/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* vim: set ts=8 sts=4 et sw=4 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsAtomTable.h" #include "nsAutoPtr.h" #include "nsCOMPtr.h" #include "nsCOMArray.h" #include "nsServiceManagerUtils.h" #include "nsMemoryReporterManager.h" #include "nsISimpleEnumerator.h" #include "nsThreadUtils.h" #include "nsIObserverService.h" #if defined(XP_LINUX) #include "nsMemoryInfoDumper.h" #endif #include "mozilla/Attributes.h" #include "mozilla/PodOperations.h" #include "mozilla/Services.h" #include "mozilla/Telemetry.h" #ifndef XP_WIN #include #endif using namespace mozilla; #if defined(MOZ_MEMORY) # define HAVE_JEMALLOC_STATS 1 # include "mozmemory.h" #endif // MOZ_MEMORY #if defined(XP_LINUX) static nsresult GetProcSelfStatmField(int aField, int64_t* aN) { // There are more than two fields, but we're only interested in the first // two. static const int MAX_FIELD = 2; size_t fields[MAX_FIELD]; MOZ_ASSERT(aField < MAX_FIELD, "bad field number"); FILE* f = fopen("/proc/self/statm", "r"); if (f) { int nread = fscanf(f, "%zu %zu", &fields[0], &fields[1]); fclose(f); if (nread == MAX_FIELD) { *aN = fields[aField] * getpagesize(); return NS_OK; } } return NS_ERROR_FAILURE; } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult GetVsize(int64_t* aN) { return GetProcSelfStatmField(0, aN); } static nsresult GetResident(int64_t* aN) { return GetProcSelfStatmField(1, aN); } static nsresult GetResidentFast(int64_t* aN) { return GetResident(aN); } #define HAVE_RESIDENT_UNIQUE_REPORTER class ResidentUniqueReporter MOZ_FINAL : public MemoryUniReporter { public: ResidentUniqueReporter() : MemoryUniReporter("resident-unique", KIND_OTHER, UNITS_BYTES, "Memory mapped by the process that is present in physical memory and not " "shared with any other processes. This is also known as the process's unique " "set size (USS). This is the amount of RAM we'd expect to be freed if we " "closed this process.") {} private: NS_IMETHOD GetAmount(int64_t *aAmount) { // You might be tempted to calculate USS by subtracting the "shared" value // from the "resident" value in /proc//statm. But at least on Linux, // statm's "shared" value actually counts pages backed by files, which has // little to do with whether the pages are actually shared. // /proc/self/smaps on the other hand appears to give us the correct // information. *aAmount = 0; FILE *f = fopen("/proc/self/smaps", "r"); NS_ENSURE_STATE(f); int64_t total = 0; char line[256]; while (fgets(line, sizeof(line), f)) { long long val = 0; if (sscanf(line, "Private_Dirty: %lld kB", &val) == 1 || sscanf(line, "Private_Clean: %lld kB", &val) == 1) { total += val * 1024; // convert from kB to bytes } } *aAmount = total; fclose(f); return NS_OK; } }; #elif defined(__DragonFly__) || defined(__FreeBSD__) \ || defined(__NetBSD__) || defined(__OpenBSD__) #include #include #if defined(__DragonFly__) || defined(__FreeBSD__) #include #endif #include #if defined(__NetBSD__) #undef KERN_PROC #define KERN_PROC KERN_PROC2 #define KINFO_PROC struct kinfo_proc2 #else #define KINFO_PROC struct kinfo_proc #endif #if defined(__DragonFly__) #define KP_SIZE(kp) (kp.kp_vm_map_size) #define KP_RSS(kp) (kp.kp_vm_rssize * getpagesize()) #elif defined(__FreeBSD__) #define KP_SIZE(kp) (kp.ki_size) #define KP_RSS(kp) (kp.ki_rssize * getpagesize()) #elif defined(__NetBSD__) #define KP_SIZE(kp) (kp.p_vm_msize * getpagesize()) #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) #elif defined(__OpenBSD__) #define KP_SIZE(kp) ((kp.p_vm_dsize + kp.p_vm_ssize \ + kp.p_vm_tsize) * getpagesize()) #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) #endif static nsresult GetKinfoProcSelf(KINFO_PROC* aProc) { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid(), #if