/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_INTERNAL_API #error Cannot use internal string classes without MOZILLA_INTERNAL_API defined. Use the frozen header nsStringAPI.h instead. #endif /** * The base for string comparators */ class nsTStringComparator_CharT { public: typedef CharT char_type; nsTStringComparator_CharT() {} virtual int operator()( const char_type*, const char_type*, PRUint32, PRUint32 ) const = 0; }; /** * The default string comparator (case-sensitive comparision) */ class nsTDefaultStringComparator_CharT : public nsTStringComparator_CharT { public: typedef CharT char_type; nsTDefaultStringComparator_CharT() {} virtual int operator()( const char_type*, const char_type*, PRUint32, PRUint32 ) const; }; /** * nsTSubstring is the most abstract class in the string hierarchy. It * represents a single contiguous array of characters, which may or may not * be null-terminated. This type is not instantiated directly. A sub-class * is instantiated instead. For example, see nsTString. * * NAMES: * nsAString for wide characters * nsACString for narrow characters * * Many of the accessors on nsTSubstring are inlined as an optimization. */ class nsTSubstring_CharT { public: typedef mozilla::fallible_t fallible_t; typedef CharT char_type; typedef nsCharTraits char_traits; typedef char_traits::incompatible_char_type incompatible_char_type; typedef nsTSubstring_CharT self_type; typedef self_type abstract_string_type; typedef self_type base_string_type; typedef self_type substring_type; typedef nsTSubstringTuple_CharT substring_tuple_type; typedef nsTString_CharT string_type; typedef nsReadingIterator const_iterator; typedef nsWritingIterator iterator; typedef nsTStringComparator_CharT comparator_type; typedef char_type* char_iterator; typedef const char_type* const_char_iterator; typedef PRUint32 size_type; typedef PRUint32 index_type; public: // this acts like a virtual destructor ~nsTSubstring_CharT() { Finalize(); } /** * reading iterators */ const_char_iterator BeginReading() const { return mData; } const_char_iterator EndReading() const { return mData + mLength; } /** * deprecated reading iterators */ const_iterator& BeginReading( const_iterator& iter ) const { iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mStart; return iter; } const_iterator& EndReading( const_iterator& iter ) const { iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mEnd; return iter; } const_char_iterator& BeginReading( const_char_iterator& iter ) const { return iter = mData; } const_char_iterator& EndReading( const_char_iterator& iter ) const { return iter = mData + mLength; } /** * writing iterators */ char_iterator BeginWriting() { if (!EnsureMutable()) NS_RUNTIMEABORT("OOM"); return mData; } char_iterator BeginWriting( const fallible_t& ) { return EnsureMutable() ? mData : char_iterator(0); } char_iterator EndWriting() { if (!EnsureMutable()) NS_RUNTIMEABORT("OOM"); return mData + mLength; } char_iterator EndWriting( const fallible_t& ) { return EnsureMutable() ? (mData + mLength) : char_iterator(0); } char_iterator& BeginWriting( char_iterator& iter ) { return iter = BeginWriting(); } char_iterator& BeginWriting( char_iterator& iter, const fallible_t& ) { return iter = BeginWriting(fallible_t()); } char_iterator& EndWriting( char_iterator& iter ) { return iter = EndWriting(); } char_iterator& EndWriting( char_iterator& iter, const fallible_t& ) { return iter = EndWriting(fallible_t()); } /** * deprecated writing iterators */ iterator& BeginWriting( iterator& iter ) { char_type *data = BeginWriting(); iter.mStart = data; iter.mEnd = data + mLength; iter.mPosition = iter.mStart; return iter; } iterator& EndWriting( iterator& iter ) { char_type *data = BeginWriting(); iter.mStart = data; iter.mEnd = data + mLength; iter.mPosition = iter.mEnd; return iter; } /** * accessors */ // returns pointer to string data (not necessarily null-terminated) const char_type *Data() const { return mData; } size_type Length() const { return mLength; } bool IsEmpty() const { return mLength == 0; } bool IsVoid() const { return (mFlags & F_VOIDED) != 0; } bool IsTerminated() const { return (mFlags & F_TERMINATED) != 0; } char_type CharAt( index_type i ) const { NS_ASSERTION(i < mLength, "index exceeds allowable range"); return mData[i]; } char_type operator[]( index_type i ) const { return CharAt(i); } char_type First() const { NS_ASSERTION(mLength > 0, "|First()| called on an empty string"); return mData[0]; } inline char_type Last() const { NS_ASSERTION(mLength > 0, "|Last()| called on an empty string"); return mData[mLength - 1]; } size_type NS_FASTCALL CountChar( char_type ) const; PRInt32 NS_FASTCALL FindChar( char_type, index_type offset = 0 ) const; /** * equality */ bool NS_FASTCALL Equals( const self_type& ) const; bool NS_FASTCALL Equals( const self_type&, const comparator_type& ) const; bool NS_FASTCALL Equals( const char_type* data ) const; bool NS_FASTCALL Equals( const char_type* data, const comparator_type& comp ) const; /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when you know the * length of 'data'. */ bool NS_FASTCALL EqualsASCII( const char* data, size_type len ) const; /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when 'data' is * null-terminated. */ bool NS_FASTCALL EqualsASCII( const char* data ) const; // EqualsLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. // The template trick to acquire the array length at compile time without // using a macro is due to Corey Kosak, with much thanks. #ifdef NS_DISABLE_LITERAL_TEMPLATE inline bool EqualsLiteral( const char* str ) const { return EqualsASCII(str); } #else template inline bool EqualsLiteral( const char (&str)[N] ) const { return EqualsASCII(str, N-1); } template inline bool EqualsLiteral( char (&str)[N] ) const { const char* s = str; return EqualsASCII(s, N-1); } #endif // The LowerCaseEquals methods compare the lower case version of // this string to some ASCII/Literal string. The ASCII string is // *not* lowercased for you. If you compare to an ASCII or literal // string that contains an uppercase character, it is guaranteed to // return false. We will throw assertions too. bool NS_FASTCALL LowerCaseEqualsASCII( const char* data, size_type len ) const; bool NS_FASTCALL LowerCaseEqualsASCII( const char* data ) const; // LowerCaseEqualsLiteral must ONLY be applied to an actual // literal string. Do not attempt to use it with a regular char* // pointer, or with a char array variable. Use // LowerCaseEqualsASCII for them. #ifdef NS_DISABLE_LITERAL_TEMPLATE inline bool LowerCaseEqualsLiteral( const char* str ) const { return LowerCaseEqualsASCII(str); } #else template inline bool LowerCaseEqualsLiteral( const char (&str)[N] ) const { return LowerCaseEqualsASCII(str, N-1); } template inline bool LowerCaseEqualsLiteral( char (&str)[N] ) const { const char* s = str; return LowerCaseEqualsASCII(s, N-1); } #endif /** * assignment */ void NS_FASTCALL Assign( char_type c ); bool NS_FASTCALL Assign( char_type c, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL Assign( const char_type* data, size_type length = size_type(-1) ); bool NS_FASTCALL Assign( const char_type* data, size_type length, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL Assign( const self_type& ); bool NS_FASTCALL Assign( const self_type&, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL Assign( const substring_tuple_type& ); bool NS_FASTCALL Assign( const substring_tuple_type&, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL AssignASCII( const char* data, size_type length ); bool NS_FASTCALL AssignASCII( const char* data, size_type length, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL AssignASCII( const char* data ) { AssignASCII(data, strlen(data)); } bool NS_FASTCALL AssignASCII( const char* data, const fallible_t& ) NS_WARN_UNUSED_RESULT { return AssignASCII(data, strlen(data), fallible_t()); } // AssignLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use AssignASCII for those. // There are not fallible version of these methods because they only really // apply to small allocations that we wouldn't want to check anyway. #ifdef NS_DISABLE_LITERAL_TEMPLATE void AssignLiteral( const char* str ) { AssignASCII(str); } #else template void AssignLiteral( const char (&str)[N] ) { AssignASCII(str, N-1); } template void AssignLiteral( char (&str)[N] ) { AssignASCII(str, N-1); } #endif self_type& operator=( char_type c ) { Assign(c); return *this; } self_type& operator=( const char_type* data ) { Assign(data); return *this; } self_type& operator=( const self_type& str ) { Assign(str); return *this; } self_type& operator=( const substring_tuple_type& tuple ) { Assign(tuple); return *this; } void NS_FASTCALL Adopt( char_type* data, size_type length = size_type(-1) ); /** * buffer manipulation */ void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, char_type c ); void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, const char_type* data, size_type length = size_type(-1) ); void Replace( index_type cutStart, size_type cutLength, const self_type& str ) { Replace(cutStart, cutLength, str.Data(), str.Length()); } void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, const substring_tuple_type& tuple ); void NS_FASTCALL ReplaceASCII( index_type