/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* JSClass definition and its component types, plus related interfaces. */ #ifndef js_Class_h #define js_Class_h #include "mozilla/NullPtr.h" #include "jstypes.h" #include "js/CallArgs.h" #include "js/Id.h" #include "js/TypeDecls.h" /* * A JSClass acts as a vtable for JS objects that allows JSAPI clients to * control various aspects of the behavior of an object like property lookup. * js::Class is an engine-private extension that allows more control over * object behavior and, e.g., allows custom slow layout. */ class JSFreeOp; namespace js { class Class; class FreeOp; class PropertyId; class PropertyName; class Shape; class SpecialId; // This is equal to JSFunction::class_. Use it in places where you don't want // to #include jsfun.h. extern JS_FRIEND_DATA(const js::Class* const) FunctionClassPtr; static JS_ALWAYS_INLINE jsid SPECIALID_TO_JSID(const SpecialId &sid); /* * We partition the ways to refer to a property into three: by an index * (uint32_t); by a string whose characters do not represent an index * (PropertyName, see vm/String.h); and by various special values. * * Special values are encoded using SpecialId, which is layout-compatible but * non-interconvertible with jsid. A SpecialId is used for JSID_VOID, which * does not occur in JS scripts but may be used to indicate the absence of a * valid identifier. In the future, a SpecialId may also be an object used by * Harmony-proposed private names. */ class SpecialId { uintptr_t bits_; /* Needs access to raw bits. */ friend JS_ALWAYS_INLINE jsid SPECIALID_TO_JSID(const SpecialId &sid); friend class PropertyId; static const uintptr_t TYPE_VOID = JSID_TYPE_VOID; static const uintptr_t TYPE_OBJECT = JSID_TYPE_OBJECT; static const uintptr_t TYPE_MASK = JSID_TYPE_MASK; SpecialId(uintptr_t bits) : bits_(bits) { } public: SpecialId() : bits_(TYPE_VOID) { } /* Object-valued */ SpecialId(JSObject &obj) : bits_(uintptr_t(&obj) | TYPE_OBJECT) { JS_ASSERT(&obj != nullptr); JS_ASSERT((uintptr_t(&obj) & TYPE_MASK) == 0); } bool isObject() const { return (bits_ & TYPE_MASK) == TYPE_OBJECT && bits_ != TYPE_OBJECT; } JSObject *toObject() const { JS_ASSERT(isObject()); return reinterpret_cast(bits_ & ~TYPE_MASK); } /* Empty */ static SpecialId empty() { SpecialId sid(TYPE_OBJECT); JS_ASSERT(sid.isEmpty()); return sid; } bool isEmpty() const { return bits_ == TYPE_OBJECT; } /* Void */ static SpecialId voidId() { SpecialId sid(TYPE_VOID); JS_ASSERT(sid.isVoid()); return sid; } bool isVoid() const { return bits_ == TYPE_VOID; } }; static JS_ALWAYS_INLINE jsid SPECIALID_TO_JSID(const SpecialId &sid) { jsid id; JSID_BITS(id) = sid.bits_; JS_ASSERT_IF(sid.isObject(), JSID_IS_OBJECT(id) && JSID_TO_OBJECT(id) == sid.toObject()); JS_ASSERT_IF(sid.isVoid(), JSID_IS_VOID(id)); JS_ASSERT_IF(sid.isEmpty(), JSID_IS_EMPTY(id)); return id; } static JS_ALWAYS_INLINE bool JSID_IS_SPECIAL(jsid id) { return JSID_IS_OBJECT(id) || JSID_IS_EMPTY(id) || JSID_IS_VOID(id); } static JS_ALWAYS_INLINE SpecialId JSID_TO_SPECIALID(jsid id) { JS_ASSERT(JSID_IS_SPECIAL(id)); if (JSID_IS_OBJECT(id)) return SpecialId(*JSID_TO_OBJECT(id)); if (JSID_IS_EMPTY(id)) return SpecialId::empty(); JS_ASSERT(JSID_IS_VOID(id)); return SpecialId::voidId(); } typedef JS::Handle HandleSpecialId; } // namespace js // JSClass operation signatures. // Add or get a property named by id in obj. Note the jsid id type -- id may // be a string (Unicode property