defined(__NetBSD__) || defined(__OpenBSD__) sizeof(KINFO_PROC), 1, #endif }; u_int miblen = sizeof(mib) / sizeof(mib[0]); size_t size = sizeof(KINFO_PROC); if (sysctl(mib, miblen, aProc, &size, NULL, 0)) return NS_ERROR_FAILURE; return NS_OK; } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult GetVsize(int64_t* aN) { KINFO_PROC proc; nsresult rv = GetKinfoProcSelf(&proc); if (NS_SUCCEEDED(rv)) *aN = KP_SIZE(proc); return rv; } static nsresult GetResident(int64_t* aN) { KINFO_PROC proc; nsresult rv = GetKinfoProcSelf(&proc); if (NS_SUCCEEDED(rv)) *aN = KP_RSS(proc); return rv; } static nsresult GetResidentFast(int64_t* aN) { return GetResident(aN); } #elif defined(SOLARIS) #include #include #include static void XMappingIter(int64_t& vsize, int64_t& resident) { vsize = -1; resident = -1; int mapfd = open("/proc/self/xmap", O_RDONLY); struct stat st; prxmap_t* prmapp = NULL; if (mapfd >= 0) { if (!fstat(mapfd, &st)) { int nmap = st.st_size / sizeof(prxmap_t); while (1) { // stat(2) on /proc//xmap returns an incorrect value, // prior to the release of Solaris 11. // Here is a workaround for it. nmap *= 2; prmapp = (prxmap_t*)malloc((nmap + 1) * sizeof(prxmap_t)); if (!prmapp) { // out of memory break; } int n = pread(mapfd, prmapp, (nmap + 1) * sizeof(prxmap_t), 0); if (n < 0) { break; } if (nmap >= n / sizeof (prxmap_t)) { vsize = 0; resident = 0; for (int i = 0; i < n / sizeof (prxmap_t); i++) { vsize += prmapp[i].pr_size; resident += prmapp[i].pr_rss * prmapp[i].pr_pagesize; } break; } free(prmapp); } free(prmapp); } close(mapfd); } } #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult GetVsize(int64_t* aN) { int64_t vsize, resident; XMappingIter(vsize, resident); if (vsize == -1) { return NS_ERROR_FAILURE; } *aN = vsize; return NS_OK; } static nsresult GetResident(int64_t* aN) { int64_t vsize, resident; XMappingIter(vsize, resident); if (resident == -1) { return NS_ERROR_FAILURE; } *aN = resident; return NS_OK; } static nsresult GetResidentFast(int64_t* aN) { return GetResident(aN); } #elif defined(XP_MACOSX) #include #include static bool GetTaskBasicInfo(struct task_basic_info* aTi) { mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT; kern_return_t kr = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)aTi, &count); return kr == KERN_SUCCESS; } // The VSIZE figure on Mac includes huge amounts of shared memory and is always // absurdly high, eg. 2GB+ even at start-up. But both 'top' and 'ps' report // it, so we might as well too. #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult GetVsize(int64_t* aN) { task_basic_info ti; if (!GetTaskBasicInfo(&ti)) return NS_ERROR_FAILURE; *aN = ti.virtual_size; return NS_OK; } // If we're using jemalloc on Mac, we need to instruct jemalloc to purge the // pages it has madvise(MADV_FREE)'d before we read our RSS in order to get // an accurate result. The OS will take away MADV_FREE'd pages when there's // memory pressure, so ideally, they shouldn't count against our RSS. // // Purging these pages can take a long time for some users (see bug 789975), // so we provide the option to get the RSS without purging first. static nsresult GetResident(int64_t* aN, bool aDoPurge) { #ifdef HAVE_JEMALLOC_STATS if (aDoPurge) { Telemetry::AutoTimer timer; jemalloc_purge_freed_pages(); } #endif task_basic_info ti; if (!GetTaskBasicInfo(&ti)) return NS_ERROR_FAILURE; *aN = ti.resident_size; return NS_OK; } static nsresult GetResidentFast(int64_t* aN) { return GetResident(aN, /* doPurge = */ false); } static nsresult GetResident(int64_t* aN) { return GetResident(aN, /* doPurge = */ true); } #elif defined(XP_WIN) #include #include #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 static nsresult GetVsize(int64_t* aN) { MEMORYSTATUSEX s; s.dwLength = sizeof(s); if (!GlobalMemoryStatusEx(&s)) { return