/* vim:set ts=4 sw=4 sts=4 et cin: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // HttpLog.h should generally be included first #include "HttpLog.h" #include "nsHttpConnectionMgr.h" #include "nsHttpConnection.h" #include "nsHttpPipeline.h" #include "nsHttpHandler.h" #include "nsIHttpChannelInternal.h" #include "nsNetCID.h" #include "nsCOMPtr.h" #include "nsNetUtil.h" #include "mozilla/net/DNS.h" #include "nsIServiceManager.h" #include "nsIObserverService.h" #include "nsISSLSocketControl.h" #include "prnetdb.h" #include "mozilla/Telemetry.h" #include "mozilla/VisualEventTracer.h" #include using namespace mozilla; using namespace mozilla::net; // defined by the socket transport service while active extern PRThread *gSocketThread; static NS_DEFINE_CID(kSocketTransportServiceCID, NS_SOCKETTRANSPORTSERVICE_CID); //----------------------------------------------------------------------------- NS_IMPL_THREADSAFE_ISUPPORTS1(nsHttpConnectionMgr, nsIObserver) static void InsertTransactionSorted(nsTArray &pendingQ, nsHttpTransaction *trans) { // insert into queue with smallest valued number first. search in reverse // order under the assumption that many of the existing transactions will // have the same priority (usually 0). for (int32_t i=pendingQ.Length()-1; i>=0; --i) { nsHttpTransaction *t = pendingQ[i]; if (trans->Priority() >= t->Priority()) { pendingQ.InsertElementAt(i+1, trans); return; } } pendingQ.InsertElementAt(0, trans); } //----------------------------------------------------------------------------- nsHttpConnectionMgr::nsHttpConnectionMgr() : mReentrantMonitor("nsHttpConnectionMgr.mReentrantMonitor") , mMaxConns(0) , mMaxPersistConnsPerHost(0) , mMaxPersistConnsPerProxy(0) , mIsShuttingDown(false) , mNumActiveConns(0) , mNumIdleConns(0) , mNumSpdyActiveConns(0) , mNumHalfOpenConns(0) , mTimeOfNextWakeUp(UINT64_MAX) , mTimeoutTickArmed(false) { LOG(("Creating nsHttpConnectionMgr @%x\n", this)); mCT.Init(); mSpdyPreferredHash.Init(); } nsHttpConnectionMgr::~nsHttpConnectionMgr() { LOG(("Destroying nsHttpConnectionMgr @%x\n", this)); if (mTimeoutTick) mTimeoutTick->Cancel(); } nsresult nsHttpConnectionMgr::EnsureSocketThreadTarget() { nsresult rv; nsCOMPtr sts; nsCOMPtr ioService = do_GetIOService(&rv); if (NS_SUCCEEDED(rv)) sts = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv); ReentrantMonitorAutoEnter mon(mReentrantMonitor); // do nothing if already initialized or if we've shut down if (mSocketThreadTarget || mIsShuttingDown) return NS_OK; mSocketThreadTarget = sts; return rv; } nsresult nsHttpConnectionMgr::Init(uint16_t maxConns, uint16_t maxPersistConnsPerHost, uint16_t maxPersistConnsPerProxy, uint16_t maxRequestDelay, uint16_t maxPipelinedRequests, uint16_t maxOptimisticPipelinedRequests) { LOG(("nsHttpConnectionMgr::Init\n")); { ReentrantMonitorAutoEnter mon(mReentrantMonitor); mMaxConns = maxConns; mMaxPersistConnsPerHost = maxPersistConnsPerHost; mMaxPersistConnsPerProxy = maxPersistConnsPerProxy; mMaxRequestDelay = maxRequestDelay; mMaxPipelinedRequests = maxPipelinedRequests; mMaxOptimisticPipelinedRequests = maxOptimisticPipelinedRequests; mIsShuttingDown = false; } return EnsureSocketThreadTarget(); } nsresult nsHttpConnectionMgr::Shutdown() { LOG(("nsHttpConnectionMgr::Shutdown\n")); bool shutdown = false; { ReentrantMonitorAutoEnter mon(mReentrantMonitor); // do nothing if already shutdown if (!mSocketThreadTarget) return NS_OK; nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgShutdown, 0, &shutdown); // release our reference to the STS to prevent further events // from being posted. this is how we indicate that we are // shutting down. mIsShuttingDown = true; mSocketThreadTarget = 0; if (NS_FAILED(rv)) { NS_WARNING("unable to post SHUTDOWN message"); return rv; } } // wait for shutdown event to complete while (!shutdown) NS_ProcessNextEvent(NS_GetCurrentThread()); return NS_OK; } nsresult nsHttpConnectionMgr::PostEvent(nsConnEventHandler handler, int32_t iparam, void *vparam) { EnsureSocketThreadTarget(); ReentrantMonitorAutoEnter mon(mReentrantMonitor); nsresult rv; if (!mSocketThreadTarget) { NS_WARNING("cannot post event if not initialized"); rv = NS_ERROR_NOT_INITIALIZED; } else { nsRefPtr event = new nsConnEvent(this, handler, iparam, vparam); rv = mSocketThreadTarget->Dispatch(event, NS_DISPATCH_NORMAL); } return rv; } void nsHttpConnectionMgr::PruneDeadConnectionsAfter(uint32_t timeInSeconds) { LOG(("nsHttpConnectionMgr::PruneDeadConnectionsAfter\n")); if(!mTimer) mTimer = do_CreateInstance("@mozilla.org/timer;1"); // failure to create a timer is not a fatal error, but idle connections // will not be cleaned up until we try to use them. if (mTimer) { mTimeOfNextWakeUp = timeInSeconds + NowInSeconds(); mTimer->Init(this, timeInSeconds*1000, nsITimer::TYPE_ONE_SHOT); } else { NS_WARNING("failed to create: timer for pruning the dead connections!"); } } void nsHttpConnectionMgr::ConditionallyStopPruneDeadConnectionsTimer() { // Leave the timer in place if there are connections that potentially // need management if (mNumIdleConns || (mNumActiveConns && gHttpHandler->IsSpdyEnabled())) return; LOG(("nsHttpConnectionMgr::StopPruneDeadConnectionsTimer\n")); // Reset mTimeOfNextWakeUp so that we can find a new shortest value. mTimeOfNextWakeUp = UINT64_MAX; if (mTimer) { mTimer->Cancel(); mTimer = NULL; } } void nsHttpConnectionMgr::ConditionallyStopTimeoutTick() { LOG(("nsHttpConnectionMgr::ConditionallyStopTimeoutTick " "armed=%d active=%d\n", mTimeoutTickArmed, mNumActiveConns)); if (!mTimeoutTickArmed) return; if (mNumActiveConns) return; LOG(("nsHttpConnectionMgr::ConditionallyStopTimeoutTick stop==true\n")); mTimeoutTick->Cancel(); mTimeoutTickArmed = false; } //----------------------------------------------------------------------------- // nsHttpConnectionMgr::nsIObserver //----------------------------------------------------------------------------- NS_IMETHODIMP nsHttpConnectionMgr::Observe(nsISupports *subject, const char *topic, const PRUnichar *data) { LOG(("nsHttpConnectionMgr::Observe [topic=\"%s\"]\n", topic)); if (0 == strcmp(topic, NS_TIMER_CALLBACK_TOPIC)) { nsCOMPtr timer = do_QueryInterface(subject); if (timer == mTimer) { PruneDeadConnections(); } else if (timer == mTimeoutTick) { TimeoutTick(); } else { MOZ_ASSERT(false, "unexpected timer-callback"); LOG(("Unexpected timer object\n")); return NS_ERROR_UNEXPECTED; } } return NS_OK; } //----------------------------------------------------------------------------- nsresult nsHttpConnectionMgr::AddTransaction(nsHttpTransaction *trans, int32_t priority) { LOG(("nsHttpConnectionMgr::AddTransaction [trans=%x %d]\n", trans, priority)); NS_ADDREF(trans); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgNewTransaction, priority, trans); if (NS_FAILED(rv)) NS_RELEASE(trans); return rv; } nsresult nsHttpConnectionMgr::RescheduleTransaction(nsHttpTransaction *trans, int32_t priority) { LOG(("nsHttpConnectionMgr::RescheduleTransaction [trans=%x %d]\n", trans, priority)); NS_ADDREF(trans); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgReschedTransaction, priority, trans); if (NS_FAILED(rv)) NS_RELEASE(trans); return rv; } nsresult nsHttpConnectionMgr::CancelTransaction(nsHttpTransaction *trans, nsresult reason) { LOG(("nsHttpConnectionMgr::CancelTransaction [trans=%x reason=%x]\n", trans, reason)); NS_ADDREF(trans); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgCancelTransaction, static_cast(reason), trans); if (NS_FAILED(rv)) NS_RELEASE(trans); return rv; } nsresult nsHttpConnectionMgr::PruneDeadConnections() { return PostEvent(&nsHttpConnectionMgr::OnMsgPruneDeadConnections); } nsresult nsHttpConnectionMgr::DoShiftReloadConnectionCleanup(nsHttpConnectionInfo *aCI) { nsRefPtr connInfo(aCI); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgDoShiftReloadConnectionCleanup, 0, connInfo); if (NS_SUCCEEDED(rv)) connInfo.forget(); return rv; } nsresult nsHttpConnectionMgr::SpeculativeConnect(nsHttpConnectionInfo *ci, nsIInterfaceRequestor *callbacks, uint32_t caps) { LOG(("nsHttpConnectionMgr::SpeculativeConnect [ci=%s]\n", ci->HashKey().get())); // Wrap up the callbacks and the target to ensure they're released on the target // thread properly. nsCOMPtr wrappedCallbacks; NS_NewInterfaceRequestorAggregation(callbacks, nullptr, getter_AddRefs(wrappedCallbacks)); caps |= ci->GetAnonymous() ? NS_HTTP_LOAD_ANONYMOUS : 0; nsRefPtr trans = new NullHttpTransaction(ci, wrappedCallbacks, caps); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgSpeculativeConnect, 0, trans); if (NS_SUCCEEDED(rv)) trans.forget(); return rv; } nsresult nsHttpConnectionMgr::GetSocketThreadTarget(nsIEventTarget **target) { EnsureSocketThreadTarget(); ReentrantMonitorAutoEnter mon(mReentrantMonitor); NS_IF_ADDREF(*target = mSocketThreadTarget); return NS_OK; } nsresult nsHttpConnectionMgr::ReclaimConnection(nsHttpConnection *conn) { LOG(("nsHttpConnectionMgr::ReclaimConnection [conn=%x]\n", conn)); NS_ADDREF(conn); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgReclaimConnection, 0, conn); if (NS_FAILED(rv)) NS_RELEASE(conn); return rv; } // A structure used to marshall 2 pointers across the various necessary // threads to complete an HTTP upgrade. class nsCompleteUpgradeData { public: nsCompleteUpgradeData(nsAHttpConnection *aConn, nsIHttpUpgradeListener *aListener) : mConn(aConn), mUpgradeListener(aListener) {} nsRefPtr mConn; nsCOMPtr mUpgradeListener; }; nsresult nsHttpConnectionMgr::CompleteUpgrade(nsAHttpConnection *aConn, nsIHttpUpgradeListener *aUpgradeListener) { nsCompleteUpgradeData *data = new nsCompleteUpgradeData(aConn, aUpgradeListener); nsresult rv; rv = PostEvent(&nsHttpConnectionMgr::OnMsgCompleteUpgrade, 0, data); if (NS_FAILED(rv)) delete data; return rv; } nsresult nsHttpConnectionMgr::UpdateParam(nsParamName name, uint16_t value) { uint32_t param = (uint32_t(name) << 16) | uint32_t(value); return PostEvent(&nsHttpConnectionMgr::OnMsgUpdateParam, 0, (void *)(uintptr_t) param); } nsresult nsHttpConnectionMgr::ProcessPendingQ(nsHttpConnectionInfo *ci) { LOG(("nsHttpConnectionMgr::ProcessPendingQ [ci=%s]\n", ci->HashKey().get())); NS_ADDREF(ci); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgProcessPendingQ, 0, ci); if (NS_FAILED(rv)) NS_RELEASE(ci); return rv; } nsresult nsHttpConnectionMgr::ProcessPendingQ() { LOG(("nsHttpConnectionMgr::ProcessPendingQ [All CI]\n")); return PostEvent(&nsHttpConnectionMgr::OnMsgProcessPendingQ, 0, nullptr); } void nsHttpConnectionMgr::OnMsgUpdateRequestTokenBucket(int32_t, void *param) { nsRefPtr tokenBucket = dont_AddRef(static_cast(param)); gHttpHandler->SetRequestTokenBucket(tokenBucket); } nsresult nsHttpConnectionMgr::UpdateRequestTokenBucket(EventTokenBucket *aBucket) { nsRefPtr bucket(aBucket); // Call From main thread when a new EventTokenBucket has been made in order // to post the new value to the socket thread. nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgUpdateRequestTokenBucket, 0, bucket.get()); if (NS_SUCCEEDED(rv)) bucket.forget(); return rv; } // Given a nsHttpConnectionInfo find the connection entry object that // contains either the nshttpconnection or nshttptransaction parameter. // Normally this is done by the hashkey lookup of connectioninfo, // but if spdy coalescing is in play it might be found in a redirected // entry nsHttpConnectionMgr::nsConnectionEntry * nsHttpConnectionMgr::LookupConnectionEntry(nsHttpConnectionInfo *ci, nsHttpConnection *conn, nsHttpTransaction *trans) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); if (!ci) return nullptr; nsConnectionEntry *ent = mCT.Get(ci->HashKey()); // If there is no sign of coalescing (or it is disabled) then just // return the primary hash lookup if (!ent || !ent->mUsingSpdy || ent->mCoalescingKey.IsEmpty()) return ent; // If there is no preferred coalescing entry for this host (or the // preferred entry is the one that matched the mCT hash lookup) then // there is only option nsConnectionEntry *preferred = mSpdyPreferredHash.Get(ent->mCoalescingKey); if (!preferred || (preferred == ent)) return ent; if (conn) { // The connection could be either in preferred or ent. It is most // likely the only active connection in preferred - so start with that. if (preferred->mActiveConns.Contains(conn)) return preferred; if (preferred->mIdleConns.Contains(conn)) return preferred; } if (trans && preferred->mPendingQ.Contains(trans)) return preferred; // Neither conn nor trans found in preferred, use the default entry return ent; } nsresult nsHttpConnectionMgr::CloseIdleConnection(nsHttpConnection *conn) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::CloseIdleConnection %p conn=%p", this, conn)); if (!conn->ConnectionInfo()) return NS_ERROR_UNEXPECTED; nsConnectionEntry *ent = LookupConnectionEntry(conn->ConnectionInfo(), conn, nullptr); if (!ent || !ent->mIdleConns.RemoveElement(conn)) return NS_ERROR_UNEXPECTED; conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); mNumIdleConns--; ConditionallyStopPruneDeadConnectionsTimer(); return NS_OK; } // This function lets a connection, after completing the NPN phase, // report whether or not it is using spdy through the usingSpdy // argument. It would not be necessary if NPN were driven out of // the connection manager. The connection entry associated with the // connection is then updated to indicate whether or not we want to use // spdy with that host and update the preliminary preferred host // entries used for de-sharding hostsnames. void nsHttpConnectionMgr::ReportSpdyConnection(nsHttpConnection *conn, bool usingSpdy) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsConnectionEntry *ent = LookupConnectionEntry(conn->ConnectionInfo(), conn, nullptr); if (!ent) return; ent->mTestedSpdy = true; if (!usingSpdy) return; ent->mUsingSpdy = true; mNumSpdyActiveConns++; uint32_t ttl = conn->TimeToLive(); uint64_t timeOfExpire = NowInSeconds() + ttl; if (!mTimer || timeOfExpire < mTimeOfNextWakeUp) PruneDeadConnectionsAfter(ttl); // Lookup preferred directly from the hash instead of using // GetSpdyPreferredEnt() because we want to avoid the cert compatibility // check at this point because the cert is never part of the hash // lookup. Filtering on that has to be done at the time of use // rather than the time of registration (i.e. now). nsConnectionEntry *preferred = mSpdyPreferredHash.Get(ent->mCoalescingKey); LOG(("ReportSpdyConnection %s %s ent=%p preferred=%p\n", ent->mConnInfo->Host(), ent->mCoalescingKey.get(), ent, preferred)); if (!preferred) { if (!ent->mCoalescingKey.IsEmpty()) { mSpdyPreferredHash.Put(ent->mCoalescingKey, ent); ent->mSpdyPreferred = true; preferred = ent; } } else if (preferred != ent) { // A different hostname is the preferred spdy host for this // IP address. That preferred mapping must have been setup while // this