identifier) or an int (element index). The // *vp out parameter, on success, is the new property value after the action. typedef bool (* JSPropertyOp)(JSContext *cx, JS::Handle obj, JS::Handle id, JS::MutableHandle vp); // Set a property named by id in obj, treating the assignment as strict // mode code if strict is true. Note the jsid id type -- id may be a string // (Unicode property identifier) or an int (element index). The *vp out // parameter, on success, is the new property value after the // set. typedef bool (* JSStrictPropertyOp)(JSContext *cx, JS::Handle obj, JS::Handle id, bool strict, JS::MutableHandle vp); // Delete a property named by id in obj. // // If an error occurred, return false as per normal JSAPI error practice. // // If no error occurred, but the deletion attempt wasn't allowed (perhaps // because the property was non-configurable), set *succeeded to false and // return true. This will cause |delete obj[id]| to evaluate to false in // non-strict mode code, and to throw a TypeError in strict mode code. // // If no error occurred and the deletion wasn't disallowed (this is *not* the // same as saying that a deletion actually occurred -- deleting a non-existent // property, or an inherited property, is allowed -- it's just pointless), // set *succeeded to true and return true. typedef bool (* JSDeletePropertyOp)(JSContext *cx, JS::Handle obj, JS::Handle id, bool *succeeded); // This function type is used for callbacks that enumerate the properties of // a JSObject. The behavior depends on the value of enum_op: // // JSENUMERATE_INIT // A new, opaque iterator state should be allocated and stored in *statep. // (You can use PRIVATE_TO_JSVAL() to tag the pointer to be stored). // // The number of properties that will be enumerated should be returned as // an integer jsval in *idp, if idp is non-null, and provided the number of // enumerable properties is known. If idp is non-null and the number of // enumerable properties can't be computed in advance, *idp should be set // to JSVAL_ZERO. // // JSENUMERATE_INIT_ALL // Used identically to JSENUMERATE_INIT, but exposes all properties of the // object regardless of enumerability. // // JSENUMERATE_NEXT // A previously allocated opaque iterator state is passed in via statep. // Return the next jsid in the iteration using *idp. The opaque iterator // state pointed at by statep is destroyed and *statep is set to JSVAL_NULL // if there are no properties left to enumerate. // // JSENUMERATE_DESTROY // Destroy the opaque iterator state previously allocated in *statep by a // call to this function when enum_op was JSENUMERATE_INIT or // JSENUMERATE_INIT_ALL. // // The return value is used to indicate success, with a value of false // indicating failure. typedef bool (* JSNewEnumerateOp)(JSContext *cx, JS::Handle obj, JSIterateOp enum_op, JS::MutableHandle statep, JS::MutableHandle idp); // The old-style JSClass.enumerate op should define all lazy properties not // yet reflected in obj. typedef bool (* JSEnumerateOp)(JSContext *cx, JS::Handle obj); // Resolve a lazy property named by id in obj by defining it directly in obj. // Lazy properties are those reflected from some peer native property space // (e.g., the DOM attributes for a given node reflected as obj) on demand. // // JS looks for a property in an object, and if not found, tries to resolve // the given id. If resolve succeeds, the engine looks again in case resolve // defined obj[id]. If no