NS_ERROR_FAILURE; } *aN = s.ullTotalVirtual - s.ullAvailVirtual; return NS_OK; } static nsresult GetResident(int64_t* aN) { PROCESS_MEMORY_COUNTERS pmc; pmc.cb = sizeof(PROCESS_MEMORY_COUNTERS); if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { return NS_ERROR_FAILURE; } *aN = pmc.WorkingSetSize; return NS_OK; } static nsresult GetResidentFast(int64_t* aN) { return GetResident(aN); } #define HAVE_PRIVATE_REPORTER class PrivateReporter MOZ_FINAL : public MemoryUniReporter { public: PrivateReporter() : MemoryUniReporter("private", KIND_OTHER, UNITS_BYTES, "Memory that cannot be shared with other processes, including memory that is " "committed and marked MEM_PRIVATE, data that is not mapped, and executable " "pages that have been written to.") {} NS_IMETHOD GetAmount(int64_t* aAmount) { PROCESS_MEMORY_COUNTERS_EX pmcex; pmcex.cb = sizeof(PROCESS_MEMORY_COUNTERS_EX); if (!GetProcessMemoryInfo( GetCurrentProcess(), (PPROCESS_MEMORY_COUNTERS) &pmcex, sizeof(pmcex))) { return NS_ERROR_FAILURE; } *aAmount = pmcex.PrivateUsage; return NS_OK; } }; #endif // XP_ #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS class VsizeReporter MOZ_FINAL : public MemoryUniReporter { public: VsizeReporter() : MemoryUniReporter("vsize", KIND_OTHER, UNITS_BYTES, "Memory mapped by the process, including code and data segments, the heap, " "thread stacks, memory explicitly mapped by the process via mmap and similar " "operations, and memory shared with other processes. This is the vsize figure " "as reported by 'top' and 'ps'. This figure is of limited use on Mac, where " "processes share huge amounts of memory with one another. But even on other " "operating systems, 'resident' is a much better measure of the memory " "resources used by the process.") {} NS_IMETHOD GetAmount(int64_t* aAmount) { return GetVsize(aAmount); } }; class ResidentReporter MOZ_FINAL : public MemoryUniReporter { public: ResidentReporter() : MemoryUniReporter("resident", KIND_OTHER, UNITS_BYTES, "Memory mapped by the process that is present in physical memory, also known " "as the resident set size (RSS). This is the best single figure to use when " "considering the memory resources used by the process, but it depends both on " "other processes being run and details of the OS kernel and so is best used " "for comparing the memory usage of a single process at different points in " "time.") {} NS_IMETHOD GetAmount(int64_t* aAmount) { return GetResident(aAmount); } }; #endif // HAVE_VSIZE_AND_RESIDENT_REPORTERS #ifdef XP_UNIX #include #define HAVE_PAGE_FAULT_REPORTERS 1 class PageFaultsSoftReporter MOZ_FINAL : public MemoryUniReporter { public: PageFaultsSoftReporter() : MemoryUniReporter("page-faults-soft", KIND_OTHER, UNITS_COUNT_CUMULATIVE, "The number of soft page faults (also known as 'minor page faults') that " "have occurred since the process started. A soft page fault occurs when the " "process tries to access a page which is present in physical memory but is " "not mapped into the process's address space. For instance, a process might " "observe soft page faults when it loads a shared library which is already " "present in physical memory. A process may experience many thousands of soft " "page faults even when the machine has plenty of available physical memory, " "and because the OS services a soft page fault without accessing the disk, " "they impact performance much less than hard page faults.") {} NS_IMETHOD GetAmount(int64_t* aAmount) { struct rusage usage; int err = getrusage(RUSAGE_SELF, &usage); if (err != 0) { return NS_ERROR_FAILURE; } *aAmount = usage.ru_minflt; return NS_OK; } }; class PageFaultsHardReporter MOZ_FINAL : public MemoryUniReporter { public: PageFaultsHardReporter() : MemoryUniReporter("page-faults-hard", KIND_OTHER, UNITS_COUNT_CUMULATIVE, "The