/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef NSRECT_H #define NSRECT_H #include #include "nsCoord.h" #include "nsPoint.h" #include "nsSize.h" #include "nsMargin.h" #include "gfxCore.h" #include "nsTraceRefcnt.h" struct nsIntRect; struct NS_GFX nsRect { nscoord x, y; nscoord width, height; // Constructors nsRect() : x(0), y(0), width(0), height(0) { MOZ_COUNT_CTOR(nsRect); } nsRect(const nsRect& aRect) { MOZ_COUNT_CTOR(nsRect); *this = aRect; } nsRect(const nsPoint& aOrigin, const nsSize &aSize) { MOZ_COUNT_CTOR(nsRect); x = aOrigin.x; y = aOrigin.y; width = aSize.width; height = aSize.height; } nsRect(nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight) { MOZ_COUNT_CTOR(nsRect); x = aX; y = aY; width = aWidth; height = aHeight; VERIFY_COORD(x); VERIFY_COORD(y); VERIFY_COORD(width); VERIFY_COORD(height); } #ifdef NS_BUILD_REFCNT_LOGGING ~nsRect() { MOZ_COUNT_DTOR(nsRect); } #endif // Emptiness. An empty rect is one that has no area, i.e. its height or width // is <= 0 PRBool IsEmpty() const { return (PRBool) ((height <= 0) || (width <= 0)); } void Empty() {width = height = 0;} // Containment PRBool Contains(const nsRect& aRect) const; PRBool Contains(nscoord aX, nscoord aY) const; PRBool Contains(const nsPoint& aPoint) const {return Contains(aPoint.x, aPoint.y);} // Intersection. Returns TRUE if the receiver overlaps aRect and // FALSE otherwise PRBool Intersects(const nsRect& aRect) const; // Computes the area in which aRect1 and aRect2 overlap, and fills 'this' with // the result. Returns FALSE if the rectangles don't intersect, and sets 'this' // rect to be an empty rect. // // 'this' can be the same object as either aRect1 or aRect2 PRBool IntersectRect(const nsRect& aRect1, const nsRect& aRect2); // Computes the smallest rectangle that contains both aRect1 and aRect2 and // fills 'this' with the result, ignoring empty input rectangles. // Returns FALSE and sets 'this' rect to be an empty rect if both aRect1 // and aRect2 are empty. // // 'this' can be the same object as either aRect1 or aRect2 PRBool UnionRect(const nsRect& aRect1, const nsRect& aRect2); // Computes the smallest rectangle that contains both aRect1 and aRect2, // where empty input rectangles are allowed to affect the result; the // top-left of an empty input rectangle will be inside or on the edge of // the result. // // 'this' can be the same object as either aRect1 or aRect2 void UnionRectIncludeEmpty(const nsRect& aRect1, const nsRect& aRect2); // Accessors void SetRect(nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight) { x = aX; y = aY; width = aWidth; height = aHeight; } void SetRect(const nsPoint& aPt, const nsSize& aSize) { SetRect(aPt.x, aPt.y, aSize.width, aSize.height); } void MoveTo(nscoord aX, nscoord aY) {x = aX; y = aY;} void MoveTo(const nsPoint& aPoint) {x = aPoint.x; y = aPoint.y;} void MoveBy(nscoord aDx, nscoord aDy) {x += aDx; y += aDy;} void MoveBy(const nsPoint& aPoint) {x += aPoint.x; y += aPoint.y;} void SizeTo(nscoord aWidth, nscoord aHeight) {width = aWidth; height = aHeight;} void SizeTo(const nsSize& aSize) {SizeTo(aSize.width, aSize.height);} void SizeBy(nscoord aDeltaWidth, nscoord aDeltaHeight) {width += aDeltaWidth; height += aDeltaHeight;} // Inflate the rect by the specified width/height or margin void Inflate(nscoord aDx, nscoord aDy); void Inflate(const nsSize& aSize) {Inflate(aSize.width, aSize.height);} void Inflate(const nsMargin& aMargin); // Deflate the rect by the specified width/height or margin void Deflate(nscoord aDx, nscoord aDy); void Deflate(const nsSize& aSize) {Deflate(aSize.width, aSize.height);} void Deflate(const nsMargin& aMargin); // Overloaded operators. Note that '=' isn't defined so we'll get the // compiler generated default assignment operator. PRBool operator==(const nsRect& aRect) const { return (PRBool) ((IsEmpty() && aRect.IsEmpty()) || ((x == aRect.x) && (y == aRect.y) && (width == aRect.width) && (height == aRect.height))); } PRBool operator!