cutStart, size_type cutLength, const char* data, size_type length = size_type(-1) ); void Append( char_type c ) { Replace(mLength, 0, c); } void Append( const char_type* data, size_type length = size_type(-1) ) { Replace(mLength, 0, data, length); } void Append( const self_type& str ) { Replace(mLength, 0, str); } void Append( const substring_tuple_type& tuple ) { Replace(mLength, 0, tuple); } void AppendASCII( const char* data, size_type length = size_type(-1) ) { ReplaceASCII(mLength, 0, data, length); } /** * Append a formatted string to the current string. Uses the format * codes documented in prprf.h */ void AppendPrintf( const char* format, ... ); void AppendInt( PRInt32 aInteger ) { AppendPrintf( "%d", aInteger ); } void AppendInt( PRInt32 aInteger, int aRadix ) { const char *fmt = aRadix == 10 ? "%d" : aRadix == 8 ? "%o" : "%x"; AppendPrintf( fmt, aInteger ); } void AppendInt( PRUint32 aInteger ) { AppendPrintf( "%u", aInteger ); } void AppendInt( PRUint32 aInteger, int aRadix ) { const char *fmt = aRadix == 10 ? "%u" : aRadix == 8 ? "%o" : "%x"; AppendPrintf( fmt, aInteger ); } void AppendInt( PRInt64 aInteger ) { AppendPrintf( "%lld", aInteger ); } void AppendInt( PRInt64 aInteger, int aRadix ) { const char *fmt = aRadix == 10 ? "%lld" : aRadix == 8 ? "%llo" : "%llx"; AppendPrintf( fmt, aInteger ); } void AppendInt( PRUint64 aInteger ) { AppendPrintf( "%llu", aInteger ); } void AppendInt( PRUint64 aInteger, int aRadix ) { const char *fmt = aRadix == 10 ? "%llu" : aRadix == 8 ? "%llo" : "%llx"; AppendPrintf( fmt, aInteger ); } /** * Append the given float to this string */ void AppendFloat( float aFloat ) { DoAppendFloat(aFloat, 6); } void AppendFloat( double aFloat ) { DoAppendFloat(aFloat, 15); } private: void NS_FASTCALL DoAppendFloat( double aFloat, int digits ); public: // AppendLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use AppendASCII for those. #ifdef NS_DISABLE_LITERAL_TEMPLATE void AppendLiteral( const char* str ) { AppendASCII(str); } #else template void AppendLiteral( const char (&str)[N] ) { AppendASCII(str, N-1); } template void AppendLiteral( char (&str)[N] ) { AppendASCII(str, N-1); } #endif self_type& operator+=( char_type c ) { Append(c); return *this; } self_type& operator+=( const char_type* data ) { Append(data); return *this; } self_type& operator+=( const self_type& str ) { Append(str); return *this; } self_type& operator+=( const substring_tuple_type& tuple ) { Append(tuple); return *this; } void Insert( char_type c, index_type pos ) { Replace(pos, 0, c); } void Insert( const char_type* data, index_type pos, size_type length = size_type(-1) ) { Replace(pos, 0, data, length); } void Insert( const self_type& str, index_type pos ) { Replace(pos, 0, str); } void Insert( const substring_tuple_type& tuple, index_type pos ) { Replace(pos, 0, tuple); } void Cut( index_type cutStart, size_type cutLength ) { Replace(cutStart, cutLength, char_traits::sEmptyBuffer, 0); } /** * buffer sizing */ /** * Attempts to set the capacity to the given size, without affecting * the length of the string. Also ensures that the buffer is mutable. */ void NS_FASTCALL SetCapacity( size_type newCapacity ); bool NS_FASTCALL SetCapacity( size_type newCapacity, const fallible_t& ) NS_WARN_UNUSED_RESULT; void NS_FASTCALL SetLength( size_type newLength ); bool NS_FASTCALL SetLength( size_type newLength, const fallible_t& ) NS_WARN_UNUSED_RESULT; void Truncate( size_type newLength = 0 ) { NS_ASSERTION(newLength <= mLength, "Truncate cannot make string longer"); SetLength(newLength); } /** * buffer access */ /** * Get a const pointer to the string's internal buffer. The caller * MUST NOT modify the characters at the returned address. * * @returns The length of the buffer in characters. */ inline size_type GetData( const char_type** data ) const { *data = mData; return mLength; } /** * Get a pointer to the string's internal buffer, optionally resizing * the buffer first. If size_type(-1) is passed for newLen, then the * current length of the string is used. The caller MAY modify the * characters at the returned address (up to but not exceeding the * length of the string). * * @returns The length of the buffer in characters or 0 if unable to * satisfy the request due to low-memory conditions. */ size_type GetMutableData( char_type** data, size_type newLen = size_type(-1) ) { if (!EnsureMutable(newLen)) NS_RUNTIMEABORT("OOM"); *data = mData; return mLength; } size_type GetMutableData( char_type** data, size_type newLen, const fallible_t& ) { if (!EnsureMutable(newLen)) { *data = nsnull; return 0; } *data = mData; return mLength; } /** * string data is