/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef nsView_h__ #define nsView_h__ #include "nsISupports.h" #include "nsCoord.h" #include "nsRect.h" #include "nsPoint.h" #include "nsNativeWidget.h" #include "nsIWidget.h" #include "nsWidgetInitData.h" #include "nsRegion.h" #include "nsCRT.h" #include "nsIFactory.h" #include "nsEvent.h" #include "nsIWidgetListener.h" #include class nsViewManager; class nsIWidget; class nsIFrame; // Enumerated type to indicate the visibility of a layer. // hide - the layer is not shown. // show - the layer is shown irrespective of the visibility of // the layer's parent. enum nsViewVisibility { nsViewVisibility_kHide = 0, nsViewVisibility_kShow = 1 }; // Public view flags // Indicates that the view is using auto z-indexing #define NS_VIEW_FLAG_AUTO_ZINDEX 0x0004 // Indicates that the view is a floating view. #define NS_VIEW_FLAG_FLOATING 0x0008 // If set it indicates that this view should be // displayed above z-index:auto views if this view // is z-index:auto also #define NS_VIEW_FLAG_TOPMOST 0x0010 //---------------------------------------------------------------------- /** * View interface * * Views are NOT reference counted. Use the Destroy() member function to * destroy a view. * * The lifetime of the view hierarchy is bounded by the lifetime of the * view manager that owns the views. * * Most of the methods here are read-only. To set the corresponding properties * of a view, go through nsViewManager. */ class nsView MOZ_FINAL : public nsIWidgetListener { public: friend class nsViewManager; NS_DECL_AND_IMPL_ZEROING_OPERATOR_NEW /** * Get the view manager which "owns" the view. * This method might require some expensive traversal work in the future. If you can get the * view manager from somewhere else, do that instead. * @result the view manager */ nsViewManager* GetViewManager() const { return reinterpret_cast(mViewManager); } nsViewManager* GetViewManagerInternal() const { return mViewManager; } /** * Find the view for the given widget, if there is one. * @return the view the widget belongs to, or null if the widget doesn't * belong to any view. */ static nsView* GetViewFor(nsIWidget* aWidget); /** * Destroy the view. * * The view destroys its child views, and destroys and releases its * widget (if it has one). * * Also informs the view manager that the view is destroyed by calling * SetRootView(NULL) if the view is the root view and calling RemoveChild() * otherwise. */ void Destroy(); /** * Called to get the position of a view. * The specified coordinates are relative to the parent view's origin, but * are in appunits of this. * This is the (0, 0) origin of the coordinate space established by this view. * @param x out parameter for x position * @param y out parameter for y position */ nsPoint GetPosition() const { NS_ASSERTION(!IsRoot() || (mPosX == 0 && mPosY == 0), "root views should always have explicit position of (0,0)"); return nsPoint(mPosX, mPosY); } /** * Called to get the dimensions and position of the view's bounds. * The view's bounds (x,y) are relative to the origin of the parent view, but * are in appunits of this. * The view's bounds (x,y) might not be the same as the view's position, * if the view has content above or to the left of its origin. * @param aBounds out parameter for bounds */ nsRect GetBounds() const { return mDimBounds; } /** * The bounds of this view relative to this view. So this is the same as * GetBounds except this is relative to this view instead of the parent view. */ nsRect GetDimensions() const { nsRect r = mDimBounds; r.MoveBy(-mPosX, -mPosY); return r; } /** * Get the offset between the coordinate systems of |this| and aOther. * Adding the return value to a point in the coordinate system of |this| * will transform the point to the coordinate system of aOther. * * The offset is expressed in appunits of |this|. So if you are getting the * offset between views in different documents that might have different * appunits per devpixel ratios you need to be careful how you use the * result. * * If aOther is null, this will return the offset of |this| from the * root of the viewmanager tree. * * This function is fastest when aOther is an ancestor of |this|. * * NOTE: this actually returns the offset from aOther to |this|, but * that offset is added to transform _coordinates_ from |this| to aOther. */ nsPoint GetOffsetTo(const nsView* aOther) const; /** * Get the offset between the origin of |this| and the origin of aWidget. * Adding the return value to a point in the coordinate system of |this| * will transform the point to the coordinate system of aWidget. * * The offset is expressed in appunits of |this|. */ nsPoint GetOffsetToWidget(nsIWidget* aWidget) const; /** * Takes a point aPt that is in the coordinate system of |this|'s parent view * and converts it to be in the coordinate system of |this| taking into * account the offset and any app unit per dev pixel ratio differences. */ nsPoint ConvertFromParentCoords(nsPoint aPt) const; /** * Called to query the visibility state of a view. * @result current visibility state */ nsViewVisibility GetVisibility() const { return mVis; } /** * Get whether the view "floats" above all other views, * which tells the compositor not to consider higher views in * the view hierarchy that would geometrically intersect with * this view. This is a hack, but it fixes some problems with * views that need to be drawn in front of all other views. * @result true if the view floats, false otherwise. */ bool GetFloating() const { return (mVFlags & NS_VIEW_FLAG_FLOATING) != 0; } /** * Called to query the parent of the view. * @result view's parent */ nsView* GetParent() const { return mParent; } /** * The view's first child is the child which is earliest in document order. * @result first child */ nsView* GetFirstChild() const { return mFirstChild; } /** * Called to query the next sibling of the view. * @result view's next sibling */ nsView* GetNextSibling() const { return mNextSibling; } /** * Set the view's frame. */ void SetFrame(nsIFrame* aRootFrame) { mFrame = aRootFrame; } /** * Retrieve the view's frame. */ nsIFrame* GetFrame() const { return mFrame; } /** * Get the nearest widget in this view or a parent of this view and * the offset from the widget's origin to this view's origin * @param aOffset - if non-null the offset from this view's origin to the * widget's origin (usually positive) expressed in appunits of this will be * returned in aOffset. * @return the widget closest to this view; can be null because some view trees * don't have widgets at all (e.g., printing), but if any view in the view tree * has a widget, then it's safe to assume this will not return null */ nsIWidget* GetNearestWidget(nsPoint* aOffset) const; /** * Create a widget to associate with this view. This variant of * CreateWidget*() will look around in the view hierarchy for an * appropriate parent widget for the view. * * @param aWidgetInitData data used to initialize this view's widget before * its create is called. * @return error status */ nsresult CreateWidget(nsWidgetInitData *aWidgetInitData = nullptr, bool aEnableDragDrop = true, bool aResetVisibility = true); /** * Create a widget for this view with an explicit parent widget. * |aParentWidget| must be nonnull. The other params are the same * as for |CreateWidget()|. */ nsresult CreateWidgetForParent(nsIWidget* aParentWidget, nsWidgetInitData *aWidgetInitData = nullptr, bool aEnableDragDrop = true, bool aResetVisibility = true); /** * Create a popup widget for this view. Pass |aParentWidget| to * explicitly set the popup's parent. If it's not passed, the view * hierarchy will be searched for an appropriate parent widget. The * other params are the same as for |CreateWidget()|, except that * |aWidgetInitData| must be nonnull. */ nsresult CreateWidgetForPopup(nsWidgetInitData *aWidgetInitData, nsIWidget* aParentWidget = nullptr, bool aEnableDragDrop = true, bool aResetVisibility = true); /** * Destroys the associated widget for this view. If this method is * not called explicitly, the widget when be destroyed when its * view gets destroyed. */ void DestroyWidget(); /** * Attach/detach a top level widget from this view. When attached, the view * updates the widget's device context and allows the view to begin receiving * gecko events. The underlying base window associated with the widget will * continues to receive events it expects. * * An attached widget will not be destroyed when the view is destroyed, * allowing the recycling of a single top level widget over multiple views. * * @param aWidget The widget to attach to / detach from. */ nsresult AttachToTopLevelWidget(nsIWidget* aWidget); nsresult DetachFromTopLevelWidget(); /** * Returns a flag indicating whether the view owns it's widget * or is attached to an existing top level widget. */ bool IsAttachedToTopLevel() const { return mWidgetIsTopLevel; } /** * In 4.0, the "cutout" nature of a view is queryable. * If we believe that all cutout view have a native widget, this * could be a replacement. * @param aWidget out parameter for widget that this view contains, * or nullptr if there is none. */ nsIWidget* GetWidget() const { return mWindow; } /** * Returns true if the view has a widget associated with it. */ bool HasWidget() const { return mWindow != nullptr; } void SetForcedRepaint(bool aForceRepaint) { if (!mInAlternatePaint) { mForcedRepaint = aForceRepaint; } } /** * Make aWidget direct its events to this view. * The caller must call DetachWidgetEventHandler before this view * is destroyed. */ void AttachWidgetEventHandler(nsIWidget* aWidget); /** * Stop aWidget directing its events to this view. */ void DetachWidgetEventHandler(nsIWidget* aWidget); #ifdef DEBUG /** * Output debug info to FILE * @param out output file handle * @param aIndent indentation depth * NOTE: virtual so that debugging tools not linked into gklayout can access it */ virtual void List(FILE* out, int32_t aIndent = 0) const; #endif // DEBUG /** * @result true iff this is the root view for its view manager */ bool IsRoot() const; nsIntRect CalcWidgetBounds(nsWindowType aType); // This is an app unit offset to add when converting view coordinates to // widget coordinates. It is the offset in view coordinates from widget // origin (unlike views, widgets can't extend above or to the left of their // origin) to