerRect); } static gfx::Matrix4x4 GetTransformToAncestorsParentLayer(Layer* aStart, const LayerMetricsWrapper& aAncestor) { gfx::Matrix4x4 transform; const LayerMetricsWrapper& ancestorParent = aAncestor.GetParent(); for (LayerMetricsWrapper iter(aStart, LayerMetricsWrapper::StartAt::BOTTOM); ancestorParent ? iter != ancestorParent : iter.IsValid(); iter = iter.GetParent()) { transform = transform * iter.GetTransform(); if (gfxPrefs::LayoutUseContainersForRootFrames()) { // When scrolling containers, layout adds a post-scale into the transform // of the displayport-ancestor (which we pick up in GetTransform() above) // to cancel out the pres shell resolution (for historical reasons). The // compositor in turn cancels out this post-scale (i.e., scales by the // pres shell resolution), and to get correct calculations, we need to do // so here, too. // // With containerless scrolling, the offending post-scale is on the // parent layer of the displayport-ancestor, which we don't reach in this // loop, so we don't need to worry about it. const FrameMetrics& metrics = iter.Metrics(); transform.PostScale(metrics.GetPresShellResolution(), metrics.GetPresShellResolution(), 1.f); } } return transform; } void ClientTiledPaintedLayer::GetAncestorLayers(LayerMetricsWrapper* aOutScrollAncestor, LayerMetricsWrapper* aOutDisplayPortAncestor, bool* aOutHasTransformAnimation) { LayerMetricsWrapper scrollAncestor; LayerMetricsWrapper displayPortAncestor; bool hasTransformAnimation = false; for (LayerMetricsWrapper ancestor(this, LayerMetricsWrapper::StartAt::BOTTOM); ancestor; ancestor = ancestor.GetParent()) { hasTransformAnimation |= ancestor.HasTransformAnimation(); const FrameMetrics& metrics = ancestor.Metrics(); if (!scrollAncestor && metrics.GetScrollId() != FrameMetrics::NULL_SCROLL_ID) { scrollAncestor = ancestor; } if (!metrics.GetDisplayPort().IsEmpty()) { displayPortAncestor = ancestor; // Any layer that has a displayport must be scrollable, so we can break // here. break; } } if (aOutScrollAncestor) { *aOutScrollAncestor = scrollAncestor; } if (aOutDisplayPortAncestor) { *aOutDisplayPortAncestor = displayPortAncestor; } if (aOutHasTransformAnimation) { *aOutHasTransformAnimation = hasTransformAnimation; } } void ClientTiledPaintedLayer::BeginPaint() { mPaintData.mLowPrecisionPaintCount = 0; mPaintData.mPaintFinished = false; mPaintData.mCompositionBounds.SetEmpty(); mPaintData.mCriticalDisplayPort.SetEmpty(); if (!GetBaseTransform().Is2D()) { // Give up if there is a complex CSS transform on the layer. We might // eventually support these but for now it's too complicated to handle // given that it's a pretty rare scenario. return; } // Get the metrics of the nearest scrollable layer and the nearest layer // with a displayport. LayerMetricsWrapper scrollAncestor; LayerMetricsWrapper displayPortAncestor; bool hasTransformAnimation; GetAncestorLayers(&scrollAncestor, &displayPortAncestor, &hasTransformAnimation); if (!displayPortAncestor || !scrollAncestor) { // No displayport or scroll ancestor, so we can't do progressive rendering. #if defined(MOZ_WIDGET_ANDROID) || defined(MOZ_B2G) // Both Android and b2g are guaranteed to have a displayport set, so this // should never happen. NS_WARNING("Tiled PaintedLayer with no scrollable container ancestor"); #endif return; } TILING_LOG("TILING %p: Found scrollAncestor %p, displayPortAncestor %p, transform %d\n", this, scrollAncestor.GetLayer(), displayPortAncestor.GetLayer(), hasTransformAnimation); const FrameMetrics& scrollMetrics = scrollAncestor.Metrics(); const FrameMetrics& displayportMetrics = displayPortAncestor.Metrics(); // Calculate the transform required to convert ParentLayer