such property exists directly in obj, the process // is repeated with obj's prototype, etc. // // NB: JSNewResolveOp provides a cheaper way to resolve lazy properties. typedef bool (* JSResolveOp)(JSContext *cx, JS::Handle obj, JS::Handle id); // Like JSResolveOp, but flags provide contextual information as follows: // // JSRESOLVE_ASSIGNING obj[id] is on the left-hand side of an assignment // // The *objp out parameter, on success, should be null to indicate that id // was not resolved; and non-null, referring to obj or one of its prototypes, // if id was resolved. The hook may assume *objp is null on entry. // // This hook instead of JSResolveOp is called via the JSClass.resolve member // if JSCLASS_NEW_RESOLVE is set in JSClass.flags. typedef bool (* JSNewResolveOp)(JSContext *cx, JS::Handle obj, JS::Handle id, unsigned flags, JS::MutableHandle objp); // Convert obj to the given type, returning true with the resulting value in // *vp on success, and returning false on error or exception. typedef bool (* JSConvertOp)(JSContext *cx, JS::Handle obj, JSType type, JS::MutableHandle vp); // Finalize obj, which the garbage collector has determined to be unreachable // from other live objects or from GC roots. Obviously, finalizers must never // store a reference to obj. typedef void (* JSFinalizeOp)(JSFreeOp *fop, JSObject *obj); // Finalizes external strings created by JS_NewExternalString. struct JSStringFinalizer { void (*finalize)(const JSStringFinalizer *fin, jschar *chars); }; // JSClass.checkAccess type: check whether obj[id] may be accessed per mode, // returning false on error/exception, true on success with obj[id]'s last-got // value in *vp, and its attributes in *attrsp. As for JSPropertyOp above, id // is either a string or an int jsval. typedef bool (* JSCheckAccessOp)(JSContext *cx, JS::Handle obj, JS::Handle id, JSAccessMode mode, JS::MutableHandle vp); // Return whether the first principal subsumes the second. The exact meaning of // 'subsumes' is left up to the browser. Subsumption is checked inside the JS // engine when determining, e.g., which stack frames to display in a backtrace. typedef bool (* JSSubsumesOp)(JSPrincipals *first, JSPrincipals *second); // Check whether v is an instance of obj. Return false on error or exception, // true on success with true in *bp if v is an instance of obj, false in // *bp otherwise. typedef bool (* JSHasInstanceOp)(JSContext *cx, JS::Handle obj, JS::MutableHandle vp, bool *bp); // Function type for trace operation of the class called to enumerate all // traceable things reachable from obj's private data structure. For each such // thing, a trace implementation must call one of the JS_Call*Tracer variants // on the thing. // // JSTraceOp implementation can assume that no other threads mutates object // state. It must not change state of the object or corresponding native // structures. The only exception for this rule is the case when the embedding // needs a tight integration with GC. In that case the embedding can check if // the traversal is a part of the marking phase through calling // JS_IsGCMarkingTracer and apply a special code like emptying caches or // marking its native structures. typedef void (* JSTraceOp)(JSTracer *trc, JSObject *obj); // A generic type for functions mapping an object to another object, or null // if an error or exception was thrown on cx. typedef JSObject * (* JSObjectOp)(JSContext *cx, JS::Handle obj); // Hook that creates