view origin expressed in appunits of this. nsPoint ViewToWidgetOffset() const { return mViewToWidgetOffset; } /** * Called to indicate that the position of the view has been changed. * The specified coordinates are in the parent view's coordinate space. * @param x new x position * @param y new y position */ void SetPosition(nscoord aX, nscoord aY); /** * Called to indicate that the z-index of a view has been changed. * The z-index is relative to all siblings of the view. * @param aAuto Indicate that the z-index of a view is "auto". An "auto" z-index * means that the view does not define a new stacking context, * which means that the z-indicies of the view's children are * relative to the view's siblings. * @param zindex new z depth */ void SetZIndex(bool aAuto, int32_t aZIndex, bool aTopMost); bool GetZIndexIsAuto() const { return (mVFlags & NS_VIEW_FLAG_AUTO_ZINDEX) != 0; } int32_t GetZIndex() const { return mZIndex; } void SetParent(nsView *aParent) { mParent = aParent; } void SetNextSibling(nsView *aSibling) { NS_ASSERTION(aSibling != this, "Can't be our own sibling!"); mNextSibling = aSibling; } nsRegion* GetDirtyRegion() { if (!mDirtyRegion) { NS_ASSERTION(!mParent || GetFloating(), "Only display roots should have dirty regions"); mDirtyRegion = new nsRegion(); NS_ASSERTION(mDirtyRegion, "Out of memory!"); } return mDirtyRegion; } // nsIWidgetListener virtual nsIPresShell* GetPresShell() MOZ_OVERRIDE; virtual nsView* GetView() MOZ_OVERRIDE { return this; } virtual bool WindowMoved(nsIWidget* aWidget, int32_t x, int32_t y) MOZ_OVERRIDE; virtual bool WindowResized(nsIWidget* aWidget, int32_t aWidth, int32_t aHeight) MOZ_OVERRIDE; virtual bool RequestWindowClose(nsIWidget* aWidget) MOZ_OVERRIDE; virtual void WillPaintWindow(nsIWidget* aWidget, bool aWillSendDidPaint) MOZ_OVERRIDE; virtual bool PaintWindow(nsIWidget* aWidget, nsIntRegion aRegion, uint32_t aFlags) MOZ_OVERRIDE; virtual void DidPaintWindow() MOZ_OVERRIDE; virtual void RequestRepaint() MOZ_OVERRIDE; virtual nsEventStatus HandleEvent(nsGUIEvent* aEvent, bool aUseAttachedEvents) MOZ_OVERRIDE; virtual ~nsView(); nsPoint GetOffsetTo(const nsView* aOther, const int32_t aAPD) const; nsIWidget* GetNearestWidget(nsPoint* aOffset, const int32_t aAPD) const; private: nsView(nsViewManager* aViewManager = nullptr, nsViewVisibility aVisibility = nsViewVisibility_kShow); bool ForcedRepaint() { return mForcedRepaint; } // Do the actual work of ResetWidgetBounds, unconditionally. Don't // call this method if we have no widget. void DoResetWidgetBounds(bool aMoveOnly, bool aInvalidateChangedSize); void InitializeWindow(bool aEnableDragDrop, bool aResetVisibility); bool IsEffectivelyVisible(); /** * Called to indicate that the dimensions of the view have been changed. * The x and y coordinates may be < 0, indicating that the view extends above * or to the left of its origin position. The term 'dimensions' indicates it * is relative to this view. */ void SetDimensions(const nsRect &aRect, bool aPaint = true, bool aResizeWidget = true); /** * Called to indicate that the visibility of a view has been * changed. * @param visibility new visibility state */ void SetVisibility(nsViewVisibility visibility); /** * Set/Get whether the view "floats" above all other views, * which tells the compositor not to consider higher views in * the view hierarchy that would geometrically intersect with * this view. This is a hack, but it fixes some problems with * views that need to be drawn in front of all other views. * @result true if the view floats, false otherwise. */ void SetFloating(bool aFloatingView); // Helper function to get mouse grabbing off this view (by moving it to the // parent, if we can) void DropMouseGrabbing(); // Same as GetBounds but converts to parent appunits if they are different. nsRect GetBoundsInParentUnits() const; bool HasNonEmptyDirtyRegion() { return mDirtyRegion && !mDirtyRegion->IsEmpty(); } void InsertChild(nsView *aChild, nsView *aSibling); void RemoveChild(nsView *aChild); void SetTopMost(bool aTopMost) { aTopMost ? mVFlags |= NS_VIEW_FLAG_TOPMOST : mVFlags &= ~NS_VIEW_FLAG_TOPMOST; } bool IsTopMost() { return((mVFlags & NS_VIEW_FLAG_TOPMOST) != 0); } void ResetWidgetBounds(bool aRecurse, bool aForceSync); void AssertNoWindow(); void NotifyEffectiveVisibilityChanged(bool aEffectivelyVisible); // Update the cached RootViewManager for all view manager descendents, // If the hierarchy is being removed, aViewManagerParent points to the view // manager for the hierarchy's old parent, and will have its mouse grab // released if it points to any view in this view hierarchy. void InvalidateHierarchy(nsViewManager *aViewManagerParent); nsViewManager *mViewManager; nsView *mParent; nsIWidget *mWindow; nsView *mNextSibling; nsView *mFirstChild; nsIFrame *mFrame; nsRegion *mDirtyRegion; int32_t mZIndex; nsViewVisibility mVis; // position relative our parent view origin but in our appunits nscoord mPosX, mPosY; // relative to parent, but in our appunits nsRect mDimBounds; // in our appunits nsPoint mViewToWidgetOffset; float mOpacity; uint32_t mVFlags; bool mWidgetIsTopLevel; bool mForcedRepaint; bool mInAlternatePaint; }; #endif