space of our // display port ancestor to the Layer space of this layer. gfx::Matrix4x4 transformDisplayPortToLayer = GetTransformToAncestorsParentLayer(this, displayPortAncestor); transformDisplayPortToLayer.Invert(); // Compute the critical display port that applies to this layer in the // LayoutDevice space of this layer, but only if there is no OMT animation // on this layer. If there is an OMT animation then we need to draw the whole // visible region of this layer as determined by layout, because we don't know // what parts of it might move into view in the compositor. if (!hasTransformAnimation) { ParentLayerRect criticalDisplayPort = (displayportMetrics.GetCriticalDisplayPort() * displayportMetrics.GetZoom()) + displayportMetrics.GetCompositionBounds().TopLeft(); mPaintData.mCriticalDisplayPort = RoundedToInt( ApplyParentLayerToLayerTransform(transformDisplayPortToLayer, criticalDisplayPort)); } TILING_LOG("TILING %p: Critical displayport %s\n", this, Stringify(mPaintData.mCriticalDisplayPort).c_str()); // Store the resolution from the displayport ancestor layer. Because this is Gecko-side, // before any async transforms have occurred, we can use the zoom for this. mPaintData.mResolution = displayportMetrics.GetZoom(); TILING_LOG("TILING %p: Resolution %s\n", this, Stringify(mPaintData.mResolution).c_str()); // Store the applicable composition bounds in this layer's Layer units. mPaintData.mTransformToCompBounds = GetTransformToAncestorsParentLayer(this, scrollAncestor); gfx::Matrix4x4 transformToBounds = mPaintData.mTransformToCompBounds; transformToBounds.Invert(); mPaintData.mCompositionBounds = ApplyParentLayerToLayerTransform( transformToBounds, scrollMetrics.GetCompositionBounds()); TILING_LOG("TILING %p: Composition bounds %s\n", this, Stringify(mPaintData.mCompositionBounds).c_str()); // Calculate the scroll offset since the last transaction mPaintData.mScrollOffset = displayportMetrics.GetScrollOffset() * displayportMetrics.GetZoom(); TILING_LOG("TILING %p: Scroll offset %s\n", this, Stringify(mPaintData.mScrollOffset).c_str()); } bool ClientTiledPaintedLayer::IsScrollingOnCompositor(const FrameMetrics& aParentMetrics) { CompositorChild* compositor = nullptr; if (Manager() && Manager()->AsClientLayerManager()) { compositor = Manager()->AsClientLayerManager()->GetCompositorChild(); } if (!compositor) { return false; } FrameMetrics compositorMetrics; if (!compositor->LookupCompositorFrameMetrics(aParentMetrics.GetScrollId(), compositorMetrics)) { return false; } // 1 is a tad high for a fuzzy equals epsilon however if our scroll delta // is so small then we have nothing to gain from using paint heuristics. float COORDINATE_EPSILON = 1.f; return !FuzzyEqualsAdditive(compositorMetrics.GetScrollOffset().x, aParentMetrics.GetScrollOffset().x, COORDINATE_EPSILON) || !FuzzyEqualsAdditive(compositorMetrics.GetScrollOffset().y, aParentMetrics.GetScrollOffset().y, COORDINATE_EPSILON); } bool ClientTiledPaintedLayer::UseProgressiveDraw() { if (!gfxPlatform::GetPlatform()->UseProgressivePaint()) { // pref is disabled, so never do progressive return false; } if (ClientManager()->HasShadowTarget()) { // This condition is true when we are in a reftest scenario. We don't want // to draw progressively here because it can cause intermittent reftest // failures because the harness won't wait for all the tiles to be drawn. return false; } if (mPaintData.mCriticalDisplayPort.IsEmpty()) { // This catches three scenarios: // 1) This layer doesn't have a scrolling ancestor // 2) This layer is subject to OMTA transforms // 3) Low-precision painting is disabled // In all of these cases, we don't want to draw this layer