/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef AudioEventTimeline_h_ #define AudioEventTimeline_h_ #include "mozilla/Assertions.h" #include "mozilla/FloatingPoint.h" #include "mozilla/TypedEnum.h" #include "nsTArray.h" #include "math.h" namespace mozilla { namespace dom { // This is an internal helper class and should not be used outside of this header. struct AudioTimelineEvent { enum Type MOZ_ENUM_TYPE(uint32_t) { SetValue, LinearRamp, ExponentialRamp, SetTarget, SetValueCurve }; AudioTimelineEvent(Type aType, double aTime, float aValue, double aTimeConstant = 0.0, float aDuration = 0.0, float* aCurve = nullptr, uint32_t aCurveLength = 0) : mType(aType) , mTimeConstant(aTimeConstant) , mDuration(aDuration) #ifdef DEBUG , mTimeIsInTicks(false) #endif { if (aType == AudioTimelineEvent::SetValueCurve) { mCurve = aCurve; mCurveLength = aCurveLength; } else { mValue = aValue; mTime = aTime; } } bool IsValid() const { return IsValid(mTime) && IsValid(mValue) && IsValid(mTimeConstant) && IsValid(mDuration); } template TimeType Time() const; void SetTimeInTicks(int64_t aTimeInTicks) { mTimeInTicks = aTimeInTicks; #ifdef DEBUG mTimeIsInTicks = true; #endif } Type mType; union { float mValue; uint32_t mCurveLength; }; union { // The time for an event can either be in absolute value or in ticks. // Initially the time of the event is always in absolute value. // In order to convert it to ticks, call SetTimeInTicks. Once this // method has been called for an event, the time cannot be converted // back to absolute value. union { double mTime; int64_t mTimeInTicks; }; float* mCurve; }; double mTimeConstant; double mDuration; #ifdef DEBUG bool mTimeIsInTicks; #endif private: static bool IsValid(double value) { return MOZ_DOUBLE_IS_FINITE(value); } }; template <> inline double AudioTimelineEvent::Time() const { MOZ_ASSERT(!mTimeIsInTicks); return mTime; } template <> inline int64_t AudioTimelineEvent::Time() const { MOZ_ASSERT(mTimeIsInTicks); return mTimeInTicks; } /** * This class will be instantiated with different template arguments for testing and * production code. * * ErrorResult is a type which satisfies the following: * - Implements a Throw() method taking an nsresult argument, representing an error code. */ template class AudioEventTimeline { public: explicit AudioEventTimeline(float aDefaultValue) : mValue(aDefaultValue) { } float Value() const { // TODO: Return the current value based on the timeline of the AudioContext return mValue; } void SetValue(float aValue) { // Silently don't change anything if there are any events if (mEvents.IsEmpty()) { mValue = aValue; } } float ComputedValue() const { // TODO: implement return 0; } void SetValueAtTime(float aValue, double aStartTime, ErrorResult& aRv) { InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValue, aStartTime, aValue), aRv); } void LinearRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv) { InsertEvent(AudioTimelineEvent(AudioTimelineEvent::LinearRamp, aEndTime, aValue), aRv); } void ExponentialRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv) { InsertEvent(AudioTimelineEvent(AudioTimelineEvent::ExponentialRamp, aEndTime, aValue), aRv); } void SetTargetAtTime(float aTarget, double aStartTime, double aTimeConstant, ErrorResult& aRv) { InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetTarget, aStartTime, aTarget, aTimeConstant), aRv); } void SetValueCurveAtTime(const float* aValues, uint32_t aValuesLength, double aStartTime, double aDuration, ErrorResult& aRv) { // TODO: implement // Note that we will need to copy the buffer here. // InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValueCurve, aStartTime, 0.0f, 0.0f, aDuration, aValues, aValuesLength), aRv); } void CancelScheduledValues(double aStartTime) { for (unsigned i = 0; i < mEvents.Length(); ++i) { if (mEvents[i].mTime >= aStartTime) { #ifdef DEBUG // Sanity check: the array should be sorted, so all of the following // events should have a time