connection was negotiating NPN. // Call don't reuse on the current connection to shut it down as soon // as possible without causing any errors. // i.e. the current transaction(s) on this connection will be processed // normally, but then it will go away and future connections will be // coalesced through the preferred entry. conn->DontReuse(); } PostEvent(&nsHttpConnectionMgr::OnMsgProcessAllSpdyPendingQ); } void nsHttpConnectionMgr::ReportSpdyCWNDSetting(nsHttpConnectionInfo *ci, uint32_t cwndValue) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); if (!gHttpHandler->UseSpdyPersistentSettings()) return; if (!ci) return; nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (!ent) return; ent = GetSpdyPreferredEnt(ent); if (!ent) // just to be thorough - but that map should always exist return; cwndValue = std::max(2U, cwndValue); cwndValue = std::min(128U, cwndValue); ent->mSpdyCWND = cwndValue; ent->mSpdyCWNDTimeStamp = TimeStamp::Now(); return; } // a value of 0 means no setting is available uint32_t nsHttpConnectionMgr::GetSpdyCWNDSetting(nsHttpConnectionInfo *ci) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); if (!gHttpHandler->UseSpdyPersistentSettings()) return 0; if (!ci) return 0; nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (!ent) return 0; ent = GetSpdyPreferredEnt(ent); if (!ent) // just to be thorough - but that map should always exist return 0; if (ent->mSpdyCWNDTimeStamp.IsNull()) return 0; // For privacy tracking reasons, and the fact that CWND is not // meaningful after some time, we don't honor stored CWND after 8 // hours. TimeDuration age = TimeStamp::Now() - ent->mSpdyCWNDTimeStamp; if (age.ToMilliseconds() > (1000 * 60 * 60 * 8)) return 0; return ent->mSpdyCWND; } nsHttpConnectionMgr::nsConnectionEntry * nsHttpConnectionMgr::GetSpdyPreferredEnt(nsConnectionEntry *aOriginalEntry) { if (!gHttpHandler->IsSpdyEnabled() || !gHttpHandler->CoalesceSpdy() || aOriginalEntry->mCoalescingKey.IsEmpty()) return nullptr; nsConnectionEntry *preferred = mSpdyPreferredHash.Get(aOriginalEntry->mCoalescingKey); // if there is no redirection no cert validation is required if (preferred == aOriginalEntry) return aOriginalEntry; // if there is no preferred host or it is no longer using spdy // then skip pooling if (!preferred || !preferred->mUsingSpdy) return nullptr; // if there is not an active spdy session in this entry then // we cannot pool because the cert upon activation may not // be the same as the old one. Active sessions are prohibited // from changing certs. nsHttpConnection *activeSpdy = nullptr; for (uint32_t index = 0; index < preferred->mActiveConns.Length(); ++index) { if (preferred->mActiveConns[index]->CanDirectlyActivate()) { activeSpdy = preferred->mActiveConns[index]; break; } } if (!activeSpdy) { // remove the preferred status of this entry if it cannot be // used for pooling. preferred->mSpdyPreferred = false; RemoveSpdyPreferredEnt(preferred->mCoalescingKey); LOG(("nsHttpConnectionMgr::GetSpdyPreferredConnection " "preferred host mapping %s to %s removed due to inactivity.\n", aOriginalEntry->mConnInfo->Host(), preferred->mConnInfo->Host())); return nullptr; } // Check that the server cert supports redirection nsresult rv; bool isJoined = false; nsCOMPtr securityInfo; nsCOMPtr sslSocketControl; nsAutoCString negotiatedNPN; activeSpdy->GetSecurityInfo(getter_AddRefs(securityInfo)); if (!securityInfo) { NS_WARNING("cannot obtain spdy security info"); return nullptr; } sslSocketControl = do_QueryInterface(securityInfo, &rv); if (NS_FAILED(rv)) { NS_WARNING("sslSocketControl QI Failed"); return nullptr; } if (gHttpHandler->SpdyInfo()->ProtocolEnabled(0)) rv = sslSocketControl->JoinConnection(gHttpHandler->SpdyInfo()->VersionString[0], aOriginalEntry->mConnInfo->GetHost(), aOriginalEntry->mConnInfo->Port(), &isJoined); else rv = NS_OK; /* simulate failed join */ // JoinConnection() may have failed due to spdy version level. Try the other // level we support (if any) if (NS_SUCCEEDED(rv) && !isJoined && gHttpHandler->SpdyInfo()->ProtocolEnabled(1)) { rv = sslSocketControl->JoinConnection(gHttpHandler->SpdyInfo()->VersionString[1], aOriginalEntry->mConnInfo->GetHost(), aOriginalEntry->mConnInfo->Port(), &isJoined); } if (NS_FAILED(rv) || !isJoined) { LOG(("nsHttpConnectionMgr::GetSpdyPreferredConnection " "Host %s cannot be confirmed to be joined " "with %s connections. rv=%x isJoined=%d", preferred->mConnInfo->Host(), aOriginalEntry->mConnInfo->Host(), rv, isJoined)); Telemetry::Accumulate(Telemetry::SPDY_NPN_JOIN, false); return nullptr; } // IP pooling confirmed LOG(("nsHttpConnectionMgr::GetSpdyPreferredConnection " "Host %s has cert valid for %s connections, " "so %s will be coalesced with %s", preferred->mConnInfo->Host(), aOriginalEntry->mConnInfo->Host(), aOriginalEntry->mConnInfo->Host(), preferred->mConnInfo->Host())); Telemetry::Accumulate(Telemetry::SPDY_NPN_JOIN, true); return preferred; } void nsHttpConnectionMgr::RemoveSpdyPreferredEnt(nsACString &aHashKey) { if (aHashKey.IsEmpty()) return; mSpdyPreferredHash.Remove(aHashKey); } //----------------------------------------------------------------------------- // enumeration callbacks PLDHashOperator nsHttpConnectionMgr::ProcessOneTransactionCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; if (self->ProcessPendingQForEntry(ent, false)) return PL_DHASH_STOP; return PL_DHASH_NEXT; } PLDHashOperator nsHttpConnectionMgr::ProcessAllTransactionsCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; self->ProcessPendingQForEntry(ent, true); return PL_DHASH_NEXT; } // If the global number of connections is preventing the opening of // new connections to a host without idle connections, then // close them regardless of their TTL PLDHashOperator nsHttpConnectionMgr::PurgeExcessIdleConnectionsCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; while (self->mNumIdleConns + self->mNumActiveConns + 1 >= self->mMaxConns) { if (!ent->mIdleConns.Length()) { // There are no idle conns left in this connection entry return PL_DHASH_NEXT; } nsHttpConnection *conn = ent->mIdleConns[0]; ent->mIdleConns.RemoveElementAt(0); conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); self->mNumIdleConns--; self->ConditionallyStopPruneDeadConnectionsTimer(); } return PL_DHASH_STOP; } // If the global number of connections is preventing the opening of // new connections to a host without idle connections, then // close any spdy asap PLDHashOperator nsHttpConnectionMgr::PurgeExcessSpdyConnectionsCB(const nsACString &key, nsAutoPtr &ent, void *closure) { if (!ent->mUsingSpdy) return PL_DHASH_NEXT; nsHttpConnectionMgr *self = static_cast(closure); for (uint32_t index = 0; index < ent->mActiveConns.Length(); ++index) { nsHttpConnection *conn = ent->mActiveConns[index]; if (conn->UsingSpdy() && conn->CanReuse()) { conn->DontReuse(); // stop on <= (particularly =) beacuse this dontreuse causes async close if (self->mNumIdleConns + self->mNumActiveConns + 1 <= self->mMaxConns) return PL_DHASH_STOP; } } return PL_DHASH_NEXT; } PLDHashOperator nsHttpConnectionMgr::PruneDeadConnectionsCB(const nsACString &key, nsAutoPtr &ent, void *closure) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; LOG((" pruning [ci=%s]\n", ent->mConnInfo->HashKey().get())); // Find out how long it will take for next idle connection to not be reusable // anymore. uint32_t timeToNextExpire = UINT32_MAX; int32_t