progressively. return false; } if (GetIsFixedPosition() || GetParent()->GetIsFixedPosition()) { // This layer is fixed-position and so even if it does have a scrolling // ancestor it will likely be entirely on-screen all the time, so we // should draw it all at once return false; } if (ClientManager()->AsyncPanZoomEnabled()) { LayerMetricsWrapper scrollAncestor; GetAncestorLayers(&scrollAncestor, nullptr, nullptr); MOZ_ASSERT(scrollAncestor); // because mPaintData.mCriticalDisplayPort is non-empty const FrameMetrics& parentMetrics = scrollAncestor.Metrics(); if (!IsScrollingOnCompositor(parentMetrics)) { return false; } } return true; } bool ClientTiledPaintedLayer::RenderHighPrecision(nsIntRegion& aInvalidRegion, const nsIntRegion& aVisibleRegion, LayerManager::DrawPaintedLayerCallback aCallback, void* aCallbackData) { // If we have no high-precision stuff to draw, or we have started drawing low-precision // already, then we shouldn't do anything there. if (aInvalidRegion.IsEmpty() || mPaintData.mLowPrecisionPaintCount != 0) { return false; } // Only draw progressively when the resolution is unchanged if (UseProgressiveDraw() && mContentClient->mTiledBuffer.GetFrameResolution() == mPaintData.mResolution) { // Store the old valid region, then clear it before painting. // We clip the old valid region to the visible region, as it only gets // used to decide stale content (currently valid and previously visible) nsIntRegion oldValidRegion = mContentClient->mTiledBuffer.GetValidRegion(); oldValidRegion.And(oldValidRegion, aVisibleRegion); if (!mPaintData.mCriticalDisplayPort.IsEmpty()) { oldValidRegion.And(oldValidRegion, LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)); } TILING_LOG("TILING %p: Progressive update with old valid region %s\n", this, Stringify(oldValidRegion).c_str()); return mContentClient->mTiledBuffer.ProgressiveUpdate(mValidRegion, aInvalidRegion, oldValidRegion, &mPaintData, aCallback, aCallbackData); } // Otherwise do a non-progressive paint mValidRegion = aVisibleRegion; if (!mPaintData.mCriticalDisplayPort.IsEmpty()) { mValidRegion.And(mValidRegion, LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)); } TILING_LOG("TILING %p: Non-progressive paint invalid region %s\n", this, Stringify(aInvalidRegion).c_str()); TILING_LOG("TILING %p: Non-progressive paint new valid region %s\n", this, Stringify(mValidRegion).c_str()); mContentClient->mTiledBuffer.SetFrameResolution(mPaintData.mResolution); mContentClient->mTiledBuffer.PaintThebes(mValidRegion, aInvalidRegion, aCallback, aCallbackData); mPaintData.mPaintFinished = true; return true; } bool ClientTiledPaintedLayer::RenderLowPrecision(nsIntRegion& aInvalidRegion, const nsIntRegion& aVisibleRegion, LayerManager::DrawPaintedLayerCallback aCallback, void* aCallbackData) { // Render the low precision buffer, if the visible region is larger than the // critical display port. if (!nsIntRegion(LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)).Contains(aVisibleRegion)) { nsIntRegion oldValidRegion = mContentClient->mLowPrecisionTiledBuffer.GetValidRegion(); oldValidRegion.And(oldValidRegion, aVisibleRegion); bool updatedBuffer = false; // If the frame resolution or format have changed, invalidate the buffer if (mContentClient->mLowPrecisionTiledBuffer.GetFrameResolution() != mPaintData.mResolution || mContentClient->mLowPrecisionTiledBuffer.HasFormatChanged()) { if (!mLowPrecisionValidRegion.IsEmpty()) { updatedBuffer = true; } oldValidRegion.SetEmpty(); mLowPrecisionValidRegion.SetEmpty(); mContentClient->mLowPrecisionTiledBuffer.ResetPaintedAndValidState(); mContentClient->mLowPrecisionTiledBuffer.SetFrameResolution(mPaintData.mResolution); aInvalidRegion = aVisibleRegion; } // Invalidate previously valid content that is no longer visible if (mPaintData.mLowPrecisionPaintCount == 1) { mLowPrecisionValidRegion.And(mLowPrecisionValidRegion, aVisibleRegion); } mPaintData.mLowPrecisionPaintCount++; // Remove the valid high-precision region from the invalid low-precision // region. We don't want to spend time drawing things twice. aInvalidRegion.Sub(aInvalidRegion, mValidRegion); TILING_LOG("TILING %p: Progressive paint: low-precision invalid region is %s\n", this, Stringify(aInvalidRegion).c_str()); TILING_LOG("TILING %p: Progressive paint: low-precision old valid region is %s\n", this, Stringify(oldValidRegion).c_str()); if (!aInvalidRegion.IsEmpty()) { updatedBuffer = mContentClient->mLowPrecisionTiledBuffer.ProgressiveUpdate( mLowPrecisionValidRegion, aInvalidRegion, oldValidRegion, &mPaintData, aCallback, aCallbackData); } TILING_LOG("TILING %p: Progressive paint: low-precision new valid region is %s\n", this, Stringify(mLowPrecisionValidRegion).c_str()); return updatedBuffer; } if (!mLowPrecisionValidRegion.IsEmpty()) { TILING_LOG("TILING %p: Clearing low-precision buffer\n", this); // Clear the low precision tiled buffer. mLowPrecisionValidRegion.SetEmpty(); mContentClient->mLowPrecisionTiledBuffer.ResetPaintedAndValidState(); // Return true here so we send a Painted callback after clearing the valid // region of the low precision buffer. This allows the shadow buffer's valid // region to be updated and the associated resources to be freed. return true; } return false; } void ClientTiledPaintedLayer::EndPaint() { mPaintData.mLastScrollOffset = mPaintData.mScrollOffset; mPaintData.mPaintFinished = true; mPaintData.mFirstPaint = false; TILING_LOG("TILING %p: Paint finished\n", this); } void ClientTiledPaintedLayer::RenderLayer() { LayerManager::DrawPaintedLayerCallback callback = ClientManager()->GetPaintedLayerCallback(); void *data = ClientManager()->GetPaintedLayerCallbackData(); if (!callback) { ClientManager()->SetTransactionIncomplete(); return; } if (!mContentClient) { mContentClient = new TiledContentClient(this, ClientManager()); mContentClient->Connect(); ClientManager()->AsShadowForwarder()->Attach(mContentClient, this); MOZ_ASSERT(mContentClient->GetForwarder()); } if (mContentClient->mTiledBuffer.HasFormatChanged()) { mValidRegion = nsIntRegion(); mContentClient->mTiledBuffer.ResetPaintedAndValidState(); } TILING_LOG("TILING %p: Initial visible region %s\n", this, Stringify(mVisibleRegion).c_str()); TILING_LOG("TILING %p: Initial valid region %s\n", this, Stringify(mValidRegion).c_str()); TILING_LOG("TILING %p: Initial low-precision valid region %s\n", this, Stringify(mLowPrecisionValidRegion).c_str()); nsIntRegion neededRegion = mVisibleRegion; #ifndef MOZ_IGNORE_PAINT_WILL_RESAMPLE // This is handled by PadDrawTargetOutFromRegion in TiledContentClient for mobile if (MayResample()) { // If we're resampling then bilinear filtering can read up to 1 pixel // outside of our texture coords. Make the visible region a single rect, // and pad it out by 1 pixel (restricted to tile boundaries) so that // we always have valid content or transparent pixels to sample from. IntRect bounds = neededRegion.GetBounds(); IntRect wholeTiles = bounds; wholeTiles.InflateToMultiple(IntSize( gfxPlatform::GetPlatform()->GetTileWidth(), gfxPlatform::GetPlatform()->GetTileHeight())); IntRect padded = bounds; padded.Inflate(1); padded.IntersectRect(padded, wholeTiles); neededRegion = padded; } #endif nsIntRegion invalidRegion; invalidRegion.Sub(neededRegion, mValidRegion); if (invalidRegion.IsEmpty()) { EndPaint(); return; } if (!ClientManager()->IsRepeatTransaction()) { // Only