never null, but can be marked void. if true, the * string will be truncated. @see nsTSubstring::IsVoid */ void NS_FASTCALL SetIsVoid( bool ); /** * This method is used to remove all occurrences of aChar from this * string. * * @param aChar -- char to be stripped * @param aOffset -- where in this string to start stripping chars */ void StripChar( char_type aChar, PRInt32 aOffset=0 ); /** * This method is used to remove all occurrences of aChars from this * string. * * @param aChars -- chars to be stripped * @param aOffset -- where in this string to start stripping chars */ void StripChars( const char_type* aChars, PRUint32 aOffset=0 ); /** * If the string uses a shared buffer, this method * clears the pointer without releasing the buffer. */ void ForgetSharedBuffer() { if (mFlags & nsSubstring::F_SHARED) { mData = char_traits::sEmptyBuffer; mLength = 0; mFlags = F_TERMINATED; } } public: /** * this is public to support automatic conversion of tuple to string * base type, which helps avoid converting to nsTAString. */ nsTSubstring_CharT(const substring_tuple_type& tuple) : mData(nsnull), mLength(0), mFlags(F_NONE) { Assign(tuple); } /** * allows for direct initialization of a nsTSubstring object. * * NOTE: this constructor is declared public _only_ for convenience * inside the string implementation. */ // XXXbz or can I just include nscore.h and use NS_BUILD_REFCNT_LOGGING? #if defined(DEBUG) || defined(FORCE_BUILD_REFCNT_LOGGING) #define XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE nsTSubstring_CharT( char_type *data, size_type length, PRUint32 flags ); #else #undef XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE nsTSubstring_CharT( char_type *data, size_type length, PRUint32 flags ) : mData(data), mLength(length), mFlags(flags) {} #endif /* DEBUG || FORCE_BUILD_REFCNT_LOGGING */ size_t SizeOfExcludingThisMustBeUnshared(nsMallocSizeOfFun mallocSizeOf) const; size_t SizeOfIncludingThisMustBeUnshared(nsMallocSizeOfFun mallocSizeOf) const; size_t SizeOfExcludingThisIfUnshared(nsMallocSizeOfFun mallocSizeOf) const; size_t SizeOfIncludingThisIfUnshared(nsMallocSizeOfFun mallocSizeOf) const; protected: friend class nsTObsoleteAStringThunk_CharT; friend class nsTSubstringTuple_CharT; // XXX GCC 3.4 needs this :-( friend class nsTPromiseFlatString_CharT; char_type* mData; size_type mLength; PRUint32 mFlags; // default initialization nsTSubstring_CharT() : mData(char_traits::sEmptyBuffer), mLength(0), mFlags(F_TERMINATED) {} // version of constructor that leaves mData and mLength uninitialized explicit nsTSubstring_CharT( PRUint32 flags ) : mFlags(flags) {} // copy-constructor, constructs as dependent on given object // (NOTE: this is for internal use only) nsTSubstring_CharT( const self_type& str ) : mData(str.mData), mLength(str.mLength), mFlags(str.mFlags & (F_TERMINATED | F_VOIDED)) {} /** * this function releases mData and does not change the value of * any of its member variables. in other words, this function acts * like a destructor. */ void NS_FASTCALL Finalize(); /** * this function prepares mData to be mutated. * * @param capacity specifies the required capacity of mData * @param old_data returns null or the old value of mData * @param old_flags returns 0 or the old value of mFlags * * if mData is already mutable and of sufficient capacity, then this * function will return immediately. otherwise, it will either resize * mData or allocate a new shared buffer. if it needs to allocate a * new buffer, then it will return the old buffer and the corresponding * flags. this allows the caller to decide when to free the old data. * * this function returns false if is unable to allocate sufficient * memory. * * XXX we should expose a way for subclasses to free old_data. */ bool NS_FASTCALL MutatePrep( size_type capacity, char_type** old_data, PRUint32* old_flags ); /** * this function prepares a section of mData to be modified. if * necessary, this function will reallocate mData and possibly move * existing data to open up the specified section. * * @param cutStart specifies the starting offset of the section * @param cutLength specifies the length of the section to be replaced * @param newLength specifies the length of the new section * * for example, suppose mData contains the string "abcdef" then * * ReplacePrep(2, 3, 4); * * would cause mData to look like "ab____f" where the characters * indicated by '_' have an unspecified value and can be freely * modified. this function will null-terminate mData upon return. * * this function returns false if is unable to allocate sufficient * memory. */ bool ReplacePrep(index_type cutStart, size_type