/* *************************************************************************** * Copyright (C) 2008-2013, International Business Machines Corporation * and others. All Rights Reserved. *************************************************************************** * file name: uspoof.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2008Feb13 * created by: Andy Heninger * * Unicode Spoof Detection */ #include "unicode/utypes.h" #include "unicode/normalizer2.h" #include "unicode/uspoof.h" #include "unicode/ustring.h" #include "unicode/utf16.h" #include "cmemory.h" #include "cstring.h" #include "identifier_info.h" #include "mutex.h" #include "scriptset.h" #include "uassert.h" #include "ucln_in.h" #include "uspoof_impl.h" #include "umutex.h" #if !UCONFIG_NO_NORMALIZATION U_NAMESPACE_USE // // Static Objects used by the spoof impl, their thread safe initialization and their cleanup. // static UnicodeSet *gInclusionSet = NULL; static UnicodeSet *gRecommendedSet = NULL; static const Normalizer2 *gNfdNormalizer = NULL; static UMutex gInitMutex = U_MUTEX_INITIALIZER; static UBool U_CALLCONV uspoof_cleanup(void) { delete gInclusionSet; gInclusionSet = NULL; delete gRecommendedSet; gRecommendedSet = NULL; gNfdNormalizer = NULL; return TRUE; } static void initializeStatics() { Mutex m(&gInitMutex); UErrorCode status = U_ZERO_ERROR; if (gInclusionSet == NULL) { gInclusionSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\ \\-.\\u00B7\\u05F3\\u05F4\\u0F0B\\u200C\\u200D\\u2019]"), status); gRecommendedSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\ [0-z\\u00C0-\\u017E\\u01A0\\u01A1\\u01AF\\u01B0\\u01CD-\ \\u01DC\\u01DE-\\u01E3\\u01E6-\\u01F5\\u01F8-\\u021B\\u021E\ \\u021F\\u0226-\\u0233\\u02BB\\u02BC\\u02EC\\u0300-\\u0304\ \\u0306-\\u030C\\u030F-\\u0311\\u0313\\u0314\\u031B\\u0323-\ \\u0328\\u032D\\u032E\\u0330\\u0331\\u0335\\u0338\\u0339\ \\u0342-\\u0345\\u037B-\\u03CE\\u03FC-\\u045F\\u048A-\\u0525\ \\u0531-\\u0586\\u05D0-\\u05F2\\u0621-\\u063F\\u0641-\\u0655\ \\u0660-\\u0669\\u0670-\\u068D\\u068F-\\u06D5\\u06E5\\u06E6\ \\u06EE-\\u06FF\\u0750-\\u07B1\\u0901-\\u0939\\u093C-\\u094D\ \\u0950\\u0960-\\u0972\\u0979-\\u0A4D\\u0A5C-\\u0A74\\u0A81-\ \\u0B43\\u0B47-\\u0B61\\u0B66-\\u0C56\\u0C60\\u0C61\\u0C66-\ \\u0CD6\\u0CE0-\\u0CEF\\u0D02-\\u0D28\\u0D2A-\\u0D39\\u0D3D-\ \\u0D43\\u0D46-\\u0D4D\\u0D57-\\u0D61\\u0D66-\\u0D8E\\u0D91-\ \\u0DA5\\u0DA7-\\u0DDE\\u0DF2\\u0E01-\\u0ED9\\u0F00\\u0F20-\ \\u0F8B\\u0F90-\\u109D\\u10D0-\\u10F0\\u10F7-\\u10FA\\u1200-\ \\u135A\\u135F\\u1380-\\u138F\\u1401-\\u167F\\u1780-\\u17A2\ \\u17A5-\\u17A7\\u17A9-\\u17B3\\u17B6-\\u17CA\\u17D2\\u17D7-\ \\u17DC\\u17E0-\\u17E9\\u1810-\\u18A8\\u18AA-\\u18F5\\u1E00-\ \\u1E99\\u1F00-\\u1FFC\\u2D30-\\u2D65\\u2D80-\\u2DDE\\u3005-\ \\u3007\\u3041-\\u31B7\\u3400-\\u9FCB\\uA000-\\uA48C\\uA67F\ \\uA717-\\uA71F\\uA788\\uAA60-\\uAA7B\\uAC00-\\uD7A3\\uFA0E-\ \\uFA29\\U00020000-\ \\U0002B734]-[[:Cn:][:nfkcqc=n:][:XIDC=n:]]]"), status); gNfdNormalizer = Normalizer2::getNFDInstance(status); } ucln_i18n_registerCleanup(UCLN_I18N_SPOOF, uspoof_cleanup); return; } U_CAPI USpoofChecker * U_EXPORT2 uspoof_open(UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } initializeStatics(); SpoofImpl *si = new SpoofImpl(SpoofData::getDefault(*status), *status); if (U_FAILURE(*status)) { delete si; si = NULL; } return reinterpret_cast(si); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } initializeStatics(); SpoofData *sd = new SpoofData(data, length, *status); SpoofImpl *si = new SpoofImpl(sd, *status); if (U_FAILURE(*status)) { delete sd; delete si; return NULL; } if (sd == NULL || si == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; delete sd; delete si; return NULL; } if (pActualLength != NULL) { *pActualLength = sd->fRawData->fLength; } return reinterpret_cast(si); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_clone(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *src = SpoofImpl::validateThis(sc, *status); if (src == NULL) { return NULL; } SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor if (U_FAILURE(*status)) { delete result; result = NULL; } return reinterpret_cast(result); } U_CAPI void U_EXPORT2 uspoof_close(USpoofChecker *sc) { UErrorCode status = U_ZERO_ERROR; SpoofImpl *This = SpoofImpl::validateThis(sc, status); delete This; } U_CAPI void U_EXPORT2 uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } // Verify that the requested checks are all ones (bits) that // are acceptable, known values. if (checks & ~USPOOF_ALL_CHECKS) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } This->fChecks = checks; } U_CAPI int32_t U_EXPORT2 uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return 0; } return This->fChecks; } U_CAPI void U_EXPORT2 uspoof_setRestrictionLevel(USpoofChecker *sc, URestrictionLevel restrictionLevel) { UErrorCode status = U_ZERO_ERROR; SpoofImpl *This = SpoofImpl::validateThis(sc, status); if (This != NULL) { This->fRestrictionLevel = restrictionLevel; } } U_CAPI URestrictionLevel U_EXPORT2 uspoof_getRestrictionLevel(const USpoofChecker *sc) { UErrorCode status = U_ZERO_ERROR; const SpoofImpl *This = SpoofImpl::validateThis(sc, status); if (This == NULL) { return USPOOF_UNRESTRICTIVE; } return This->fRestrictionLevel; } U_CAPI void U_EXPORT2 uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } This->setAllowedLocales(localesList, *status); } U_CAPI const char * U_EXPORT2 uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return NULL; } return This->getAllowedLocales(*status); } U_CAPI const USet * U_EXPORT2 uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) { const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status); return result->toUSet(); } U_CAPI const UnicodeSet * U_EXPORT2 uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return NULL; } return This->fAllowedCharsSet; } U_CAPI void U_EXPORT2 uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) { const UnicodeSet *set = UnicodeSet::fromUSet(chars); uspoof_setAllowedUnicodeSet(sc, set, status); } U_CAPI void U_EXPORT2 uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } if (chars->isBogus()) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } UnicodeSet *clonedSet = static_cast(chars->clone()); if (clonedSet == NULL || clonedSet->isBogus()) { *status = U_MEMORY_ALLOCATION_ERROR; return; } clonedSet->freeze(); delete This->fAllowedCharsSet; This->fAllowedCharsSet = clonedSet; This->fChecks |= USPOOF_CHAR_LIMIT; } U_CAPI int32_t U_EXPORT2 uspoof_check(const USpoofChecker *sc, const UChar *id, int32_t length, int32_t *position, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return 0; } if (length < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString idStr((length == -1), id, length); // Aliasing constructor. int32_t result = uspoof_checkUnicodeString(sc, idStr, position, status); return result; } U_CAPI int32_t U_EXPORT2 uspoof_checkUTF8(const USpoofChecker *sc, const char *id, int32_t length, int32_t *position, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } UnicodeString idStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : uprv_strlen(id))); int32_t result = uspoof_checkUnicodeString(sc, idStr, position, status); return result; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusable(const USpoofChecker *sc, const UChar *id1, int32_t length1, const UChar *id2, int32_t length2, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length1 < -1 || length2 < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString id1Str((length1==-1), id1, length1); // Aliasing constructor UnicodeString id2Str((length2==-1), id2, length2); // Aliasing constructor return uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status); } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUTF8(const USpoofChecker *sc, const char *id1, int32_t length1, const char *id2, int32_t length2, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length1 < -1 || length2 < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString id1Str = UnicodeString::fromUTF8(StringPiece(id1, length1>=0? length1 : uprv_strlen(id1))); UnicodeString id2Str = UnicodeString::fromUTF8(StringPiece(id2, length2>=0? length2 : uprv_strlen(id2))); int32_t results = uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status); return results; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &id1, const icu::UnicodeString &id2, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } // // See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable, // and for definitions of the types (single, whole, mixed-script) of confusables. // We only care about a few of the check flags. Ignore the others. // If no tests relavant to this function have been specified, return an error. // TODO: is this really the right thing to do? It's probably an error on the caller's part, // but logically we would just return 0 (no error). if ((This->fChecks & (USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_WHOLE_SCRIPT_CONFUSABLE)) == 