/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsMathMLOperators.h" #include "nsCOMPtr.h" #include "nsHashtable.h" #include "nsTArray.h" #include "nsIPersistentProperties2.h" #include "nsNetUtil.h" #include "nsCRT.h" // operator dictionary entry struct OperatorData { OperatorData(void) : mFlags(0), mLeadingSpace(0.0f), mTrailingSpace(0.0f) { } // member data nsString mStr; nsOperatorFlags mFlags; float mLeadingSpace; // unit is em float mTrailingSpace; // unit is em }; static int32_t gTableRefCount = 0; static uint32_t gOperatorCount = 0; static OperatorData* gOperatorArray = nullptr; static nsHashtable* gOperatorTable = nullptr; static bool gInitialized = false; static nsTArray* gInvariantCharArray = nullptr; static const PRUnichar kNullCh = PRUnichar('\0'); static const PRUnichar kDashCh = PRUnichar('#'); static const PRUnichar kColonCh = PRUnichar(':'); static const char* const kMathVariant_name[] = { "normal", "bold", "italic", "bold-italic", "sans-serif", "bold-sans-serif", "sans-serif-italic", "sans-serif-bold-italic", "monospace", "script", "bold-script", "fraktur", "bold-fraktur", "double-struck" }; static void SetBooleanProperty(OperatorData* aOperatorData, nsString aName) { if (aName.IsEmpty()) return; if (aName.EqualsLiteral("stretchy") && (1 == aOperatorData->mStr.Length())) aOperatorData->mFlags |= NS_MATHML_OPERATOR_STRETCHY; else if (aName.EqualsLiteral("fence")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_FENCE; else if (aName.EqualsLiteral("accent")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_ACCENT; else if (aName.EqualsLiteral("largeop")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_LARGEOP; else if (aName.EqualsLiteral("separator")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_SEPARATOR; else if (aName.EqualsLiteral("movablelimits")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_MOVABLELIMITS; else if (aName.EqualsLiteral("symmetric")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_SYMMETRIC; else if (aName.EqualsLiteral("integral")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_INTEGRAL; else if (aName.EqualsLiteral("mirrorable")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_MIRRORABLE; } static void SetProperty(OperatorData* aOperatorData, nsString aName, nsString aValue) { if (aName.IsEmpty() || aValue.IsEmpty()) return; // XXX These ones are not kept in the dictionary // Support for these requires nsString member variables // maxsize (default: infinity) // minsize (default: 1) if (aName.EqualsLiteral("direction")) { if (aValue.EqualsLiteral("vertical")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_DIRECTION_VERTICAL; else if (aValue.EqualsLiteral("horizontal")) aOperatorData->mFlags |= NS_MATHML_OPERATOR_DIRECTION_HORIZONTAL; else return; // invalid value } else { bool isLeadingSpace; if (aName.EqualsLiteral("lspace")) isLeadingSpace = true; else if (aName.EqualsLiteral("rspace")) isLeadingSpace = false; else return; // input is not applicable // aValue is assumed to be a digit from 0 to 7 nsresult error = NS_OK; float space = aValue.ToFloat(&error) / 18.0; if (NS_FAILED(error)) return; if (isLeadingSpace) aOperatorData->mLeadingSpace = space; else aOperatorData->mTrailingSpace = space; } } static bool SetOperator(OperatorData* aOperatorData, nsOperatorFlags aForm, const nsCString& aOperator, nsString& aAttributes) { // aOperator is in the expanded format \uNNNN\uNNNN ... // First compress these Unicode points to the internal nsString format int32_t i = 0; nsAutoString name, value; int32_t len = aOperator.Length(); PRUnichar c = aOperator[i++]; uint32_t state = 0; PRUnichar uchar = 0; while (i <= len) { if (0 == state) { if (c != '\\') return false; if (i < len) c = aOperator[i]; i++; if (('u' != c) && ('U' != c)) return false; if (i < len) c = aOperator[i]; i++; state++; } else { if (('0' <= c) && (c <= '9')) uchar = (uchar << 4) | (c - '0'); else if (('a' <= c) && (c <= 'f')) uchar = (uchar << 4) | (c - 'a' + 0x0a); else if (('A' <= c) && (c <= 'F')) uchar = (uchar << 4) | (c - 'A' + 0x0a); else return false; if (i < len) c = aOperator[i]; i++; state++; if (5 == state) { value.Append(uchar); uchar = 0; state = 0; } } } if (0 != state) return false; // Quick return when the caller doesn't care about the attributes and just wants // to know if this is a valid operator (this is the case at the first pass of the // parsing of the dictionary in InitOperators()) if (!aForm) return true; // Add operator to hash table aOperatorData->mFlags |= aForm; aOperatorData->mStr.Assign(value); value.AppendInt(aForm, 10); nsStringKey key(value); gOperatorTable->Put(&key, aOperatorData); #ifdef DEBUG NS_LossyConvertUTF16toASCII str(aAttributes); #endif // Loop over the space-delimited list of attributes to get the name:value pairs aAttributes.Append(kNullCh); // put an extra null at the end PRUnichar* start = aAttributes.BeginWriting(); PRUnichar* end = start; while ((kNullCh != *start) && (kDashCh != *start)) { name.SetLength(0); value.SetLength(0); // skip leading space, the dash amounts to the end of the line while ((kNullCh!=*start) && (kDashCh!=*start) && nsCRT::IsAsciiSpace(*start)) { ++start; } end = start; // look for ':' while ((kNullCh!=*end) && (kDashCh!=*end) && !nsCRT::IsAsciiSpace(*end) && (kColonCh!=*end)) { ++end; } // If ':' is not found, then it's a boolean property bool IsBooleanProperty = (kColonCh != *end); *end = kNullCh; // end segment here // this segment is the name if (start < end) { name.Assign(start); } if (IsBooleanProperty) { SetBooleanProperty(aOperatorData, name); } else { start = ++end; // look for space or end of line while ((kNullCh!=*end) && (kDashCh!=*end) && !nsCRT::IsAsciiSpace(*end)) { ++end; } *end = kNullCh; // end segment here if (start < end) { // this segment is the value value.Assign(start); } SetProperty(aOperatorData, name, value); } start = ++end; } return true; } static nsresult InitOperators(void) { // Load the property file containing the Operator Dictionary nsresult rv; nsCOMPtr mathfontProp; rv = NS_LoadPersistentPropertiesFromURISpec(getter_AddRefs(mathfontProp), NS_LITERAL_CSTRING("resource://gre/res/fonts/mathfont.properties")); if (NS_FAILED(rv)) return rv; // Get the list of invariant chars for (int32_t i = 0; i < eMATHVARIANT_COUNT; ++i) { nsAutoCString key(NS_LITERAL_CSTRING("mathvariant.")); key.Append(kMathVariant_name[i]); nsAutoString value; mathfontProp->GetStringProperty(key, value); gInvariantCharArray->AppendElement(value); // i.e., gInvariantCharArray[i] holds this list } // Parse the Operator Dictionary in two passes. // The first pass is to count the number of operators; the second pass is to // allocate the necessary space for them and to add them in the hash table. for (int32_t pass = 1; pass <= 2; pass++) { OperatorData dummyData; OperatorData* operatorData = &dummyData; nsCOMPtr iterator; if (NS_SUCCEEDED(mathfontProp->Enumerate(getter_AddRefs(iterator)))) { bool more; uint32_t index = 0; nsAutoCString name; nsAutoString attributes; while ((NS_SUCCEEDED(iterator->HasMoreElements(&more))) && more) { nsCOMPtr element; if (NS_SUCCEEDED(iterator->GetNext(getter_AddRefs(element)))) { if (NS_SUCCEEDED(element->GetKey(name)) && NS_SUCCEEDED(element->GetValue(attributes))) { // expected key: operator.\uNNNN.{infix,postfix,prefix} if ((21 <= name.Length()) && (0 == name.Find("operator.