number of hard page faults (also known as 'major page faults') that have " "occurred since the process started. A hard page fault occurs when a process " "tries to access a page which is not present in physical memory. The " "operating system must access the disk in order to fulfill a hard page fault. " "When memory is plentiful, you should see very few hard page faults. But if " "the process tries to use more memory than your machine has available, you " "may see many thousands of hard page faults. Because accessing the disk is up " "to a million times slower than accessing RAM, the program may run very " "slowly when it is experiencing more than 100 or so hard page faults a second.") {} NS_IMETHOD GetAmount(int64_t* aAmount) { struct rusage usage; int err = getrusage(RUSAGE_SELF, &usage); if (err != 0) { return NS_ERROR_FAILURE; } *aAmount = usage.ru_majflt; return NS_OK; } }; #endif // HAVE_PAGE_FAULT_REPORTERS /** ** memory reporter implementation for jemalloc and OSX malloc, ** to obtain info on total memory in use (that we know about, ** at least -- on OSX, there are sometimes other zones in use). **/ #ifdef HAVE_JEMALLOC_STATS class HeapAllocatedReporter MOZ_FINAL : public MemoryUniReporter { public: HeapAllocatedReporter() : MemoryUniReporter("heap-allocated", KIND_OTHER, UNITS_BYTES, "Memory mapped by the heap allocator that is currently allocated to the " "application. This may exceed the amount of memory requested by the " "application because the allocator regularly rounds up request sizes. (The " "exact amount requested is not recorded.)") {} private: int64_t Amount() MOZ_OVERRIDE { jemalloc_stats_t stats; jemalloc_stats(&stats); return (int64_t) stats.allocated; } }; class HeapOverheadWasteReporter MOZ_FINAL : public MemoryUniReporter { public: // We mark this and the other heap-overhead reporters as KIND_NONHEAP // because KIND_HEAP memory means "counted in heap-allocated", which this // is not. HeapOverheadWasteReporter() : MemoryUniReporter("explicit/heap-overhead/waste", KIND_NONHEAP, UNITS_BYTES, "Committed bytes which do not correspond to an active allocation and which the " "allocator is not intentionally keeping alive (i.e., not 'heap-bookkeeping' or " "'heap-page-cache'). Although the allocator will waste some space under any " "circumstances, a large value here may indicate that the heap is highly " "fragmented, or that allocator is performing poorly for some other reason.") {} private: int64_t Amount() { jemalloc_stats_t stats; jemalloc_stats(&stats); return stats.waste; } }; class HeapOverheadBookkeepingReporter MOZ_FINAL : public MemoryUniReporter { public: HeapOverheadBookkeepingReporter() : MemoryUniReporter("explicit/heap-overhead/bookkeeping", KIND_NONHEAP, UNITS_BYTES, "Committed bytes which the heap allocator uses for internal data structures.") {} private: int64_t Amount() { jemalloc_stats_t stats; jemalloc_stats(&stats); return stats.bookkeeping; } }; class HeapOverheadPageCacheReporter MOZ_FINAL : public MemoryUniReporter { public: HeapOverheadPageCacheReporter() : MemoryUniReporter("explicit/heap-overhead/page-cache", KIND_NONHEAP, UNITS_BYTES, "Memory which the allocator could return to the operating system, but hasn't. " "The allocator keeps this memory around as an optimization, so it doesn't " "have to ask the OS the next time it needs to fulfill a request. This value " "is typically not larger than a few megabytes.") {} private: int64_t Amount() { jemalloc_stats_t stats; jemalloc_stats(&stats); return (int64_t) stats.page_cache; } }; class HeapCommittedReporter MOZ_FINAL : public MemoryUniReporter { public: HeapCommittedReporter() : MemoryUniReporter("heap-committed", KIND_OTHER, UNITS_BYTES, "Memory mapped by the heap allocator that is committed, i.e. in physical " "memory or paged to disk. This value corresponds to 'heap-allocated' + " "'heap-waste' + 'heap-bookkeeping' + 'heap-page-cache', but because " "these values are read at different times, the result probably won't match " "exactly.") {} private: int64_t Amount() { jemalloc_stats_t stats; jemalloc_stats(&stats); return (int64_t) (stats.allocated + stats.waste + stats.bookkeeping + stats.page_cache); } }; class HeapOverheadRatioReporter MOZ_FINAL : public MemoryUniReporter { public: HeapOverheadRatioReporter() : MemoryUniReporter("heap-overhead-ratio", KIND_OTHER, UNITS_PERCENTAGE, "Ratio of committed, unused bytes to allocated bytes; i.e., " "'heap-overhead' / 'heap-allocated'. This measures the overhead of " "the heap allocator relative to amount of memory allocated.") {} private: int64_t Amount() { jemalloc_stats_t stats; jemalloc_stats(&stats); return (int64_t) 10000 * (stats.waste + stats.bookkeeping + stats.page_cache) / ((double)stats.allocated); } }; #endif // HAVE_JEMALLOC_STATS // Why is this here? At first glance, you'd think it could be defined and // registered with nsMemoryReporterManager entirely within nsAtomTable.cpp. // However, the obvious time to register it is when the table is initialized, // and that happens before XPCOM components are initialized, which means the // NS_RegisterMemoryReporter call fails. So instead we do it here. class AtomTablesReporter MOZ_FINAL : public MemoryUniReporter { public: AtomTablesReporter() : MemoryUniReporter("explicit/atom-tables", KIND_HEAP, UNITS_BYTES, "Memory used by the dynamic and static atoms tables.") {} private: int64_t Amount() { return NS_SizeOfAtomTablesIncludingThis(MallocSizeOf); } }; #ifdef MOZ_DMD namespace mozilla { namespace dmd { class DMDReporter MOZ_FINAL : public nsIMemoryReporter { public: DMDReporter() {} NS_DECL_ISUPPORTS NS_IMETHOD GetName(nsACString& aName) { aName.Assign("dmd"); return NS_OK; } NS_IMETHOD CollectReports(nsIMemoryReporterCallback* aCallback, nsISupports* aClosure) { dmd::Sizes sizes; dmd::SizeOf(&sizes); #define REPORT(_path, _amount, _desc) \ do { \ nsresult rv; \ rv = aCallback->Callback(EmptyCString(), NS_LITERAL_CSTRING(_path), \ nsIMemoryReporter::KIND_HEAP, \ nsIMemoryReporter::UNITS_BYTES, _amount, \ NS_LITERAL_CSTRING(_desc), aClosure); \ NS_ENSURE_SUCCESS(rv, rv); \ } while (0) REPORT("explicit/dmd/stack-traces/used", sizes.mStackTracesUsed, "Memory used by stack traces which correspond to at least " "one heap block DMD is tracking."); REPORT("explicit/dmd/stack-traces/unused", sizes.mStackTracesUnused, "Memory used by stack traces which don't correspond to any heap " "blocks DMD is currently tracking."); REPORT("explicit/dmd/stack-traces/table", sizes.mStackTraceTable, "Memory used by DMD's stack trace table."); REPORT("explicit/dmd/block-table", sizes.mBlockTable, "Memory used by DMD's live block table."); #undef REPORT return NS_OK; } }; NS_IMPL_ISUPPORTS1(DMDReporter, nsIMemoryReporter) } // namespace dmd } // namespace mozilla #endif // MOZ_DMD /** ** nsMemoryReporterManager implementation **/ NS_IMPL_ISUPPORTS1(nsMemoryReporterManager, nsIMemoryReporterManager) NS_IMETHODIMP nsMemoryReporterManager::Init() { #if defined(HAVE_JEMALLOC_STATS) && defined(XP_LINUX) if (!jemalloc_stats) return NS_ERROR_FAILURE; #endif #ifdef HAVE_JEMALLOC_STATS RegisterReporter(new HeapAllocatedReporter); RegisterReporter(new HeapOverheadWasteReporter); RegisterReporter(new HeapOverheadBookkeepingReporter); RegisterReporter(new HeapOverheadPageCacheReporter); RegisterReporter(new HeapCommittedReporter); RegisterReporter(new HeapOverheadRatioReporter); #endif #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS RegisterReporter(new VsizeReporter); RegisterReporter(new ResidentReporter); #endif #ifdef HAVE_RESIDENT_UNIQUE_REPORTER