0) { *status = U_INVALID_STATE_ERROR; return 0; } int32_t flagsForSkeleton = This->fChecks & USPOOF_ANY_CASE; int32_t result = 0; IdentifierInfo *identifierInfo = This->getIdentifierInfo(*status); if (U_FAILURE(*status)) { return 0; } identifierInfo->setIdentifier(id1, *status); int32_t id1ScriptCount = identifierInfo->getScriptCount(); identifierInfo->setIdentifier(id2, *status); int32_t id2ScriptCount = identifierInfo->getScriptCount(); This->releaseIdentifierInfo(identifierInfo); identifierInfo = NULL; if (This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { UnicodeString id1Skeleton; UnicodeString id2Skeleton; if (id1ScriptCount <= 1 && id2ScriptCount <= 1) { flagsForSkeleton |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id1, id1Skeleton, status); uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id2, id2Skeleton, status); if (id1Skeleton == id2Skeleton) { result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; } } } if (result & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { // If the two inputs are single script confusable they cannot also be // mixed or whole script confusable, according to the UAX39 definitions. // So we can skip those tests. return result; } // Two identifiers are whole script confusable if each is of a single script // and they are mixed script confusable. UBool possiblyWholeScriptConfusables = id1ScriptCount <= 1 && id2ScriptCount <= 1 && (This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE); // // Mixed Script Check // if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) || possiblyWholeScriptConfusables ) { // For getSkeleton(), resetting the USPOOF_SINGLE_SCRIPT_CONFUSABLE flag will get us // the mixed script table skeleton, which is what we want. // The Any Case / Lower Case bit in the skelton flags was set at the top of the function. UnicodeString id1Skeleton; UnicodeString id2Skeleton; flagsForSkeleton &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE; uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id1, id1Skeleton, status); uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id2, id2Skeleton, status); if (id1Skeleton == id2Skeleton) { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; if (possiblyWholeScriptConfusables) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } } } return result; } U_CAPI int32_t U_EXPORT2 uspoof_checkUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &id, int32_t *position, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return 0; } int32_t result = 0; IdentifierInfo *identifierInfo = NULL; if ((This->fChecks) & (USPOOF_RESTRICTION_LEVEL | USPOOF_MIXED_NUMBERS)) { identifierInfo = This->getIdentifierInfo(*status); if (U_FAILURE(*status)) { goto cleanupAndReturn; } identifierInfo->setIdentifier(id, *status); identifierInfo->setIdentifierProfile(*This->fAllowedCharsSet); } if ((This->fChecks) & USPOOF_RESTRICTION_LEVEL) { URestrictionLevel idRestrictionLevel = identifierInfo->getRestrictionLevel(*status); if (idRestrictionLevel > This->fRestrictionLevel) { result |= USPOOF_RESTRICTION_LEVEL; } if (This->fChecks & USPOOF_AUX_INFO) { result |= idRestrictionLevel; } } if ((This->fChecks) & USPOOF_MIXED_NUMBERS) { const UnicodeSet *numerics = identifierInfo->getNumerics(); if (numerics->size() > 1) { result |= USPOOF_MIXED_NUMBERS; } // TODO: ICU4J returns the UnicodeSet of the numerics found in the identifier. // We have no easy way to do the same in C. // if (checkResult != null) { // checkResult.numerics = numerics; // } } if (This->fChecks & (USPOOF_CHAR_LIMIT)) { int32_t i; UChar32 c; int32_t length = id.length(); for (i=0; ifAllowedCharsSet->contains(c)) { result |= USPOOF_CHAR_LIMIT; break; } } } if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_INVISIBLE)) { // These are the checks that need to be done on NFD input UnicodeString nfdText; gNfdNormalizer->normalize(id, nfdText, *status); int32_t nfdLength = nfdText.length(); if (This->fChecks & USPOOF_INVISIBLE) { // scan for more than one occurence of the same non-spacing mark // in a sequence of non-spacing marks. int32_t i; UChar32 c; UChar32 firstNonspacingMark = 0; UBool haveMultipleMarks = FALSE; UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence. for (i=0; ifChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE)) { // The basic test is the same for both whole and mixed script confusables. // Compute the set of scripts that every input character has a confusable