count = ent->mIdleConns.Length(); if (count > 0) { for (int32_t i=count-1; i>=0; --i) { nsHttpConnection *conn = ent->mIdleConns[i]; if (!conn->CanReuse()) { ent->mIdleConns.RemoveElementAt(i); conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); self->mNumIdleConns--; } else { timeToNextExpire = std::min(timeToNextExpire, conn->TimeToLive()); } } } if (ent->mUsingSpdy) { for (uint32_t index = 0; index < ent->mActiveConns.Length(); ++index) { nsHttpConnection *conn = ent->mActiveConns[index]; if (conn->UsingSpdy()) { if (!conn->CanReuse()) { // marking it dont reuse will create an active tear down if // the spdy session is idle. conn->DontReuse(); } else { timeToNextExpire = std::min(timeToNextExpire, conn->TimeToLive()); } } } } // If time to next expire found is shorter than time to next wake-up, we need to // change the time for next wake-up. if (timeToNextExpire != UINT32_MAX) { uint32_t now = NowInSeconds(); uint64_t timeOfNextExpire = now + timeToNextExpire; // If pruning of dead connections is not already scheduled to happen // or time found for next connection to expire is is before // mTimeOfNextWakeUp, we need to schedule the pruning to happen // after timeToNextExpire. if (!self->mTimer || timeOfNextExpire < self->mTimeOfNextWakeUp) { self->PruneDeadConnectionsAfter(timeToNextExpire); } } else { self->ConditionallyStopPruneDeadConnectionsTimer(); } // if this entry is empty, we have too many entries, // and this doesn't represent some painfully determined // red condition, then we can clean it up and restart from // yellow if (ent->PipelineState() != PS_RED && self->mCT.Count() > 125 && ent->mIdleConns.Length() == 0 && ent->mActiveConns.Length() == 0 && ent->mHalfOpens.Length() == 0 && ent->mPendingQ.Length() == 0 && ((!ent->mTestedSpdy && !ent->mUsingSpdy) || !gHttpHandler->IsSpdyEnabled() || self->mCT.Count() > 300)) { LOG((" removing empty connection entry\n")); return PL_DHASH_REMOVE; } // otherwise use this opportunity to compact our arrays... ent->mIdleConns.Compact(); ent->mActiveConns.Compact(); ent->mPendingQ.Compact(); return PL_DHASH_NEXT; } PLDHashOperator nsHttpConnectionMgr::ShutdownPassCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; nsHttpTransaction *trans; nsHttpConnection *conn; // close all active connections while (ent->mActiveConns.Length()) { conn = ent->mActiveConns[0]; ent->mActiveConns.RemoveElementAt(0); self->DecrementActiveConnCount(conn); conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); } // close all idle connections while (ent->mIdleConns.Length()) { conn = ent->mIdleConns[0]; ent->mIdleConns.RemoveElementAt(0); self->mNumIdleConns--; conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); } // If all idle connections are removed, // we can stop pruning dead connections. self->ConditionallyStopPruneDeadConnectionsTimer(); // close all pending transactions while (ent->mPendingQ.Length()) { trans = ent->mPendingQ[0]; ent->mPendingQ.RemoveElementAt(0); trans->Close(NS_ERROR_ABORT); NS_RELEASE(trans); } // close all half open tcp connections for (int32_t i = ((int32_t) ent->mHalfOpens.Length()) - 1; i >= 0; i--) ent->mHalfOpens[i]->Abandon(); return PL_DHASH_REMOVE; } //----------------------------------------------------------------------------- bool nsHttpConnectionMgr::ProcessPendingQForEntry(nsConnectionEntry *ent, bool considerAll) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::ProcessPendingQForEntry [ci=%s]\n", ent->mConnInfo->HashKey().get())); ProcessSpdyPendingQ(ent); nsHttpTransaction *trans; nsresult rv; bool dispatchedSuccessfully = false; // if !considerAll iterate the pending list until one is dispatched successfully. // Keep iterating afterwards only until a transaction fails to dispatch. // if considerAll == true then try and dispatch all items. for (uint32_t i = 0; i < ent->mPendingQ.Length(); ) { trans = ent->mPendingQ[i]; // When this transaction has already established a half-open // connection, we want to prevent any duplicate half-open // connections from being established and bound to this // transaction. Allow only use of an idle persistent connection // (if found) for transactions referred by a half-open connection. bool alreadyHalfOpen = false; for (int32_t j = 0; j < ((int32_t) ent->mHalfOpens.Length()); ++j) { if (ent->mHalfOpens[j]->Transaction() == trans) { alreadyHalfOpen = true; break; } } rv = TryDispatchTransaction(ent, alreadyHalfOpen, trans); if (NS_SUCCEEDED(rv) || (rv != NS_ERROR_NOT_AVAILABLE)) { if (NS_SUCCEEDED(rv)) LOG((" dispatching pending transaction...\n")); else LOG((" removing pending transaction based on " "TryDispatchTransaction returning hard error %x\n", rv)); if (ent->mPendingQ.RemoveElement(trans)) { dispatchedSuccessfully = true; NS_RELEASE(trans); continue; // dont ++i as we just made the array shorter } LOG((" transaction not found in pending queue\n")); } if (dispatchedSuccessfully && !considerAll) break; ++i; } return dispatchedSuccessfully; } bool nsHttpConnectionMgr::ProcessPendingQForEntry(nsHttpConnectionInfo *ci) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (ent) return ProcessPendingQForEntry(ent, false); return false; } bool nsHttpConnectionMgr::SupportsPipelining(nsHttpConnectionInfo *ci) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (ent) return ent->SupportsPipelining(); return false; } // nsHttpPipelineFeedback used to hold references across events class nsHttpPipelineFeedback { public: nsHttpPipelineFeedback(nsHttpConnectionInfo *ci, nsHttpConnectionMgr::PipelineFeedbackInfoType info, nsHttpConnection *conn, uint32_t data) : mConnInfo(ci) , mConn(conn) , mInfo(info) , mData(data) { } ~nsHttpPipelineFeedback() { } nsRefPtr mConnInfo; nsRefPtr mConn; nsHttpConnectionMgr::PipelineFeedbackInfoType mInfo; uint32_t mData; }; void nsHttpConnectionMgr::PipelineFeedbackInfo(nsHttpConnectionInfo *ci, PipelineFeedbackInfoType info, nsHttpConnection *conn, uint32_t data) { if (!ci) return; // Post this to the socket thread if we are not running there already if (PR_GetCurrentThread() != gSocketThread) { nsHttpPipelineFeedback *fb = new nsHttpPipelineFeedback(ci, info, conn, data); nsresult rv = PostEvent(&nsHttpConnectionMgr::OnMsgProcessFeedback, 0, fb); if (NS_FAILED(rv)) delete fb; return; } nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (ent) ent->OnPipelineFeedbackInfo(info, conn, data); } void nsHttpConnectionMgr::ReportFailedToProcess(nsIURI *uri) { MOZ_ASSERT(uri); nsAutoCString host; int32_t port = -1; bool usingSSL = false; bool isHttp = false; nsresult rv = uri->SchemeIs("https", &usingSSL); if (NS_SUCCEEDED(rv) && usingSSL) isHttp = true; if (NS_SUCCEEDED(rv) && !isHttp) rv = uri->SchemeIs("http", &isHttp); if (NS_SUCCEEDED(rv)) rv = uri->GetAsciiHost(host); if (NS_SUCCEEDED(rv)) rv = uri->GetPort(&port); if (NS_FAILED(rv) || !isHttp || host.IsEmpty()) return; // report the event for all the permutations of anonymous and // private versions of this host nsRefPtr ci = new nsHttpConnectionInfo(host, port, nullptr, usingSSL); ci->SetAnonymous(false); ci->SetPrivate(false); PipelineFeedbackInfo(ci, RedCorruptedContent, nullptr, 0); ci = ci->Clone(); ci->SetAnonymous(false); ci->SetPrivate(true); PipelineFeedbackInfo(ci, RedCorruptedContent, nullptr, 0); ci = ci->Clone(); ci->SetAnonymous(true); ci->SetPrivate(false); PipelineFeedbackInfo(ci, RedCorruptedContent, nullptr, 0); ci = ci->Clone(); ci->SetAnonymous(true); ci->SetPrivate(true); PipelineFeedbackInfo(ci, RedCorruptedContent, nullptr, 0); } // we're at the active connection limit if any one of the following conditions is true: // (1) at max-connections // (2) keep-alive enabled and at max-persistent-connections-per-server/proxy // (3) keep-alive disabled and at max-connections-per-server bool nsHttpConnectionMgr::AtActiveConnectionLimit(nsConnectionEntry *ent, uint32_t caps) { nsHttpConnectionInfo *ci = ent->mConnInfo; LOG(("nsHttpConnectionMgr::AtActiveConnectionLimit [ci=%s caps=%x]\n", ci->HashKey().get(), caps)); // update maxconns if potentially limited by the max socket count // this requires a dynamic reduction in the max socket count to a point // lower than the max-connections pref. uint32_t maxSocketCount = gHttpHandler->MaxSocketCount(); if (mMaxConns > maxSocketCount) { mMaxConns = maxSocketCount; LOG(("nsHttpConnectionMgr %p mMaxConns dynamically reduced to %u", this, mMaxConns)); } // If there are more active connections than the global limit, then we're // done. Purging idle connections won't get us below it. if (mNumActiveConns >= mMaxConns) { LOG((" num active conns == max conns\n")); return true; } // Add in the in-progress tcp connections, we will assume they are // keepalive enabled. // Exclude half-open's that has already created a usable connection. // This prevents the limit being stuck on ipv6 connections that // eventually time out after typical 21 seconds of no ACK+SYN reply. uint32_t totalCount = ent->mActiveConns.Length() + ent->UnconnectedHalfOpens(); uint16_t maxPersistConns; if (ci->UsingHttpProxy() && !ci->UsingConnect()) maxPersistConns = mMaxPersistConnsPerProxy; else maxPersistConns = mMaxPersistConnsPerHost; LOG((" connection count = %d, limit %d\n", totalCount, maxPersistConns)); // use >= just to be safe bool result = (totalCount >= maxPersistConns); LOG((" result: %s", result ? "true" : "false")); return result; } void nsHttpConnectionMgr::ClosePersistentConnections(nsConnectionEntry *ent) { LOG(("nsHttpConnectionMgr::ClosePersistentConnections [ci=%s]\n", ent->mConnInfo->HashKey().get())); while (ent->mIdleConns.Length()) { nsHttpConnection *conn = ent->mIdleConns[0]; ent->mIdleConns.RemoveElementAt(0); mNumIdleConns--; conn->Close(NS_ERROR_ABORT); NS_RELEASE(conn); } int32_t activeCount = ent->mActiveConns.Length(); for (int32_t i=0; i < activeCount; i++) ent->mActiveConns[i]->DontReuse(); } PLDHashOperator nsHttpConnectionMgr::ClosePersistentConnectionsCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = static_cast(closure); self->ClosePersistentConnections(ent); return PL_DHASH_NEXT; } bool nsHttpConnectionMgr::RestrictConnections(nsConnectionEntry *ent) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); // If this host is trying to negotiate a SPDY session right now, // don't create any new ssl connections until the result of the // negotiation is known. bool doRestrict = ent->mConnInfo->UsingSSL() && gHttpHandler->IsSpdyEnabled() && (!ent->mTestedSpdy || ent->mUsingSpdy) && (ent->mHalfOpens.Length() || ent->mActiveConns.Length()); // If there are no restrictions, we are done if (!doRestrict) return false; // If the restriction is based on a tcp handshake in progress // let that connect and then see if it was SPDY or not if (ent->UnconnectedHalfOpens()) return true; // There is a concern that a host is using a mix of HTTP/1 and SPDY. // In that case we don't want to restrict connections just because // there is a single active HTTP/1 session in use. if (ent->mUsingSpdy && ent->mActiveConns.Length()) { bool confirmedRestrict = false; for (uint32_t index = 0; index < ent->mActiveConns.Length(); ++index) { nsHttpConnection *conn = ent->mActiveConns[index]; if (!conn->ReportedNPN() || conn->CanDirectlyActivate()) { confirmedRestrict = true; break; } } doRestrict = confirmedRestrict; if (!confirmedRestrict) { LOG(("nsHttpConnectionMgr spdy connection restriction to " "%s bypassed.\n", ent->mConnInfo->Host())); } } return doRestrict; } // returns NS_OK if a connection was started // return NS_ERROR_NOT_AVAILABLE if a new connection cannot be made due to // ephemeral limits // returns other NS_ERROR on hard failure conditions nsresult nsHttpConnectionMgr::MakeNewConnection(nsConnectionEntry *ent, nsHttpTransaction *trans) { LOG(("nsHttpConnectionMgr::MakeNewConnection %p ent=%p trans=%p", this, ent, trans)); MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); uint32_t halfOpenLength = ent->mHalfOpens.Length(); for (uint32_t i = 0; i < halfOpenLength; i++) { if (ent->mHalfOpens[i]->IsSpeculative()) { // We've found a speculative connection in the half // open list. Remove the speculative bit from it and that // connection can later be used for this transaction // (or another one in the pending queue) - we don't // need to open a new connection here. LOG(("nsHttpConnectionMgr::MakeNewConnection [ci = %s]\n" "Found a speculative half open connection\n", ent->mConnInfo->HashKey().get())); ent->mHalfOpens[i]->SetSpeculative(false); // return OK because we have essentially opened a new connection // by converting a speculative half-open to general use return NS_OK; } } // If this host is trying to negotiate a SPDY session right now, // don't create any new connections until the result of the // negotiation is known. if (!(trans->Caps() & NS_HTTP_DISALLOW_SPDY) && (trans->Caps() & NS_HTTP_ALLOW_KEEPALIVE) && RestrictConnections(ent)) { return NS_ERROR_NOT_AVAILABLE; } // We need to make a new connection. If that is going to exceed the // global connection limit then try and free up some room by closing // an idle connection to another host. We know it won't select "ent" // beacuse we have already determined there are no idle connections // to our destination if ((mNumIdleConns + mNumActiveConns + 1 >= mMaxConns) && mNumIdleConns) mCT.Enumerate(PurgeExcessIdleConnectionsCB, this); if ((mNumIdleConns + mNumActiveConns + 1 >= mMaxConns) && mNumActiveConns && gHttpHandler->IsSpdyEnabled()) mCT.Enumerate(PurgeExcessSpdyConnectionsCB, this); if (AtActiveConnectionLimit(ent, trans->Caps())) return NS_ERROR_NOT_AVAILABLE; nsresult rv = CreateTransport(ent, trans, trans->Caps(), false); if (NS_FAILED(rv)) { /* hard failure */ LOG(("nsHttpConnectionMgr::MakeNewConnection [ci = %s trans = %p] " "CreateTransport() hard failure.