paint the mask layer on the first transaction. if (GetMaskLayer()) { ToClientLayer(GetMaskLayer())->RenderLayer(); } // For more complex cases we need to calculate a bunch of metrics before we // can do the paint. BeginPaint(); if (mPaintData.mPaintFinished) { return; } // Make sure that tiles that fall outside of the visible region or outside of the // critical displayport are discarded on the first update. Also make sure that we // only draw stuff inside the critical displayport on the first update. mValidRegion.And(mValidRegion, neededRegion); if (!mPaintData.mCriticalDisplayPort.IsEmpty()) { mValidRegion.And(mValidRegion, LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)); invalidRegion.And(invalidRegion, LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)); } TILING_LOG("TILING %p: First-transaction valid region %s\n", this, Stringify(mValidRegion).c_str()); TILING_LOG("TILING %p: First-transaction invalid region %s\n", this, Stringify(invalidRegion).c_str()); } else { if (!mPaintData.mCriticalDisplayPort.IsEmpty()) { invalidRegion.And(invalidRegion, LayerIntRect::ToUntyped(mPaintData.mCriticalDisplayPort)); } TILING_LOG("TILING %p: Repeat-transaction invalid region %s\n", this, Stringify(invalidRegion).c_str()); } nsIntRegion lowPrecisionInvalidRegion; if (gfxPrefs::UseLowPrecisionBuffer()) { // Calculate the invalid region for the low precision buffer. Make sure // to remove the valid high-precision area so we don't double-paint it. lowPrecisionInvalidRegion.Sub(neededRegion, mLowPrecisionValidRegion); lowPrecisionInvalidRegion.Sub(lowPrecisionInvalidRegion, mValidRegion); } TILING_LOG("TILING %p: Low-precision invalid region %s\n", this, Stringify(lowPrecisionInvalidRegion).c_str()); bool updatedHighPrecision = RenderHighPrecision(invalidRegion, neededRegion, callback, data); if (updatedHighPrecision) { ClientManager()->Hold(this); mContentClient->UseTiledLayerBuffer(TiledContentClient::TILED_BUFFER); if (!mPaintData.mPaintFinished) { // There is still more high-res stuff to paint, so we're not // done yet. A subsequent transaction will take care of this. ClientManager()->SetRepeatTransaction(); return; } } // If there is nothing to draw in low-precision, then we're done. if (lowPrecisionInvalidRegion.IsEmpty()) { EndPaint(); return; } if (updatedHighPrecision) { // If there are low precision updates, but we just did some high-precision // updates, then mark the paint as unfinished and request a repeat transaction. // This is so that we don't perform low-precision updates in the same transaction // as high-precision updates. TILING_LOG("TILING %p: Scheduling repeat transaction for low-precision painting\n", this); ClientManager()->SetRepeatTransaction(); mPaintData.mLowPrecisionPaintCount = 1; mPaintData.mPaintFinished = false; return; } bool updatedLowPrecision = RenderLowPrecision(lowPrecisionInvalidRegion, neededRegion, callback, data); if (updatedLowPrecision) { ClientManager()->Hold(this); mContentClient->UseTiledLayerBuffer(TiledContentClient::LOW_PRECISION_TILED_BUFFER); if (!mPaintData.mPaintFinished) { // There is still more low-res stuff to paint, so we're not // done yet. A subsequent transaction will take care of this. ClientManager()->SetRepeatTransaction(); return; } } // If we get here, we've done all the high- and low-precision // paints we wanted to do, so we can finish the paint and chill. EndPaint(); } void ClientTiledPaintedLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { PaintedLayer::PrintInfo(aStream, aPrefix); if (mContentClient) { aStream << "\n"; nsAutoCString pfx(aPrefix); pfx += " "; mContentClient->PrintInfo(aStream, pfx.get()); } } } // mozilla } // layers