RegisterReporter(new ResidentUniqueReporter); #endif #ifdef HAVE_PAGE_FAULT_REPORTERS RegisterReporter(new PageFaultsSoftReporter); RegisterReporter(new PageFaultsHardReporter); #endif #ifdef HAVE_PRIVATE_REPORTER RegisterReporter(new PrivateReporter); #endif RegisterReporter(new AtomTablesReporter); #ifdef MOZ_DMD RegisterReporter(new mozilla::dmd::DMDReporter); #endif #if defined(XP_LINUX) nsMemoryInfoDumper::Initialize(); #endif return NS_OK; } namespace { /** * HastableEnumerator takes an nsTHashtable& in its * constructor and creates an nsISimpleEnumerator from its contents. * * The resultant enumerator works over a copy of the hashtable, so it's safe to * mutate or destroy the hashtable after the enumerator is created. */ class HashtableEnumerator MOZ_FINAL : public nsISimpleEnumerator { public: HashtableEnumerator(nsTHashtable& aHashtable) : mIndex(0) { aHashtable.EnumerateEntries(EnumeratorFunc, this); } NS_DECL_ISUPPORTS NS_DECL_NSISIMPLEENUMERATOR private: static PLDHashOperator EnumeratorFunc(nsISupportsHashKey* aEntry, void* aData); uint32_t mIndex; nsCOMArray mArray; }; NS_IMPL_ISUPPORTS1(HashtableEnumerator, nsISimpleEnumerator) /* static */ PLDHashOperator HashtableEnumerator::EnumeratorFunc(nsISupportsHashKey* aElem, void* aData) { HashtableEnumerator* enumerator = static_cast(aData); enumerator->mArray.AppendObject(aElem->GetKey()); return PL_DHASH_NEXT; } NS_IMETHODIMP HashtableEnumerator::HasMoreElements(bool* aResult) { *aResult = mIndex < mArray.Length(); return NS_OK; } NS_IMETHODIMP HashtableEnumerator::GetNext(nsISupports** aNext) { if (mIndex < mArray.Length()) { nsCOMPtr next = mArray.ObjectAt(mIndex); next.forget(aNext); mIndex++; return NS_OK; } *aNext = nullptr; return NS_ERROR_FAILURE; } } // anonymous namespace nsMemoryReporterManager::nsMemoryReporterManager() : mMutex("nsMemoryReporterManager::mMutex"), mIsRegistrationBlocked(false) { PodZero(&mAmountFns); } nsMemoryReporterManager::~nsMemoryReporterManager() { } NS_IMETHODIMP nsMemoryReporterManager::EnumerateReporters(nsISimpleEnumerator** aResult) { // Memory reporters are not necessarily threadsafe, so EnumerateReporters() // must be called from the main thread. if (!NS_IsMainThread()) { MOZ_CRASH(); } mozilla::MutexAutoLock autoLock(mMutex); nsRefPtr enumerator = new HashtableEnumerator(mReporters); enumerator.forget(aResult); return NS_OK; } static void DebugAssertRefcountIsNonZero(nsISupports* aObj) { #ifdef DEBUG // This will probably crash if the object's refcount is 0. uint32_t refcnt = NS_ADDREF(aObj); MOZ_ASSERT(refcnt >= 2); NS_RELEASE(aObj); #endif } nsresult nsMemoryReporterManager::RegisterReporterHelper( nsIMemoryReporter* aReporter, bool aForce) { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if ((mIsRegistrationBlocked && !aForce) || mReporters.Contains(aReporter)) { return NS_ERROR_FAILURE; } // This method needs to be safe even if |aReporter| has a refcnt of 0, so // we take a kung fu death grip before calling PutEntry. Otherwise, if // PutEntry addref'ed and released |aReporter| before finally addref'ing it // for good, it would free aReporter! // // The kung fu death grip could itself be problematic if PutEntry didn't // addref |aReporter| (because then when the death grip goes out of scope, // we would delete the reporter). In debug mode, we check that this // doesn't happen. { nsCOMPtr kungFuDeathGrip = aReporter; mReporters.PutEntry(aReporter); } DebugAssertRefcountIsNonZero(aReporter); return NS_OK; } NS_IMETHODIMP nsMemoryReporterManager::RegisterReporter(nsIMemoryReporter* aReporter) { return RegisterReporterHelper(aReporter, /* force = */ false); } NS_IMETHODIMP nsMemoryReporterManager::RegisterReporterEvenIfBlocked( nsIMemoryReporter* aReporter) { return RegisterReporterHelper(aReporter, /* force = */ true); } NS_IMETHODIMP