in. // For this computation an input character is always considered to be // confusable with itself in its own script. // // If the number of such scripts is two or more, and the input consisted of // characters all from a single script, we have a whole script confusable. // (The two scripts will be the original script and the one that is confusable) // // If the number of such scripts >= one, and the original input contained characters from // more than one script, we have a mixed script confusable. (We can transform // some of the characters, and end up with a visually similar string all in // one script.) if (identifierInfo == NULL) { identifierInfo = This->getIdentifierInfo(*status); if (U_FAILURE(*status)) { goto cleanupAndReturn; } identifierInfo->setIdentifier(id, *status); } int32_t scriptCount = identifierInfo->getScriptCount(); ScriptSet scripts; This->wholeScriptCheck(nfdText, &scripts, *status); int32_t confusableScriptCount = scripts.countMembers(); //printf("confusableScriptCount = %d\n", confusableScriptCount); if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) && confusableScriptCount >= 2 && scriptCount == 1) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) && confusableScriptCount >= 1 && scriptCount > 1) { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; } } } cleanupAndReturn: This->releaseIdentifierInfo(identifierInfo); if (position != NULL) { *position = 0; } return result; } U_CAPI int32_t U_EXPORT2 uspoof_getSkeleton(const USpoofChecker *sc, uint32_t type, const UChar *id, int32_t length, UChar *dest, int32_t destCapacity, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString idStr((length==-1), id, length); // Aliasing constructor UnicodeString destStr; uspoof_getSkeletonUnicodeString(sc, type, idStr, destStr, status); destStr.extract(dest, destCapacity, *status); return destStr.length(); } U_I18N_API UnicodeString & U_EXPORT2 uspoof_getSkeletonUnicodeString(const USpoofChecker *sc, uint32_t type, const UnicodeString &id, UnicodeString &dest, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return dest; } int32_t tableMask = 0; switch (type) { case 0: tableMask = USPOOF_ML_TABLE_FLAG; break; case USPOOF_SINGLE_SCRIPT_CONFUSABLE: tableMask = USPOOF_SL_TABLE_FLAG; break; case USPOOF_ANY_CASE: tableMask = USPOOF_MA_TABLE_FLAG; break; case USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE: tableMask = USPOOF_SA_TABLE_FLAG; break; default: *status = U_ILLEGAL_ARGUMENT_ERROR; return dest; } UnicodeString nfdId; gNfdNormalizer->normalize(id, nfdId, *status); // Apply the skeleton mapping to the NFD normalized input string // Accumulate the skeleton, possibly unnormalized, in a UnicodeString. int32_t inputIndex = 0; UnicodeString skelStr; int32_t normalizedLen = nfdId.length(); for (inputIndex=0; inputIndex < normalizedLen; ) { UChar32 c = nfdId.char32At(inputIndex); inputIndex += U16_LENGTH(c); This->confusableLookup(c, tableMask, skelStr); } gNfdNormalizer->normalize(skelStr, dest, *status); return dest; } U_CAPI int32_t U_EXPORT2 uspoof_getSkeletonUTF8(const USpoofChecker *sc, uint32_t type, const char *id, int32_t length, char *dest, int32_t destCapacity, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString srcStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : uprv_strlen(id))); UnicodeString destStr; uspoof_getSkeletonUnicodeString(sc, type, srcStr, destStr, status); if (U_FAILURE(*status)) { return 0; } int32_t lengthInUTF8 = 0; u_strToUTF8(dest, destCapacity, &lengthInUTF8, destStr.getBuffer(), destStr.length(), status); return lengthInUTF8; } U_CAPI int32_t U_EXPORT2 uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { U_ASSERT(U_FAILURE(*status)); return 0; } int32_t dataSize = This->fSpoofData->fRawData->fLength; if (capacity < dataSize) { *status = U_BUFFER_OVERFLOW_ERROR; return dataSize; } uprv_memcpy(buf, This->fSpoofData->fRawData, dataSize); return dataSize; } U_CAPI const USet * U_EXPORT2 uspoof_getInclusionSet(UErrorCode *) { initializeStatics(); return gInclusionSet->toUSet(); } U_CAPI const USet * U_EXPORT2 uspoof_getRecommendedSet(UErrorCode *) { initializeStatics(); return gRecommendedSet->toUSet(); } U_I18N_API const UnicodeSet * U_EXPORT2 uspoof_getInclusionUnicodeSet(UErrorCode *) { initializeStatics(); return gInclusionSet; } U_I18N_API const UnicodeSet * U_EXPORT2 uspoof_getRecommendedUnicodeSet(UErrorCode *) { initializeStatics(); return gRecommendedSet; } #endif // !UCONFIG_NO_NORMALIZATION