cutLength, size_type newLength) NS_WARN_UNUSED_RESULT { cutLength = NS_MIN(cutLength, mLength - cutStart); PRUint32 newTotalLen = mLength - cutLength + newLength; if (cutStart == mLength && Capacity() > newTotalLen) { mFlags &= ~F_VOIDED; mData[newTotalLen] = char_type(0); mLength = newTotalLen; return true; } return ReplacePrepInternal(cutStart, cutLength, newLength, newTotalLen); } bool NS_FASTCALL ReplacePrepInternal(index_type cutStart, size_type cutLength, size_type newFragLength, size_type newTotalLength) NS_WARN_UNUSED_RESULT; /** * returns the number of writable storage units starting at mData. * the value does not include space for the null-terminator character. * * NOTE: this function returns 0 if mData is immutable (or the buffer * is 0-sized). */ size_type NS_FASTCALL Capacity() const; /** * this helper function can be called prior to directly manipulating * the contents of mData. see, for example, BeginWriting. */ bool NS_FASTCALL EnsureMutable( size_type newLen = size_type(-1) ) NS_WARN_UNUSED_RESULT; /** * returns true if this string overlaps with the given string fragment. */ bool IsDependentOn( const char_type *start, const char_type *end ) const { /** * if it _isn't_ the case that one fragment starts after the other ends, * or ends before the other starts, then, they conflict: * * !(f2.begin >= f1.end || f2.end <= f1.begin) * * Simplified, that gives us: */ return ( start < (mData + mLength) && end > mData ); } /** * this helper function stores the specified dataFlags in mFlags */ void SetDataFlags(PRUint32 dataFlags) { NS_ASSERTION((dataFlags & 0xFFFF0000) == 0, "bad flags"); mFlags = dataFlags | (mFlags & 0xFFFF0000); } static PRIntn AppendFunc( void* arg, const char* s, PRUint32 len); void AppendPrintf( const char* format, va_list ap ); public: // mFlags is a bitwise combination of the following flags. the meaning // and interpretation of these flags is an implementation detail. // // NOTE: these flags are declared public _only_ for convenience inside // the string implementation. enum { F_NONE = 0, // no flags // data flags are in the lower 16-bits F_TERMINATED = 1 << 0, // IsTerminated returns true F_VOIDED = 1 << 1, // IsVoid returns true F_SHARED = 1 << 2, // mData points to a heap-allocated, shared buffer F_OWNED = 1 << 3, // mData points to a heap-allocated, raw buffer F_FIXED = 1 << 4, // mData points to a fixed-size writable, dependent buffer // class flags are in the upper 16-bits F_CLASS_FIXED = 1 << 16 // indicates that |this| is of type nsTFixedString }; // // Some terminology: // // "dependent buffer" A dependent buffer is one that the string class // does not own. The string class relies on some // external code to ensure the lifetime of the // dependent buffer. // // "shared buffer" A shared buffer is one that the string class // allocates. When it allocates a shared string // buffer, it allocates some additional space at // the beginning of the buffer for additional // fields, including a reference count and a // buffer length. See nsStringHeader. // // "adopted buffer" An adopted buffer is a raw string buffer // allocated on the heap (using nsMemory::Alloc) // of which the string class subsumes ownership. // // Some comments about the string flags: // // F_SHARED, F_OWNED, and F_FIXED are all mutually exlusive. They // indicate the allocation type of mData. If none of these flags // are set, then the string buffer is dependent. // // F_SHARED, F_OWNED, or F_FIXED imply F_TERMINATED. This is because // the string classes always allocate null-terminated buffers, and // non-terminated substrings are always dependent. // // F_VOIDED implies F_TERMINATED, and moreover it implies that mData // points to char_traits::sEmptyBuffer. Therefore, F_VOIDED is // mutually exclusive with F_SHARED, F_OWNED, and F_FIXED. // }; int NS_FASTCALL Compare( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs, const nsTStringComparator_CharT& = nsTDefaultStringComparator_CharT() ); inline bool operator!=( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return !lhs.Equals(rhs); } inline bool operator< ( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return Compare(lhs, rhs)< 0; } inline bool operator<=( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return Compare(lhs, rhs)<=0; } inline bool operator==( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return lhs.Equals(rhs); } inline bool operator>=( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return Compare(lhs, rhs)>=0; } inline bool operator> ( const nsTSubstring_CharT::base_string_type& lhs, const nsTSubstring_CharT::base_string_type& rhs ) { return Compare(lhs, rhs)> 0; }