an iterator object for a given object. Returns the // iterator object or null if an error or exception was thrown on cx. typedef JSObject * (* JSIteratorOp)(JSContext *cx, JS::HandleObject obj, bool keysonly); typedef JSObject * (* JSWeakmapKeyDelegateOp)(JSObject *obj); /* js::Class operation signatures. */ namespace js { typedef bool (* LookupGenericOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id, JS::MutableHandleObject objp, JS::MutableHandle propp); typedef bool (* LookupPropOp)(JSContext *cx, JS::HandleObject obj, JS::Handle name, JS::MutableHandleObject objp, JS::MutableHandle propp); typedef bool (* LookupElementOp)(JSContext *cx, JS::HandleObject obj, uint32_t index, JS::MutableHandleObject objp, JS::MutableHandle propp); typedef bool (* LookupSpecialOp)(JSContext *cx, JS::HandleObject obj, HandleSpecialId sid, JS::MutableHandleObject objp, JS::MutableHandle propp); typedef bool (* DefineGenericOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id, JS::HandleValue value, JSPropertyOp getter, JSStrictPropertyOp setter, unsigned attrs); typedef bool (* DefinePropOp)(JSContext *cx, JS::HandleObject obj, JS::Handle name, JS::HandleValue value, JSPropertyOp getter, JSStrictPropertyOp setter, unsigned attrs); typedef bool (* DefineElementOp)(JSContext *cx, JS::HandleObject obj, uint32_t index, JS::HandleValue value, JSPropertyOp getter, JSStrictPropertyOp setter, unsigned attrs); typedef bool (* DefineSpecialOp)(JSContext *cx, JS::HandleObject obj, HandleSpecialId sid, JS::HandleValue value, JSPropertyOp getter, JSStrictPropertyOp setter, unsigned attrs); typedef bool (* GenericIdOp)(JSContext *cx, JS::HandleObject obj, JS::HandleObject receiver, JS::HandleId id, JS::MutableHandleValue vp); typedef bool (* PropertyIdOp)(JSContext *cx, JS::HandleObject obj, JS::HandleObject receiver, JS::Handle name, JS::MutableHandleValue vp); typedef bool (* ElementIdOp)(JSContext *cx, JS::HandleObject obj, JS::HandleObject receiver, uint32_t index, JS::MutableHandleValue vp); typedef bool (* SpecialIdOp)(JSContext *cx, JS::HandleObject obj, JS::HandleObject receiver, HandleSpecialId sid, JS::MutableHandleValue vp); typedef bool (* StrictGenericIdOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id, JS::MutableHandleValue vp, bool strict); typedef bool (* StrictPropertyIdOp)(JSContext *cx, JS::HandleObject obj, JS::Handle name, JS::MutableHandleValue vp, bool strict); typedef bool (* StrictElementIdOp)(JSContext *cx, JS::HandleObject obj, uint32_t index, JS::MutableHandleValue vp, bool strict); typedef bool (* StrictSpecialIdOp)(JSContext *cx, JS::HandleObject obj, HandleSpecialId sid, JS::MutableHandleValue vp, bool strict); typedef bool (* GenericAttributesOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id, unsigned *attrsp); typedef bool (* PropertyAttributesOp)(JSContext *cx, JS::HandleObject obj, JS::Handle name, unsigned *attrsp); typedef bool (* DeletePropertyOp)(JSContext *cx, JS::HandleObject obj, JS::Handle name, bool *succeeded); typedef bool (* DeleteElementOp)(JSContext *cx, JS::HandleObject obj, uint32_t index, bool *succeeded); typedef bool (* DeleteSpecialOp)(JSContext *cx, JS::HandleObject obj, HandleSpecialId sid, bool *succeeded); typedef bool (* WatchOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id, JS::HandleObject callable); typedef bool (* UnwatchOp)(JSContext *cx, JS::HandleObject obj, JS::HandleId id); typedef bool (* SliceOp)(JSContext *cx, JS::HandleObject