\n", ent->mConnInfo->HashKey().get(), trans)); trans->Close(rv); if (rv == NS_ERROR_NOT_AVAILABLE) rv = NS_ERROR_FAILURE; return rv; } return NS_OK; } bool nsHttpConnectionMgr::AddToShortestPipeline(nsConnectionEntry *ent, nsHttpTransaction *trans, nsHttpTransaction::Classifier classification, uint16_t depthLimit) { if (classification == nsAHttpTransaction::CLASS_SOLO) return false; uint32_t maxdepth = ent->MaxPipelineDepth(classification); if (maxdepth == 0) { ent->CreditPenalty(); maxdepth = ent->MaxPipelineDepth(classification); } if (ent->PipelineState() == PS_RED) return false; if (ent->PipelineState() == PS_YELLOW && ent->mYellowConnection) return false; // The maximum depth of a pipeline in yellow is 1 pipeline of // depth 2 for entire CI. When that transaction completes successfully // we transition to green and that expands the allowed depth // to any number of pipelines of up to depth 4. When a transaction // queued at position 3 or deeper succeeds we open it all the way // up to depths limited only by configuration. The staggered start // in green is simply because a successful yellow test of depth=2 // might really just be a race condition (i.e. depth=1 from the // server's point of view), while depth=3 is a stronger indicator - // keeping the pipelines to a modest depth during that period limits // the damage if something is going to go wrong. maxdepth = std::min(maxdepth, depthLimit); if (maxdepth < 2) return false; nsAHttpTransaction *activeTrans; nsHttpConnection *bestConn = nullptr; uint32_t activeCount = ent->mActiveConns.Length(); uint32_t bestConnLength = 0; uint32_t connLength; for (uint32_t i = 0; i < activeCount; ++i) { nsHttpConnection *conn = ent->mActiveConns[i]; if (!conn->SupportsPipelining()) continue; if (conn->Classification() != classification) continue; activeTrans = conn->Transaction(); if (!activeTrans || activeTrans->IsDone() || NS_FAILED(activeTrans->Status())) continue; connLength = activeTrans->PipelineDepth(); if (maxdepth <= connLength) continue; if (!bestConn || (connLength < bestConnLength)) { bestConn = conn; bestConnLength = connLength; } } if (!bestConn) return false; activeTrans = bestConn->Transaction(); nsresult rv = activeTrans->AddTransaction(trans); if (NS_FAILED(rv)) return false; LOG((" scheduling trans %p on pipeline at position %d\n", trans, trans->PipelinePosition())); if ((ent->PipelineState() == PS_YELLOW) && (trans->PipelinePosition() > 1)) ent->SetYellowConnection(bestConn); if (!trans->GetPendingTime().IsNull()) { if (trans->UsesPipelining()) AccumulateTimeDelta( Telemetry::TRANSACTION_WAIT_TIME_HTTP_PIPELINES, trans->GetPendingTime(), TimeStamp::Now()); else AccumulateTimeDelta( Telemetry::TRANSACTION_WAIT_TIME_HTTP, trans->GetPendingTime(), TimeStamp::Now()); trans->SetPendingTime(false); } return true; } bool nsHttpConnectionMgr::IsUnderPressure(nsConnectionEntry *ent, nsHttpTransaction::Classifier classification) { // A connection entry is declared to be "under pressure" if most of the // allowed parallel connections are already used up. In that case we want to // favor existing pipelines over more parallelism so as to reserve any // unused parallel connections for types that don't have existing pipelines. // // The definition of connection pressure is a pretty liberal one here - that // is why we are using the more restrictive maxPersist* counters. // // Pipelines are also favored when the requested classification is already // using 3 or more of the connections. Failure to do this could result in // one class (e.g. images) establishing self replenishing queues on all the // connections that would starve the other transaction types. int32_t currentConns = ent->mActiveConns.Length(); int32_t maxConns = (ent->mConnInfo->UsingHttpProxy() && !ent->mConnInfo->UsingConnect()) ? mMaxPersistConnsPerProxy : mMaxPersistConnsPerHost; // Leave room for at least 3 distinct types to operate concurrently, // this satisfies the typical {html, js/css, img} page. if (currentConns >= (maxConns - 2)) return true; /* prefer pipeline */ int32_t sameClass = 0; for (int32_t i = 0; i < currentConns; ++i) if (classification == ent->mActiveConns[i]->Classification()) if (++sameClass == 3) return true; /* prefer pipeline */ return false; /* normal behavior */ } // returns OK if a connection is found for the transaction // and the transaction is started. // returns ERROR_NOT_AVAILABLE if no connection can be found and it // should be queued until circumstances change // returns other ERROR when transaction has a hard failure and should // not remain in the pending queue nsresult nsHttpConnectionMgr::TryDispatchTransaction(nsConnectionEntry *ent, bool onlyReusedConnection, nsHttpTransaction *trans) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::TryDispatchTransaction without conn " "[ci=%s caps=%x]\n", ent->mConnInfo->HashKey().get(), uint32_t(trans->Caps()))); nsHttpTransaction::Classifier classification = trans->Classification(); uint32_t caps = trans->Caps(); // no keep-alive means no pipelines either if (!(caps & NS_HTTP_ALLOW_KEEPALIVE)) caps = caps & ~NS_HTTP_ALLOW_PIPELINING; // 0 - If this should use spdy then dispatch it post haste. // 1 - If there is connection pressure then see if we can pipeline this on // a connection of a matching type instead of using a new conn // 2 - If there is an idle connection, use it! // 3 - if class == reval or script and there is an open conn of that type // then pipeline onto shortest pipeline of that class if limits allow // 4 - If we aren't up against our connection limit, // then open a new one // 5 - Try a pipeline if we haven't already - this will be unusual because // it implies a low connection pressure situation where // MakeNewConnection() failed.. that is possible, but unlikely, due to // global limits // 6 - no connection is available - queue it bool attemptedOptimisticPipeline = !(caps & NS_HTTP_ALLOW_PIPELINING); nsRefPtr unusedSpdyPersistentConnection; // step 0 // look for existing spdy connection - that's always best because it is // essentially pipelining without head of line blocking if (!(caps & NS_HTTP_DISALLOW_SPDY) && gHttpHandler->IsSpdyEnabled()) { nsRefPtr conn = GetSpdyPreferredConn(ent); if (conn) { if ((caps & NS_HTTP_ALLOW_KEEPALIVE) || !conn->IsExperienced()) { LOG((" dispatch to spdy: [conn=%x]\n", conn.get())); trans->RemoveDispatchedAsBlocking(); /* just in case */ DispatchTransaction(ent, trans, conn); return NS_OK; } unusedSpdyPersistentConnection = conn; } } // If this is not a blocking transaction and the loadgroup for it is // currently processing one or more blocking transactions then we // need to just leave it in the queue until those are complete unless it is // explicitly marked as unblocked. if (!(caps & NS_HTTP_LOAD_AS_BLOCKING)) { if (!(caps & NS_HTTP_LOAD_UNBLOCKED)) { nsILoadGroupConnectionInfo *loadGroupCI = trans->LoadGroupConnectionInfo(); if (loadGroupCI) { uint32_t blockers = 0; if (NS_SUCCEEDED(loadGroupCI->GetBlockingTransactionCount(&blockers)) && blockers) { // need to wait for blockers to clear LOG((" blocked by load group: [blockers=%d]\n", blockers)); return NS_ERROR_NOT_AVAILABLE; } } } } else { // Mark the transaction and its load group as blocking right now to prevent // other transactions from being reordered in the queue due to slow syns. trans->DispatchedAsBlocking(); } // step 1 // If connection pressure, then we want to favor pipelining of any kind if (IsUnderPressure(ent, classification) && !attemptedOptimisticPipeline) { attemptedOptimisticPipeline = true; if (AddToShortestPipeline(ent, trans, classification, mMaxOptimisticPipelinedRequests)) { return NS_OK; } } // Subject most transactions at high parallelism to rate pacing. // It will only be actually submitted to the // token bucket once, and if possible it is granted admission synchronously. // It is important to leave a transaction in the pending queue when blocked by // pacing so it can be found on cancel if necessary. // Transactions that cause blocking or bypass it (e.g. js/css) are not rate // limited. if (gHttpHandler->UseRequestTokenBucket() && (mNumActiveConns >= mNumSpdyActiveConns) && // just check for robustness sake ((mNumActiveConns - mNumSpdyActiveConns) >= gHttpHandler->RequestTokenBucketMinParallelism()) && !