nsMemoryReporterManager::UnregisterReporter(nsIMemoryReporter* aReporter) { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (!mReporters.Contains(aReporter)) { return NS_ERROR_FAILURE; } mReporters.RemoveEntry(aReporter); return NS_OK; } NS_IMETHODIMP nsMemoryReporterManager::BlockRegistration() { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (mIsRegistrationBlocked) { return NS_ERROR_FAILURE; } mIsRegistrationBlocked = true; return NS_OK; } NS_IMETHODIMP nsMemoryReporterManager::UnblockRegistration() { // This method is thread-safe. mozilla::MutexAutoLock autoLock(mMutex); if (!mIsRegistrationBlocked) { return NS_ERROR_FAILURE; } mIsRegistrationBlocked = false; return NS_OK; } // This is just a wrapper for int64_t that implements nsISupports, so it can be // passed to nsIMemoryReporter::CollectReports. class Int64Wrapper MOZ_FINAL : public nsISupports { public: NS_DECL_ISUPPORTS Int64Wrapper() : mValue(0) { } int64_t mValue; }; NS_IMPL_ISUPPORTS0(Int64Wrapper) class ExplicitCallback MOZ_FINAL : public nsIMemoryReporterCallback { public: NS_DECL_ISUPPORTS NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath, int32_t aKind, int32_t aUnits, int64_t aAmount, const nsACString& aDescription, nsISupports* aWrappedExplicit) { if (aPath.Equals("heap-allocated") || (aKind == nsIMemoryReporter::KIND_NONHEAP && PromiseFlatCString(aPath).Find("explicit") == 0)) { Int64Wrapper* wrappedInt64 = static_cast(aWrappedExplicit); wrappedInt64->mValue += aAmount; } return NS_OK; } }; NS_IMPL_ISUPPORTS1(ExplicitCallback, nsIMemoryReporterCallback) NS_IMETHODIMP nsMemoryReporterManager::GetExplicit(int64_t* aAmount) { NS_ENSURE_ARG_POINTER(aAmount); *aAmount = 0; #ifndef HAVE_JEMALLOC_STATS return NS_ERROR_NOT_AVAILABLE; #else bool more; // For each reporter we call CollectReports and filter out the // non-explicit, non-NONHEAP measurements (except for "heap-allocated"). // That's lots of wasted work, and we used to have a GetExplicitNonHeap() // method which did this more efficiently, but it ended up being more // trouble than it was worth. nsRefPtr cb = new ExplicitCallback(); nsRefPtr wrappedExplicitSize = new Int64Wrapper(); nsCOMPtr e; EnumerateReporters(getter_AddRefs(e)); while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) { nsCOMPtr r; e->GetNext(getter_AddRefs(r)); r->CollectReports(cb, wrappedExplicitSize); } *aAmount = wrappedExplicitSize->mValue; return NS_OK; #endif // HAVE_JEMALLOC_STATS } NS_IMETHODIMP nsMemoryReporterManager::GetResident(int64_t* aAmount) { #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS return ::GetResident(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } NS_IMETHODIMP nsMemoryReporterManager::GetResidentFast(int64_t* aAmount) { #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS return ::GetResidentFast(aAmount); #else *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; #endif } static nsresult GetInfallibleAmount(InfallibleAmountFn aAmountFn, int64_t* aAmount) { if (aAmountFn) { *aAmount = aAmountFn(); return NS_OK; } *aAmount = 0; return NS_ERROR_NOT_AVAILABLE; } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeCompartmentsSystem(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsSystem, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetJSMainRuntimeCompartmentsUser(int64_t* aAmount) { return GetInfallibleAmount(mAmountFns.mJSMainRuntimeCompartmentsUser, aAmount); } NS_IMETHODIMP nsMemoryReporterManager::GetHasMozMallocUsableSize(bool* aHas) { void* p = malloc(16); if (!p) { return NS_ERROR_OUT_OF_MEMORY; } size_t usable = moz_malloc_usable_size(p); free(p); *aHas = !!