=(const nsRect& aRect) const { return (PRBool) !operator==(aRect); } // Useful when we care about the exact x/y/width/height values being // equal (i.e. we care about differences in empty rectangles) PRBool IsExactEqual(const nsRect& aRect) const { return x == aRect.x && y == aRect.y && width == aRect.width && height == aRect.height; } // Arithmetic with nsPoints nsRect operator+(const nsPoint& aPoint) const { return nsRect(x + aPoint.x, y + aPoint.y, width, height); } nsRect operator-(const nsPoint& aPoint) const { return nsRect(x - aPoint.x, y - aPoint.y, width, height); } nsRect& operator+=(const nsPoint& aPoint) {x += aPoint.x; y += aPoint.y; return *this;} nsRect& operator-=(const nsPoint& aPoint) {x -= aPoint.x; y -= aPoint.y; return *this;} // Arithmetic with nsMargins nsMargin operator-(const nsRect& aRect) const; // Find difference as nsMargin nsRect& operator+=(const nsMargin& aMargin) { Inflate(aMargin); return *this; } nsRect& operator-=(const nsMargin& aMargin) { Deflate(aMargin); return *this; } nsRect operator+(const nsMargin& aMargin) const { return nsRect(*this) += aMargin; } nsRect operator-(const nsMargin& aMargin) const { return nsRect(*this) -= aMargin; } // Scale by aScale, converting coordinates to integers so that the result // is the smallest integer-coordinate rectangle containing the unrounded result nsRect& ScaleRoundOut(float aScale); // Helpers for accessing the vertices nsPoint TopLeft() const { return nsPoint(x, y); } nsPoint TopRight() const { return nsPoint(XMost(), y); } nsPoint BottomLeft() const { return nsPoint(x, YMost()); } nsPoint BottomRight() const { return nsPoint(XMost(), YMost()); } nsSize Size() const { return nsSize(width, height); } // Helper methods for computing the extents nscoord XMost() const {return x + width;} nscoord YMost() const {return y + height;} inline nsIntRect ToNearestPixels(nscoord aAppUnitsPerPixel) const; inline nsIntRect ToOutsidePixels(nscoord aAppUnitsPerPixel) const; inline nsIntRect ToInsidePixels(nscoord aAppUnitsPerPixel) const; }; struct NS_GFX nsIntRect { PRInt32 x, y; PRInt32 width, height; // Constructors nsIntRect() : x(0), y(0), width(0), height(0) {} nsIntRect(const nsIntRect& aRect) {*this = aRect;} nsIntRect(const nsIntPoint& aOrigin, const nsIntSize &aSize) { x = aOrigin.x; y = aOrigin.y; width = aSize.width; height = aSize.height; } nsIntRect(PRInt32 aX, PRInt32 aY, PRInt32 aWidth, PRInt32 aHeight) { x = aX; y = aY; width = aWidth; height = aHeight; } // Emptiness. An empty rect is one that has no area, i.e. its height or width // is <= 0 PRBool IsEmpty() const { return (PRBool) ((height <= 0) || (width <= 0)); } void Empty() {width = height = 0;} // Inflate the rect by the specified width/height or margin void Inflate(PRInt32 aDx, PRInt32 aDy) { x -= aDx; y -= aDy; width += aDx*2; height += aDy*2; } void Inflate(const nsIntMargin &aMargin) { x -= aMargin.left; y -= aMargin.top; width += aMargin.left + aMargin.right; height += aMargin.top + aMargin.bottom; } // Overloaded operators. Note that '=' isn't defined so we'll get the // compiler generated default assignment operator. PRBool operator==(const nsIntRect& aRect) const { return (PRBool) ((IsEmpty() && aRect.IsEmpty()) || ((x == aRect.x) && (y == aRect.y) && (width == aRect.width) && (height == aRect.height))); } PRBool operator!=(const nsIntRect& aRect) const { return (PRBool) !operator==(aRect); } nsIntRect operator+(const nsIntPoint& aPoint) const { return nsIntRect(x + aPoint.x, y + aPoint.y, width, height); } nsIntRect operator-(const nsIntPoint& aPoint) const { return nsIntRect(x - aPoint.x, y - aPoint.y, width, height); } nsIntRect& operator+=(const nsIntPoint& aPoint) {x += aPoint.x; y += aPoint.y; return *this;} nsIntRect& operator-=(const nsIntPoint& aPoint) {x -= aPoint.x; y -= aPoint.y; return *this;} void SetRect(PRInt32 aX, PRInt32 aY, PRInt32 aWidth, PRInt32 aHeight) { x = aX; y = aY; width = aWidth; height = aHeight; } void MoveTo(PRInt32 aX, PRInt32 aY) {x = aX; y = aY;} void MoveTo(const nsIntPoint& aPoint) {x = aPoint.x; y = aPoint.y;} void MoveBy(PRInt32 aDx, PRInt32 aDy) {x += aDx; y += aDy;} void MoveBy(const nsIntPoint& aPoint) {x += aPoint.x; y += aPoint.y;} void SizeTo(PRInt32 aWidth, PRInt32 