greater than aStartTime too. for (unsigned j = i + 1; j < mEvents.Length(); ++j) { MOZ_ASSERT(mEvents[j].mTime >= aStartTime); } #endif mEvents.TruncateLength(i); break; } } } // This method computes the AudioParam value at a given time based on the event timeline template float GetValueAtTime(TimeType aTime) const { const AudioTimelineEvent* previous = nullptr; const AudioTimelineEvent* next = nullptr; bool bailOut = false; for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) { switch (mEvents[i].mType) { case AudioTimelineEvent::SetValue: case AudioTimelineEvent::SetTarget: case AudioTimelineEvent::LinearRamp: case AudioTimelineEvent::ExponentialRamp: if (aTime == mEvents[i].template Time()) { // Find the last event with the same time do { ++i; } while (i < mEvents.Length() && aTime == mEvents[i].template Time()); return mEvents[i - 1].mValue; } previous = next; next = &mEvents[i]; if (aTime < mEvents[i].template Time()) { bailOut = true; } break; case AudioTimelineEvent::SetValueCurve: // TODO: implement break; default: MOZ_ASSERT(false, "unreached"); } } // Handle the case where the time is past all of the events if (!bailOut) { previous = next; next = nullptr; } // Just return the default value if we did not find anything if (!previous && !next) { return mValue; } // If the requested time is before all of the existing events if (!previous) { switch (next->mType) { case AudioTimelineEvent::SetValue: case AudioTimelineEvent::SetTarget: // The requested time is before the first event return mValue; case AudioTimelineEvent::LinearRamp: // Use t=0 as T0 and v=defaultValue as V0 return LinearInterpolate(0.0, mValue, next->template Time(), next->mValue, aTime); case AudioTimelineEvent::ExponentialRamp: // Use t=0 as T0 and v=defaultValue as V0 return ExponentialInterpolate(0.0, mValue, next->template Time(), next->mValue, aTime); case AudioTimelineEvent::SetValueCurve: // TODO: implement return 0.0f; } MOZ_ASSERT(false, "unreached"); } // SetTarget nodes can be handled no matter what their next node is (if they have one) if (previous->mType == AudioTimelineEvent::SetTarget) { // Follow the curve, without regard to the next node return ExponentialApproach(previous->template Time(), mValue, previous->mValue, previous->mTimeConstant, aTime); } // If the requested time is after all of the existing events if (!next) { switch (previous->mType) { case AudioTimelineEvent::SetValue: case AudioTimelineEvent::LinearRamp: case AudioTimelineEvent::ExponentialRamp: // The value will be constant after the last event return previous->mValue; case AudioTimelineEvent::SetValueCurve: // TODO: implement return 0.0f; case AudioTimelineEvent::SetTarget: MOZ_ASSERT(false, "unreached"); } MOZ_ASSERT(false, "unreached"); } // Finally, handle the case where we have both a previous and a next event // First, handle the case where our range ends up in a ramp event switch (next->mType) { case AudioTimelineEvent::LinearRamp: return LinearInterpolate(previous->template Time(), previous->mValue, next->template Time(), next->mValue, aTime); case AudioTimelineEvent::ExponentialRamp: return ExponentialInterpolate(previous->template Time(), previous->mValue, next->template Time(), next->mValue, aTime); case AudioTimelineEvent::SetValue: case AudioTimelineEvent::SetTarget: case AudioTimelineEvent::SetValueCurve: break; } // Now handle all other cases switch (previous->mType) { case AudioTimelineEvent::SetValue: case AudioTimelineEvent::LinearRamp: case AudioTimelineEvent::ExponentialRamp: // If the next event type is neither linear or exponential ramp, the // value is constant. return previous->mValue; case AudioTimelineEvent::SetValueCurve: // TODO: implement return 0.0f; case AudioTimelineEvent::SetTarget: MOZ_ASSERT(false, "unreached"); } MOZ_ASSERT(false, "unreached"); return 0.0f; } // Return the number of events scheduled uint32_t GetEventCount() const { return mEvents.Length(); } static float LinearInterpolate(double