(usable > 0); return NS_OK; } namespace { /** * This runnable lets us implement nsIMemoryReporterManager::MinimizeMemoryUsage(). * We fire a heap-minimize notification, spin the event loop, and repeat this * process a few times. * * When this sequence finishes, we invoke the callback function passed to the * runnable's constructor. */ class MinimizeMemoryUsageRunnable : public nsCancelableRunnable { public: MinimizeMemoryUsageRunnable(nsIRunnable* aCallback) : mCallback(aCallback) , mRemainingIters(sNumIters) , mCanceled(false) {} NS_IMETHOD Run() { if (mCanceled) { return NS_OK; } nsCOMPtr os = services::GetObserverService(); if (!os) { return NS_ERROR_FAILURE; } if (mRemainingIters == 0) { os->NotifyObservers(nullptr, "after-minimize-memory-usage", NS_LITERAL_STRING("MinimizeMemoryUsageRunnable").get()); if (mCallback) { mCallback->Run(); } return NS_OK; } os->NotifyObservers(nullptr, "memory-pressure", NS_LITERAL_STRING("heap-minimize").get()); mRemainingIters--; NS_DispatchToMainThread(this); return NS_OK; } NS_IMETHOD Cancel() { if (mCanceled) { return NS_ERROR_UNEXPECTED; } mCanceled = true; return NS_OK; } private: // Send sNumIters heap-minimize notifications, spinning the event // loop after each notification (see bug 610166 comment 12 for an // explanation), because one notification doesn't cut it. static const uint32_t sNumIters = 3; nsCOMPtr mCallback; uint32_t mRemainingIters; bool mCanceled; }; } // anonymous namespace NS_IMETHODIMP nsMemoryReporterManager::MinimizeMemoryUsage(nsIRunnable* aCallback, nsICancelableRunnable** aResult) { NS_ENSURE_ARG_POINTER(aResult); nsRefPtr runnable = new MinimizeMemoryUsageRunnable(aCallback); NS_ADDREF(*aResult = runnable); return NS_DispatchToMainThread(runnable); } // Most memory reporters don't need thread safety, but some do. Make them all // thread-safe just to be safe. Memory reporters are created and destroyed // infrequently enough that the performance cost should be negligible. NS_IMPL_ISUPPORTS1(MemoryUniReporter, nsIMemoryReporter) nsresult NS_RegisterMemoryReporter(nsIMemoryReporter* aReporter) { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); if (!mgr) { return NS_ERROR_FAILURE; } return mgr->RegisterReporter(aReporter); } nsresult NS_UnregisterMemoryReporter(nsIMemoryReporter* aReporter) { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); if (!mgr) { return NS_ERROR_FAILURE; } return mgr->UnregisterReporter(aReporter); } namespace mozilla { // Macro for generating functions that register distinguished amount functions // with the memory reporter manager. #define REGISTER_DISTINGUISHED_AMOUNT(kind, name) \ nsresult \ Register##name##DistinguishedAmount(kind##AmountFn aAmountFn) \ { \ nsCOMPtr imgr = \ do_GetService("@mozilla.org/memory-reporter-manager;1"); \ nsRefPtr mgr = \ static_cast(imgr.get()); \ if (!mgr) { \ return NS_ERROR_FAILURE; \ } \ mgr->mAmountFns.m##name = aAmountFn; \ return NS_OK; \ } REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsSystem) REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsUser) #undef REGISTER_DISTINGUISHED_AMOUNT } #if defined(MOZ_DMD) namespace mozilla { namespace dmd { class NullReporterCallback : public nsIMemoryReporterCallback { public: NS_DECL_ISUPPORTS NS_IMETHOD Callback(const nsACString& aProcess, const nsACString& aPath, int32_t aKind, int32_t aUnits, int64_t aAmount, const nsACString& aDescription, nsISupports* aData) { // Do nothing; the reporter has already reported to DMD. return NS_OK; } }; NS_IMPL_ISUPPORTS1( NullReporterCallback , nsIMemoryReporterCallback ) void RunReporters() { nsCOMPtr mgr = do_GetService("@mozilla.org/memory-reporter-manager;1"); nsRefPtr cb = new NullReporterCallback(); bool more; nsCOMPtr e; mgr->EnumerateReporters(getter_AddRefs(e)); while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) { nsCOMPtr r; e->GetNext(getter_AddRefs(r)); r->CollectReports(cb, nullptr); } } } // namespace dmd } // namespace mozilla #endif // defined(MOZ_DMD)