aHeight) {width = aWidth; height = aHeight;} void SizeTo(const nsIntSize& aSize) {SizeTo(aSize.width, aSize.height);} void SizeBy(PRInt32 aDeltaWidth, PRInt32 aDeltaHeight) {width += aDeltaWidth; height += aDeltaHeight;} PRBool Contains(const nsIntRect& aRect) const { return (PRBool) ((aRect.x >= x) && (aRect.y >= y) && (aRect.XMost() <= XMost()) && (aRect.YMost() <= YMost())); } PRBool Contains(PRInt32 aX, PRInt32 aY) const { return (PRBool) ((aX >= x) && (aY >= y) && (aX < XMost()) && (aY < YMost())); } PRBool Contains(const nsIntPoint& aPoint) const { return Contains(aPoint.x, aPoint.y); } // Intersection. Returns TRUE if the receiver overlaps aRect and // FALSE otherwise PRBool Intersects(const nsIntRect& aRect) const { return (PRBool) ((x < aRect.XMost()) && (y < aRect.YMost()) && (aRect.x < XMost()) && (aRect.y < YMost())); } // Computes the area in which aRect1 and aRect2 overlap, and fills 'this' with // the result. Returns FALSE if the rectangles don't intersect, and sets 'this' // rect to be an empty rect. // // 'this' can be the same object as either aRect1 or aRect2 PRBool IntersectRect(const nsIntRect& aRect1, const nsIntRect& aRect2); // Computes the smallest rectangle that contains both aRect1 and aRect2 and // fills 'this' with the result. Returns FALSE and sets 'this' rect to be an // empty rect if both aRect1 and aRect2 are empty // // 'this' can be the same object as either aRect1 or aRect2 PRBool UnionRect(const nsIntRect& aRect1, const nsIntRect& aRect2); // Helpers for accessing the vertices nsIntPoint TopLeft() const { return nsIntPoint(x, y); } nsIntPoint TopRight() const { return nsIntPoint(XMost(), y); } nsIntPoint BottomLeft() const { return nsIntPoint(x, YMost()); } nsIntPoint BottomRight() const { return nsIntPoint(XMost(), YMost()); } nsIntSize Size() const { return nsIntSize(width, height); } // Helper methods for computing the extents PRInt32 XMost() const {return x + width;} PRInt32 YMost() const {return y + height;} inline nsRect ToAppUnits(nscoord aAppUnitsPerPixel) const; }; /* * App Unit/Pixel conversions */ // scale the rect but round to preserve centers inline nsIntRect nsRect::ToNearestPixels(nscoord aAppUnitsPerPixel) const { nsIntRect rect; rect.x = NSToIntRoundUp(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel))); rect.y = NSToIntRoundUp(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel))); rect.width = NSToIntRoundUp(NSAppUnitsToFloatPixels(XMost(), float(aAppUnitsPerPixel))) - rect.x; rect.height = NSToIntRoundUp(NSAppUnitsToFloatPixels(YMost(), float(aAppUnitsPerPixel))) - rect.y; return rect; } // scale the rect but round to smallest containing rect inline nsIntRect nsRect::ToOutsidePixels(nscoord aAppUnitsPerPixel) const { nsIntRect rect; rect.x = NSToIntFloor(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel))); rect.y = NSToIntFloor(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel))); rect.width = NSToIntCeil(NSAppUnitsToFloatPixels(XMost(), float(aAppUnitsPerPixel))) - rect.x; rect.height = NSToIntCeil(NSAppUnitsToFloatPixels(YMost(), float(aAppUnitsPerPixel))) - rect.y; return rect; } // scale the rect but round to largest contained rect inline nsIntRect nsRect::ToInsidePixels(nscoord aAppUnitsPerPixel) const { nsIntRect rect; rect.x = NSToIntCeil(NSAppUnitsToFloatPixels(x, float(aAppUnitsPerPixel))); rect.y = NSToIntCeil(NSAppUnitsToFloatPixels(y, float(aAppUnitsPerPixel))); rect.width = NSToIntFloor(NSAppUnitsToFloatPixels(XMost(), float(aAppUnitsPerPixel))) - rect.x; rect.height = NSToIntFloor(NSAppUnitsToFloatPixels(YMost(), float(aAppUnitsPerPixel))) - rect.y; return rect; } // app units are integer multiples of pixels, so no rounding needed inline nsRect nsIntRect::ToAppUnits(nscoord aAppUnitsPerPixel) const { return nsRect(NSIntPixelsToAppUnits(x, aAppUnitsPerPixel), NSIntPixelsToAppUnits(y, aAppUnitsPerPixel), NSIntPixelsToAppUnits(width, aAppUnitsPerPixel), NSIntPixelsToAppUnits(height, aAppUnitsPerPixel)); } #ifdef DEBUG // Diagnostics extern NS_GFX FILE* operator<<(FILE* out, const nsRect& rect); #endif // DEBUG #endif /* NSRECT_H */