\\u"))) { name.Cut(0, 9); // 9 is the length of "operator."; int32_t len = name.Length(); nsOperatorFlags form = 0; if (kNotFound != name.RFind(".infix")) { form = NS_MATHML_OPERATOR_FORM_INFIX; len -= 6; // 6 is the length of ".infix"; } else if (kNotFound != name.RFind(".postfix")) { form = NS_MATHML_OPERATOR_FORM_POSTFIX; len -= 8; // 8 is the length of ".postfix"; } else if (kNotFound != name.RFind(".prefix")) { form = NS_MATHML_OPERATOR_FORM_PREFIX; len -= 7; // 7 is the length of ".prefix"; } else continue; // input is not applicable name.SetLength(len); if (2 == pass) { // allocate space and start the storage if (!gOperatorArray) { if (0 == gOperatorCount) return NS_ERROR_UNEXPECTED; gOperatorArray = new OperatorData[gOperatorCount]; if (!gOperatorArray) return NS_ERROR_OUT_OF_MEMORY; } operatorData = &gOperatorArray[index]; } else { form = 0; // to quickly return from SetOperator() at pass 1 } // See if the operator should be retained if (SetOperator(operatorData, form, name, attributes)) { index++; if (1 == pass) gOperatorCount = index; } } } } } } } return NS_OK; } static nsresult InitGlobals() { gInitialized = true; nsresult rv = NS_ERROR_OUT_OF_MEMORY; gInvariantCharArray = new nsTArray(); if (gInvariantCharArray) { gOperatorTable = new nsHashtable(); if (gOperatorTable) { rv = InitOperators(); } } if (NS_FAILED(rv)) nsMathMLOperators::CleanUp(); return rv; } void nsMathMLOperators::CleanUp() { if (gInvariantCharArray) { delete gInvariantCharArray; gInvariantCharArray = nullptr; } if (gOperatorArray) { delete[] gOperatorArray; gOperatorArray = nullptr; } if (gOperatorTable) { delete gOperatorTable; gOperatorTable = nullptr; } } void nsMathMLOperators::AddRefTable(void) { gTableRefCount++; } void nsMathMLOperators::ReleaseTable(void) { if (0 == --gTableRefCount) { CleanUp(); } } static OperatorData* GetOperatorData(const nsString& aOperator, nsOperatorFlags aForm) { nsAutoString key(aOperator); key.AppendInt(aForm); nsStringKey hkey(key); return (OperatorData*)gOperatorTable->Get(&hkey); } bool nsMathMLOperators::LookupOperator(const nsString& aOperator, const nsOperatorFlags aForm, nsOperatorFlags* aFlags, float* aLeadingSpace, float* aTrailingSpace) { if (!gInitialized) { InitGlobals(); } if (gOperatorTable) { NS_ASSERTION(aFlags && aLeadingSpace && aTrailingSpace, "bad usage"); NS_ASSERTION(aForm > 0 && aForm < 4, "*** invalid call ***"); // The MathML REC says: // If the operator does not occur in the dictionary with the specified form, // the renderer should use one of the forms which is available there, in the // order of preference: infix, postfix, prefix. OperatorData* found; int32_t form = NS_MATHML_OPERATOR_GET_FORM(aForm); if (!(found = GetOperatorData(aOperator, form))) { if (form == NS_MATHML_OPERATOR_FORM_INFIX || !(found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_INFIX))) { if (form == NS_MATHML_OPERATOR_FORM_POSTFIX || !(found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_POSTFIX))) { if (form != NS_MATHML_OPERATOR_FORM_PREFIX) { found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_PREFIX); } } } } if (found) { NS_ASSERTION(found->mStr.Equals(aOperator), "bad setup"); *aLeadingSpace = found->mLeadingSpace; *aTrailingSpace = found->mTrailingSpace; *aFlags &= ~NS_MATHML_OPERATOR_FORM; // clear the form bits *aFlags |= found->mFlags; // just add bits without overwriting return true; } } return false; } void nsMathMLOperators::LookupOperators(const nsString& aOperator, nsOperatorFlags* aFlags, float* aLeadingSpace, float* aTrailingSpace) { if (!gInitialized) { InitGlobals(); } aFlags[NS_MATHML_OPERATOR_FORM_INFIX] = 0; aLeadingSpace[NS_MATHML_OPERATOR_FORM_INFIX] = 0.0f; aTrailingSpace[NS_MATHML_OPERATOR_FORM_INFIX] = 0.0f; aFlags[NS_MATHML_OPERATOR_FORM_POSTFIX] = 0; aLeadingSpace[NS_MATHML_OPERATOR_FORM_POSTFIX] = 0.0f; aTrailingSpace[NS_MATHML_OPERATOR_FORM_POSTFIX] = 0.0f; aFlags[NS_MATHML_OPERATOR_FORM_PREFIX] = 0; aLeadingSpace[NS_MATHML_OPERATOR_FORM_PREFIX] = 0.0f; aTrailingSpace[NS_MATHML_OPERATOR_FORM_PREFIX] = 0.0f; if (gOperatorTable) { OperatorData* found; found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_INFIX); if (found) { aFlags[NS_MATHML_OPERATOR_FORM_INFIX] = found->mFlags; aLeadingSpace[NS_MATHML_OPERATOR_FORM_INFIX] = found->mLeadingSpace; aTrailingSpace[NS_MATHML_OPERATOR_FORM_INFIX] = found->mTrailingSpace; } found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_POSTFIX); if (found) { aFlags[NS_MATHML_OPERATOR_FORM_POSTFIX] = found->mFlags; aLeadingSpace[NS_MATHML_OPERATOR_FORM_POSTFIX] = found->mLeadingSpace; aTrailingSpace[NS_MATHML_OPERATOR_FORM_POSTFIX] = found->mTrailingSpace; } found = GetOperatorData(aOperator, NS_MATHML_OPERATOR_FORM_PREFIX); if (found) { aFlags[NS_MATHML_OPERATOR_FORM_PREFIX] = found->mFlags; aLeadingSpace[NS_MATHML_OPERATOR_FORM_PREFIX] = found->mLeadingSpace; aTrailingSpace[NS_MATHML_OPERATOR_FORM_PREFIX] = found->mTrailingSpace; } } } bool nsMathMLOperators::IsMutableOperator(const nsString& aOperator) { if (!gInitialized) { InitGlobals(); } // lookup all the variants of the operator and return true if there // is a variant that is stretchy or largeop nsOperatorFlags flags[4]; float lspace[4], rspace[4]; nsMathMLOperators::LookupOperators(aOperator, flags, lspace, rspace); nsOperatorFlags allFlags = flags[NS_MATHML_OPERATOR_FORM_INFIX] | flags[NS_MATHML_OPERATOR_FORM_POSTFIX] | flags[NS_MATHML_OPERATOR_FORM_PREFIX]; return NS_MATHML_OPERATOR_IS_STRETCHY(allFlags) || NS_MATHML_OPERATOR_IS_LARGEOP(allFlags); } /* static */ bool nsMathMLOperators::IsMirrorableOperator(const nsString& aOperator) { // LookupOperator will search infix, postfix and prefix forms of aOperator and // return the first form found. It is assumed that all these forms have same // mirrorability. nsOperatorFlags flags = 0; float dummy; nsMathMLOperators::LookupOperator(aOperator, NS_MATHML_OPERATOR_FORM_INFIX, &flags, &dummy, &dummy); return NS_MATHML_OPERATOR_IS_MIRRORABLE(flags); } /* static */ nsStretchDirection nsMathMLOperators::GetStretchyDirection(const nsString& aOperator) { // LookupOperator will search infix, postfix and prefix forms of aOperator and // return the first form found. It is assumed that all these forms have same // direction. nsOperatorFlags flags = 0; float dummy; nsMathMLOperators::LookupOperator(aOperator, NS_MATHML_OPERATOR_FORM_INFIX, &flags, &dummy, &dummy); if (NS_MATHML_OPERATOR_IS_DIRECTION_VERTICAL(flags)) { return NS_STRETCH_DIRECTION_VERTICAL; } else if (NS_MATHML_OPERATOR_IS_DIRECTION_HORIZONTAL(flags)) { return NS_STRETCH_DIRECTION_HORIZONTAL; } else { return NS_STRETCH_DIRECTION_UNSUPPORTED; } } /* static */ eMATHVARIANT nsMathMLOperators::LookupInvariantChar(const nsAString& aChar) { if (!gInitialized) { InitGlobals(); } if (gInvariantCharArray) { for (int32_t i = gInvariantCharArray->Length()-1; i >= 0; --i) { const nsString& list = gInvariantCharArray->ElementAt(i); nsString::const_iterator start, end; list.BeginReading(start); list.EndReading(end); // Style-invariant characters are at offset 3*j + 1. if (FindInReadable(aChar, start, end) && start.size_backward() % 3 == 1) { return eMATHVARIANT(i); } } } return eMATHVARIANT_NONE; } /* static */ const nsDependentSubstring nsMathMLOperators::TransformVariantChar(const PRUnichar& aChar, eMATHVARIANT aVariant) { if (!gInitialized) { InitGlobals(); } if (gInvariantCharArray) { nsString list = gInvariantCharArray->ElementAt(aVariant); int32_t index = list.FindChar(aChar); // BMP characters are at offset 3*j if (index != kNotFound && index % 3 == 0 && list.Length() - index >= 2 ) { // The style-invariant character is the next character // (and list should contain padding if the next character is in the BMP). ++index; uint32_t len = NS_IS_HIGH_SURROGATE(list.CharAt(index)) ? 2 : 1; return nsDependentSubstring(list, index, len); } } return nsDependentSubstring(&aChar, &aChar + 1); }