(caps & (NS_HTTP_LOAD_AS_BLOCKING | NS_HTTP_LOAD_UNBLOCKED))) { if (!trans->TryToRunPacedRequest()) { LOG((" blocked due to rate pacing\n")); return NS_ERROR_NOT_AVAILABLE; } } // step 2 // consider an idle persistent connection if (caps & NS_HTTP_ALLOW_KEEPALIVE) { nsRefPtr conn; while (!conn && (ent->mIdleConns.Length() > 0)) { conn = ent->mIdleConns[0]; ent->mIdleConns.RemoveElementAt(0); mNumIdleConns--; nsHttpConnection *temp = conn; NS_RELEASE(temp); // we check if the connection can be reused before even checking if // it is a "matching" connection. if (!conn->CanReuse()) { LOG((" dropping stale connection: [conn=%x]\n", conn.get())); conn->Close(NS_ERROR_ABORT); conn = nullptr; } else { LOG((" reusing connection [conn=%x]\n", conn.get())); conn->EndIdleMonitoring(); } // If there are no idle connections left at all, we need to make // sure that we are not pruning dead connections anymore. ConditionallyStopPruneDeadConnectionsTimer(); } if (conn) { // This will update the class of the connection to be the class of // the transaction dispatched on it. AddActiveConn(conn, ent); DispatchTransaction(ent, trans, conn); return NS_OK; } } // step 3 // consider pipelining scripts and revalidations if (!attemptedOptimisticPipeline && (classification == nsHttpTransaction::CLASS_REVALIDATION || classification == nsHttpTransaction::CLASS_SCRIPT)) { attemptedOptimisticPipeline = true; if (AddToShortestPipeline(ent, trans, classification, mMaxOptimisticPipelinedRequests)) { return NS_OK; } } // step 4 if (!onlyReusedConnection) { nsresult rv = MakeNewConnection(ent, trans); if (NS_SUCCEEDED(rv)) { // this function returns NOT_AVAILABLE for asynchronous connects return NS_ERROR_NOT_AVAILABLE; } if (rv != NS_ERROR_NOT_AVAILABLE) { // not available return codes should try next step as they are // not hard errors. Other codes should stop now return rv; } } // step 5 if (caps & NS_HTTP_ALLOW_PIPELINING) { if (AddToShortestPipeline(ent, trans, classification, mMaxPipelinedRequests)) { return NS_OK; } } // step 6 if (unusedSpdyPersistentConnection) { // to avoid deadlocks, we need to throw away this perfectly valid SPDY // connection to make room for a new one that can service a no KEEPALIVE // request unusedSpdyPersistentConnection->DontReuse(); } return NS_ERROR_NOT_AVAILABLE; /* queue it */ } nsresult nsHttpConnectionMgr::DispatchTransaction(nsConnectionEntry *ent, nsHttpTransaction *trans, nsHttpConnection *conn) { uint32_t caps = trans->Caps(); int32_t priority = trans->Priority(); nsresult rv; LOG(("nsHttpConnectionMgr::DispatchTransaction " "[ci=%s trans=%x caps=%x conn=%x priority=%d]\n", ent->mConnInfo->HashKey().get(), trans, caps, conn, priority)); // It is possible for a rate-paced transaction to be dispatched independent // of the token bucket when the amount of parallelization has changed or // when a muxed connection (e.g. spdy or pipelines) becomes available. trans->CancelPacing(NS_OK); if (conn->UsingSpdy()) { LOG(("Spdy Dispatch Transaction via Activate(). Transaction host = %s," "Connection host = %s\n", trans->ConnectionInfo()->Host(), conn->ConnectionInfo()->Host())); rv = conn->Activate(trans, caps, priority); MOZ_ASSERT(NS_SUCCEEDED(rv), "SPDY Cannot Fail Dispatch"); if (NS_SUCCEEDED(rv) && !trans->GetPendingTime().IsNull()) { AccumulateTimeDelta(Telemetry::TRANSACTION_WAIT_TIME_SPDY, trans->GetPendingTime(), TimeStamp::Now()); trans->SetPendingTime(false); } return rv; } MOZ_ASSERT(conn && !conn->Transaction(), "DispatchTranaction() on non spdy active connection"); if (!(caps & NS_HTTP_ALLOW_PIPELINING)) conn->Classify(nsAHttpTransaction::CLASS_SOLO); else conn->Classify(trans->Classification()); rv = DispatchAbstractTransaction(ent, trans, caps, conn, priority); if (NS_SUCCEEDED(rv) && !trans->GetPendingTime().IsNull()) { if (trans->UsesPipelining()) AccumulateTimeDelta(Telemetry::TRANSACTION_WAIT_TIME_HTTP_PIPELINES, trans->GetPendingTime(), TimeStamp::Now()); else AccumulateTimeDelta(Telemetry::TRANSACTION_WAIT_TIME_HTTP, trans->GetPendingTime(), TimeStamp::Now()); trans->SetPendingTime(false); } return rv; } // Use this method for dispatching nsAHttpTransction's. It can only safely be // used upon first use of a connection when NPN has not negotiated SPDY vs // HTTP/1 yet as multiplexing onto an existing SPDY session requires a // concrete nsHttpTransaction nsresult nsHttpConnectionMgr::DispatchAbstractTransaction(nsConnectionEntry *ent, nsAHttpTransaction *aTrans, uint32_t caps, nsHttpConnection *conn, int32_t priority) { MOZ_ASSERT(!conn->UsingSpdy(), "Spdy Must Not Use DispatchAbstractTransaction"); LOG(("nsHttpConnectionMgr::DispatchAbstractTransaction " "[ci=%s trans=%x caps=%x conn=%x]\n", ent->mConnInfo->HashKey().get(), aTrans, caps, conn)); /* Use pipeline datastructure even if connection does not currently qualify to pipeline this transaction because a different pipeline-eligible transaction might be placed on the active connection. Make an exception for CLASS_SOLO as that connection will never pipeline until it goes quiescent */ nsRefPtr transaction; nsresult rv; if (conn->Classification() != nsAHttpTransaction::CLASS_SOLO) { LOG((" using pipeline datastructure.\n")); nsRefPtr pipeline; rv = BuildPipeline(ent, aTrans, getter_AddRefs(pipeline)); if (!NS_SUCCEEDED(rv)) return rv; transaction = pipeline; } else { LOG((" not using pipeline datastructure due to class solo.\n")); transaction = aTrans; } nsRefPtr handle = new nsConnectionHandle(conn); // give the transaction the indirect reference to the connection. transaction->SetConnection(handle); rv = conn->Activate(transaction, caps, priority); if (NS_FAILED(rv)) { LOG((" conn->Activate failed [rv=%x]\n", rv)); ent->mActiveConns.RemoveElement(conn); if (conn == ent->mYellowConnection) ent->OnYellowComplete(); DecrementActiveConnCount(conn); ConditionallyStopTimeoutTick(); // sever back references to connection, and do so without triggering // a call to ReclaimConnection ;-) transaction->SetConnection(nullptr); NS_RELEASE(handle->mConn); // destroy the connection NS_RELEASE(conn); } // As transaction goes out of scope it will drop the last refernece to the // pipeline if activation failed, in which case this will destroy // the pipeline, which will cause each the transactions owned by the // pipeline to be restarted. return rv; } nsresult nsHttpConnectionMgr::BuildPipeline(nsConnectionEntry *ent, nsAHttpTransaction *firstTrans, nsHttpPipeline **result) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); /* form a pipeline here even if nothing is pending so that we can stream-feed it as new transactions arrive */ /* the first transaction can go in unconditionally - 1 transaction on a nsHttpPipeline object is not a real HTTP pipeline */ nsRefPtr pipeline = new nsHttpPipeline(); pipeline->AddTransaction(firstTrans); NS_ADDREF(*result = pipeline); return NS_OK; } void nsHttpConnectionMgr::ReportProxyTelemetry(nsConnectionEntry *ent) { enum { PROXY_NONE = 1, PROXY_HTTP = 2, PROXY_SOCKS = 3 }; if (!ent->mConnInfo->UsingProxy()) Telemetry::Accumulate(Telemetry::HTTP_PROXY_TYPE, PROXY_NONE); else if (ent->mConnInfo->UsingHttpProxy()) Telemetry::Accumulate(Telemetry::HTTP_PROXY_TYPE, PROXY_HTTP); else Telemetry::Accumulate(Telemetry::HTTP_PROXY_TYPE, PROXY_SOCKS); } nsresult nsHttpConnectionMgr::ProcessNewTransaction(nsHttpTransaction *trans) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); // since "adds" and "cancels" are processed asynchronously and because // various events might trigger an "add" directly on the socket thread, // we must take care to avoid dispatching a transaction that has already // been canceled (see bug 190001). if (NS_FAILED(trans->Status())) { LOG((" transaction was canceled... dropping event!