obj, uint32_t begin, uint32_t end, JS::HandleObject result); // result is actually preallocted. typedef JSObject * (* ObjectOp)(JSContext *cx, JS::HandleObject obj); typedef void (* FinalizeOp)(FreeOp *fop, JSObject *obj); #define JS_CLASS_MEMBERS \ const char *name; \ uint32_t flags; \ \ /* Mandatory function pointer members. */ \ JSPropertyOp addProperty; \ JSDeletePropertyOp delProperty; \ JSPropertyOp getProperty; \ JSStrictPropertyOp setProperty; \ JSEnumerateOp enumerate; \ JSResolveOp resolve; \ JSConvertOp convert; \ \ /* Optional members (may be null). */ \ FinalizeOp finalize; \ JSCheckAccessOp checkAccess; \ JSNative call; \ JSHasInstanceOp hasInstance; \ JSNative construct; \ JSTraceOp trace /* * The helper struct to measure the size of JS_CLASS_MEMBERS to know how much * we have to pad js::Class to match the size of JSClass. */ struct ClassSizeMeasurement { JS_CLASS_MEMBERS; }; struct ClassExtension { JSObjectOp outerObject; JSObjectOp innerObject; JSIteratorOp iteratorObject; /* * isWrappedNative is true only if the class is an XPCWrappedNative. * WeakMaps use this to override the wrapper disposal optimization. */ bool isWrappedNative; /* * If an object is used as a key in a weakmap, it may be desirable for the * garbage collector to keep that object around longer than it otherwise * would. A common case is when the key is a wrapper around an object in * another compartment, and we want to avoid collecting the wrapper (and * removing the weakmap entry) as long as the wrapped object is alive. In * that case, the wrapped object is returned by the wrapper's * weakmapKeyDelegateOp hook. As long as the wrapper is used as a weakmap * key, it will not be collected (and remain in the weakmap) until the * wrapped object is collected. */ JSWeakmapKeyDelegateOp weakmapKeyDelegateOp; }; #define JS_NULL_CLASS_EXT {nullptr,nullptr,nullptr,false,nullptr} struct ObjectOps { LookupGenericOp lookupGeneric; LookupPropOp lookupProperty; LookupElementOp lookupElement; LookupSpecialOp lookupSpecial; DefineGenericOp defineGeneric; DefinePropOp defineProperty; DefineElementOp defineElement; DefineSpecialOp defineSpecial; GenericIdOp getGeneric; PropertyIdOp getProperty; ElementIdOp getElement; SpecialIdOp getSpecial; StrictGenericIdOp setGeneric; StrictPropertyIdOp setProperty; StrictElementIdOp setElement; StrictSpecialIdOp setSpecial; GenericAttributesOp getGenericAttributes; GenericAttributesOp setGenericAttributes; DeletePropertyOp deleteProperty; DeleteElementOp deleteElement; DeleteSpecialOp deleteSpecial; WatchOp watch; UnwatchOp unwatch; SliceOp slice; // Optimized slice, can be null. JSNewEnumerateOp enumerate; ObjectOp thisObject; }; #define JS_NULL_OBJECT_OPS \ {nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr, \ nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr, \ nullptr,nullptr,nullptr,nullptr,nullptr,nullptr,nullptr} } // namespace js // Classes, objects, and properties. typedef void (*JSClassInternal)(); struct JSClass { const char *name; uint32_t flags; // Mandatory function pointer members. JSPropertyOp addProperty; JSDeletePropertyOp delProperty; JSPropertyOp getProperty; JSStrictPropertyOp setProperty; JSEnumerateOp enumerate; JSResolveOp resolve; JSConvertOp convert; // Optional members (may be null). JSFinalizeOp finalize; JSCheckAccessOp checkAccess; JSNative call; JSHasInstanceOp hasInstance; JSNative construct; JSTraceOp trace; void *reserved[42]; }; #define JSCLASS_HAS_PRIVATE (1<<0) // objects have private slot #define JSCLASS_NEW_ENUMERATE (1<<1) // has JSNewEnumerateOp hook #define JSCLASS_NEW_RESOLVE (1<<2) // has JSNewResolveOp hook #define JSCLASS_PRIVATE_IS_NSISUPPORTS (1<<3) // private is (nsISupports *) #define JSCLASS_IS_DOMJSCLASS (1<<4) // objects are DOM #define JSCLASS_IMPLEMENTS_BARRIERS (1<<5) // Correctly implements GC read // and write barriers #define JSCLASS_EMULATES_UNDEFINED (1<<6) // objects of this class act // like the value undefined, // in some contexts #define JSCLASS_USERBIT1 (1<<7) // Reserved for embeddings. // To reserve slots fetched and stored via JS_Get/SetReservedSlot, bitwise-or // JSCLASS_HAS_RESERVED_SLOTS(n) into the initializer for JSClass.flags, where // n is a constant in [1, 255]. Reserved slots are indexed from 0 to n-1. #define JSCLASS_RESERVED_SLOTS_SHIFT 8 // room for 8 flags below */ #define JSCLASS_RESERVED_SLOTS_WIDTH 8 // and 16 above this field */ #define JSCLASS_RESERVED_SLOTS_MASK JS_BITMASK(JSCLASS_RESERVED_SLOTS_WIDTH) #define JSCLASS_HAS_RESERVED_SLOTS(n) (((n) & JSCLASS_RESERVED_SLOTS_MASK) \ << JSCLASS_RESERVED_SLOTS_SHIFT) #define JSCLASS_RESERVED_SLOTS(clasp) (((clasp)->flags \ >> JSCLASS_RESERVED_SLOTS_SHIFT) \ & JSCLASS_RESERVED_SLOTS_MASK) #define JSCLASS_HIGH_FLAGS_SHIFT (JSCLASS_RESERVED_SLOTS_SHIFT + \ JSCLASS_RESERVED_SLOTS_WIDTH) #define JSCLASS_IS_ANONYMOUS (1<<(JSCLASS_HIGH_FLAGS_SHIFT+0)) #define JSCLASS_IS_GLOBAL (1<<(JSCLASS_HIGH_FLAGS_SHIFT+1)) #define JSCLASS_INTERNAL_FLAG2 (1<<(JSCLASS_HIGH_FLAGS_SHIFT+2)) #define JSCLASS_INTERNAL_FLAG3 (1<<(JSCLASS_HIGH_FLAGS_SHIFT+3)) // Indicate whether the proto or ctor should be frozen. #define JSCLASS_FREEZE_PROTO (1<<(JSCLASS_HIGH_FLAGS_SHIFT+4)) #define JSCLASS_FREEZE_CTOR (1<<(JSCLASS_HIGH_FLAGS_SHIFT+5)) // Reserved for embeddings. #define JSCLASS_USERBIT2 (1<<(JSCLASS_HIGH_FLAGS_SHIFT+6)) #define JSCLASS_USERBIT3 (1<<(JSCLASS_HIGH_FLAGS_SHIFT+7)) #define JSCLASS_BACKGROUND_FINALIZE (1<<(JSCLASS_HIGH_FLAGS_SHIFT+8)) // Bits 26 through 31 are reserved for the CACHED_PROTO_KEY mechanism, see // below. // ECMA-262 requires that most constructors used internally create objects // with "the original Foo.prototype value" as their [[Prototype]] (__proto__) // member initial value. The "original ... value" verbiage is there because // in ECMA-262, global properties naming class objects are read/write and // deleteable, for the most part. // // Implementing this efficiently requires that global objects have classes // with the following flags. Failure to use JSCLASS_GLOBAL_FLAGS was // previously allowed, but is now an ES5 violation and thus unsupported. // #define JSCLASS_GLOBAL_SLOT_COUNT (3 + JSProto_LIMIT * 3 + 29) #define JSCLASS_GLOBAL_FLAGS_WITH_SLOTS(n) \ (JSCLASS_IS_GLOBAL | JSCLASS_HAS_RESERVED_SLOTS(JSCLASS_GLOBAL_SLOT_COUNT + (n))) #define JSCLASS_GLOBAL_FLAGS \ JSCLASS_GLOBAL_FLAGS_WITH_SLOTS(0) #define JSCLASS_HAS_GLOBAL_FLAG_AND_SLOTS(clasp) \ (((clasp)->flags & JSCLASS_IS_GLOBAL) \ && JSCLASS_RESERVED_SLOTS(clasp) >= JSCLASS_GLOBAL_SLOT_COUNT) // Fast access to the original value of each standard class's prototype. #define JSCLASS_CACHED_PROTO_SHIFT (JSCLASS_HIGH_FLAGS_SHIFT + 10) #define JSCLASS_CACHED_PROTO_WIDTH 6 #define JSCLASS_CACHED_PROTO_MASK JS_BITMASK(JSCLASS_CACHED_PROTO_WIDTH) #define JSCLASS_HAS_CACHED_PROTO(key) (uint32_t(key) << JSCLASS_CACHED_PROTO_SHIFT) #define JSCLASS_CACHED_PROTO_KEY(clasp) ((JSProtoKey) \ (((clasp)->flags \ >> JSCLASS_CACHED_PROTO_SHIFT) \ & JSCLASS_CACHED_PROTO_MASK)) // Initializer for unused members of statically initialized JSClass structs. #define JSCLASS_NO_INTERNAL_MEMBERS {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} #define JSCLASS_NO_OPTIONAL_MEMBERS 0,0,0,0,0,JSCLASS_NO_INTERNAL_MEMBERS namespace js { struct Class { JS_CLASS_MEMBERS; ClassExtension ext; ObjectOps ops; uint8_t pad[sizeof(JSClass) - sizeof(ClassSizeMeasurement) - sizeof(ClassExtension) - sizeof(ObjectOps)]; /* Class is not native and its map is not a scope. */ static const uint32_t NON_NATIVE = JSCLASS_INTERNAL_FLAG2; bool isNative() const { return !(flags & NON_NATIVE); } bool hasPrivate() const { return !!(flags & JSCLASS_HAS_PRIVATE); } bool emulatesUndefined() const { return flags & JSCLASS_EMULATES_UNDEFINED; } bool isCallable() const { return this == js::FunctionClassPtr || call; } static size_t offsetOfFlags() { return offsetof(Class, flags); } }; JS_STATIC_ASSERT(offsetof(JSClass, name) == offsetof(Class, name)); JS_STATIC_ASSERT(offsetof(JSClass, flags) == offsetof(Class, flags)); JS_STATIC_ASSERT(offsetof(JSClass, addProperty) == offsetof(Class, addProperty)); JS_STATIC_ASSERT(offsetof(JSClass, delProperty) == offsetof(Class, delProperty)); JS_STATIC_ASSERT(offsetof(JSClass, getProperty) == offsetof(Class, getProperty)); JS_STATIC_ASSERT(offsetof(JSClass, setProperty) == offsetof(Class, setProperty)); JS_STATIC_ASSERT(offsetof(JSClass, enumerate) == offsetof(Class, enumerate)); JS_STATIC_ASSERT(offsetof(JSClass, resolve) == offsetof(Class, resolve)); JS_STATIC_ASSERT(offsetof(JSClass, convert) == offsetof(Class, convert)); JS_STATIC_ASSERT(offsetof(JSClass, finalize) == offsetof(Class, finalize)); JS_STATIC_ASSERT(offsetof(JSClass, checkAccess) == offsetof(Class, checkAccess)); JS_STATIC_ASSERT(offsetof(JSClass, call) == offsetof(Class, call)); JS_STATIC_ASSERT(offsetof(JSClass, construct) == offsetof(Class, construct)); JS_STATIC_ASSERT(offsetof(JSClass, hasInstance) == offsetof(Class, hasInstance)); JS_STATIC_ASSERT(offsetof(JSClass, trace) == offsetof(Class, trace)); JS_STATIC_ASSERT(sizeof(JSClass) == sizeof(Class)); static JS_ALWAYS_INLINE const JSClass * Jsvalify(const Class *c) { return (const JSClass *)c; } static JS_ALWAYS_INLINE const Class * Valueify(const JSClass *c) { return (const Class *)c; } /* * Enumeration describing possible values of the [[Class]] internal property * value of objects. */ enum ESClassValue { ESClass_Array, ESClass_Number, ESClass_String, ESClass_Boolean, ESClass_RegExp, ESClass_ArrayBuffer, ESClass_Date }; /* * Return whether the given object has the given [[Class]] internal property * value. Beware, this query says nothing about the js::Class of the JSObject * so the caller must not assume anything about obj's representation (e.g., obj * may be a proxy). */ inline bool ObjectClassIs(JSObject &obj, ESClassValue classValue, JSContext *cx); /* Just a helper that checks v.isObject before calling ObjectClassIs. */ inline bool IsObjectWithClass(const JS::Value &v, ESClassValue classValue, JSContext *cx); inline bool IsPoisonedSpecialId(js::SpecialId iden) { if (iden.isObject()) return JS::IsPoisonedPtr(iden.toObject()); return false; } template <> struct GCMethods { static SpecialId initial() { return SpecialId(); } static ThingRootKind kind() { return THING_ROOT_ID; } static bool poisoned(SpecialId id) { return IsPoisonedSpecialId(id); } }; } /* namespace js */ #endif /* js_Class_h */