t0, float v0, double t1, float v1, double t) { return v0 + (v1 - v0) * ((t - t0) / (t1 - t0)); } static float ExponentialInterpolate(double t0, float v0, double t1, float v1, double t) { return v0 * powf(v1 / v0, (t - t0) / (t1 - t0)); } static float ExponentialApproach(double t0, double v0, float v1, double timeConstant, double t) { return v1 + (v0 - v1) * expf(-(t - t0) / timeConstant); } void ConvertEventTimesToTicks(int64_t (*aConvertor)(double aTime, void* aClosure), void* aClosure) { for (unsigned i = 0; i < mEvents.Length(); ++i) { mEvents[i].SetTimeInTicks(aConvertor(mEvents[i].template Time(), aClosure)); } } private: const AudioTimelineEvent* GetPreviousEvent(double aTime) const { const AudioTimelineEvent* previous = nullptr; const AudioTimelineEvent* next = nullptr; bool bailOut = false; for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) { switch (mEvents[i].mType) { case AudioTimelineEvent::SetValue: case AudioTimelineEvent::SetTarget: case AudioTimelineEvent::LinearRamp: case AudioTimelineEvent::ExponentialRamp: if (aTime == mEvents[i].mTime) { // Find the last event with the same time do { ++i; } while (i < mEvents.Length() && aTime == mEvents[i].mTime); return &mEvents[i - 1]; } previous = next; next = &mEvents[i]; if (aTime < mEvents[i].mTime) { bailOut = true; } break; case AudioTimelineEvent::SetValueCurve: // TODO: implement break; default: MOZ_ASSERT(false, "unreached"); } } // Handle the case where the time is past all of the events if (!bailOut) { previous = next; } return previous; } void InsertEvent(const AudioTimelineEvent& aEvent, ErrorResult& aRv) { if (!aEvent.IsValid()) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } // Make sure that non-curve events don't fall within the duration of a // curve event. for (unsigned i = 0; i < mEvents.Length(); ++i) { if (mEvents[i].mType == AudioTimelineEvent::SetValueCurve && mEvents[i].mTime <= aEvent.mTime && (mEvents[i].mTime + mEvents[i].mDuration) >= aEvent.mTime) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } } // Make sure that curve events don't fall in a range which includes other // events. if (aEvent.mType == AudioTimelineEvent::SetValueCurve) { for (unsigned i = 0; i < mEvents.Length(); ++i) { if (mEvents[i].mTime >= aEvent.mTime && mEvents[i].mTime <= (aEvent.mTime + aEvent.mDuration)) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } } } // Make sure that invalid values are not used for exponential curves if (aEvent.mType == AudioTimelineEvent::ExponentialRamp) { if (aEvent.mValue <= 0.f) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } const AudioTimelineEvent* previousEvent = GetPreviousEvent(aEvent.mTime); if (previousEvent) { if (previousEvent->mValue <= 0.f) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } } else { if (mValue <= 0.f) { aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } } } for (unsigned i = 0; i < mEvents.Length(); ++i) { if (aEvent.mTime == mEvents[i].mTime) { if (aEvent.mType == mEvents[i].mType) { // If times and types are equal, replace the event mEvents.ReplaceElementAt(i, aEvent); } else { // Otherwise, place the element after the last event of another type do { ++i; } while (i < mEvents.Length() && aEvent.mType != mEvents[i].mType && aEvent.mTime == mEvents[i].mTime); mEvents.InsertElementAt(i, aEvent); } return; } // Otherwise, place the event right after the latest existing event if (aEvent.mTime < mEvents[i].mTime) { mEvents.InsertElementAt(i, aEvent); return; } } // If we couldn't find a place for the event, just append it to the list mEvents.AppendElement(aEvent); } private: // This is a sorted array of the events in the timeline. Queries of this // data structure should probably be more frequent than modifications to it, // and that is the reason why we're using a simple array as the data structure. // We can optimize this in the future if the performance of the array ends up // being a bottleneck. nsTArray mEvents; float mValue; }; } } #endif