\n")); return NS_OK; } trans->SetPendingTime(); nsresult rv = NS_OK; nsHttpConnectionInfo *ci = trans->ConnectionInfo(); MOZ_ASSERT(ci); nsConnectionEntry *ent = GetOrCreateConnectionEntry(ci); // SPDY coalescing of hostnames means we might redirect from this // connection entry onto the preferred one. nsConnectionEntry *preferredEntry = GetSpdyPreferredEnt(ent); if (preferredEntry && (preferredEntry != ent)) { LOG(("nsHttpConnectionMgr::ProcessNewTransaction trans=%p " "redirected via coalescing from %s to %s\n", trans, ent->mConnInfo->Host(), preferredEntry->mConnInfo->Host())); ent = preferredEntry; } ReportProxyTelemetry(ent); // Check if the transaction already has a sticky reference to a connection. // If so, then we can just use it directly by transferring its reference // to the new connection variable instead of searching for a new one nsAHttpConnection *wrappedConnection = trans->Connection(); nsRefPtr conn; if (wrappedConnection) conn = dont_AddRef(wrappedConnection->TakeHttpConnection()); if (conn) { MOZ_ASSERT(trans->Caps() & NS_HTTP_STICKY_CONNECTION); MOZ_ASSERT(((int32_t)ent->mActiveConns.IndexOf(conn)) != -1, "Sticky Connection Not In Active List"); trans->SetConnection(nullptr); rv = DispatchTransaction(ent, trans, conn); } else rv = TryDispatchTransaction(ent, false, trans); if (NS_SUCCEEDED(rv)) { LOG((" ProcessNewTransaction Dispatch Immediately trans=%p\n", trans)); return rv; } if (rv == NS_ERROR_NOT_AVAILABLE) { LOG((" adding transaction to pending queue " "[trans=%p pending-count=%u]\n", trans, ent->mPendingQ.Length()+1)); // put this transaction on the pending queue... InsertTransactionSorted(ent->mPendingQ, trans); NS_ADDREF(trans); return NS_OK; } LOG((" ProcessNewTransaction Hard Error trans=%p rv=%x\n", trans, rv)); return rv; } void nsHttpConnectionMgr::AddActiveConn(nsHttpConnection *conn, nsConnectionEntry *ent) { NS_ADDREF(conn); ent->mActiveConns.AppendElement(conn); mNumActiveConns++; ActivateTimeoutTick(); } void nsHttpConnectionMgr::DecrementActiveConnCount(nsHttpConnection *conn) { mNumActiveConns--; if (conn->EverUsedSpdy()) mNumSpdyActiveConns--; } void nsHttpConnectionMgr::StartedConnect() { mNumActiveConns++; ActivateTimeoutTick(); // likely disabled by RecvdConnect() } void nsHttpConnectionMgr::RecvdConnect() { mNumActiveConns--; ConditionallyStopTimeoutTick(); } nsresult nsHttpConnectionMgr::CreateTransport(nsConnectionEntry *ent, nsAHttpTransaction *trans, uint32_t caps, bool speculative) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsRefPtr sock = new nsHalfOpenSocket(ent, trans, caps); nsresult rv = sock->SetupPrimaryStreams(); NS_ENSURE_SUCCESS(rv, rv); ent->mHalfOpens.AppendElement(sock); mNumHalfOpenConns++; if (speculative) sock->SetSpeculative(true); return NS_OK; } // This function tries to dispatch the pending spdy transactions on // the connection entry sent in as an argument. It will do so on the // active spdy connection either in that same entry or in the // redirected 'preferred' entry for the same coalescing hash key if // coalescing is enabled. void nsHttpConnectionMgr::ProcessSpdyPendingQ(nsConnectionEntry *ent) { nsHttpConnection *conn = GetSpdyPreferredConn(ent); if (!conn) return; for (int32_t index = ent->mPendingQ.Length() - 1; index >= 0 && conn->CanDirectlyActivate(); --index) { nsHttpTransaction *trans = ent->mPendingQ[index]; if (!(trans->Caps() & NS_HTTP_ALLOW_KEEPALIVE) || trans->Caps() & NS_HTTP_DISALLOW_SPDY) continue; ent->mPendingQ.RemoveElementAt(index); nsresult rv = DispatchTransaction(ent, trans, conn); if (NS_FAILED(rv)) { // this cannot happen, but if due to some bug it does then // close the transaction MOZ_ASSERT(false, "Dispatch SPDY Transaction"); LOG(("ProcessSpdyPendingQ Dispatch Transaction failed trans=%p\n", trans)); trans->Close(rv); } NS_RELEASE(trans); } } PLDHashOperator nsHttpConnectionMgr::ProcessSpdyPendingQCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; self->ProcessSpdyPendingQ(ent); return PL_DHASH_NEXT; } void nsHttpConnectionMgr::OnMsgProcessAllSpdyPendingQ(int32_t, void *) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgProcessAllSpdyPendingQ\n")); mCT.Enumerate(ProcessSpdyPendingQCB, this); } nsHttpConnection * nsHttpConnectionMgr::GetSpdyPreferredConn(nsConnectionEntry *ent) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); MOZ_ASSERT(ent); nsConnectionEntry *preferred = GetSpdyPreferredEnt(ent); // this entry is spdy-enabled if it is involved in a redirect if (preferred) // all new connections for this entry will use spdy too ent->mUsingSpdy = true; else preferred = ent; nsHttpConnection *conn = nullptr; if (preferred->mUsingSpdy) { for (uint32_t index = 0; index < preferred->mActiveConns.Length(); ++index) { if (preferred->mActiveConns[index]->CanDirectlyActivate()) { conn = preferred->mActiveConns[index]; break; } } } return conn; } //----------------------------------------------------------------------------- void nsHttpConnectionMgr::OnMsgShutdown(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgShutdown\n")); mCT.Enumerate(ShutdownPassCB, this); if (mTimeoutTick) { mTimeoutTick->Cancel(); mTimeoutTick = nullptr; mTimeoutTickArmed = false; } // signal shutdown complete nsRefPtr runnable = new nsConnEvent(this, &nsHttpConnectionMgr::OnMsgShutdownConfirm, 0, param); NS_DispatchToMainThread(runnable); } void nsHttpConnectionMgr::OnMsgShutdownConfirm(int32_t priority, void *param) { MOZ_ASSERT(NS_IsMainThread()); LOG(("nsHttpConnectionMgr::OnMsgShutdownConfirm\n")); bool *shutdown = static_cast(param); *shutdown = true; } void nsHttpConnectionMgr::OnMsgNewTransaction(int32_t priority, void *param) { LOG(("nsHttpConnectionMgr::OnMsgNewTransaction [trans=%p]\n", param)); nsHttpTransaction *trans = (nsHttpTransaction *) param; trans->SetPriority(priority); nsresult rv = ProcessNewTransaction(trans); if (NS_FAILED(rv)) trans->Close(rv); // for whatever its worth NS_RELEASE(trans); } void nsHttpConnectionMgr::OnMsgReschedTransaction(int32_t priority, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgReschedTransaction [trans=%p]\n", param)); nsHttpTransaction *trans = (nsHttpTransaction *) param; trans->SetPriority(priority); nsConnectionEntry *ent = LookupConnectionEntry(trans->ConnectionInfo(), nullptr, trans); if (ent) { int32_t index = ent->mPendingQ.IndexOf(trans); if (index >= 0) { ent->mPendingQ.RemoveElementAt(index); InsertTransactionSorted(ent->mPendingQ, trans); } } NS_RELEASE(trans); } void nsHttpConnectionMgr::OnMsgCancelTransaction(int32_t reason, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgCancelTransaction [trans=%p]\n", param)); nsresult closeCode = static_cast(reason); nsHttpTransaction *trans = (nsHttpTransaction *) param; // // if the transaction owns a connection and the transaction is not done, // then ask the connection to close the transaction. otherwise, close the // transaction directly (removing it from the pending queue first). // nsAHttpConnection *conn = trans->Connection(); if (conn && !trans->IsDone()) conn->CloseTransaction(trans, closeCode); else { nsConnectionEntry *ent = LookupConnectionEntry(trans->ConnectionInfo(), nullptr, trans); if (ent) { int32_t index = ent->mPendingQ.IndexOf(trans); if (index >= 0) { ent->mPendingQ.RemoveElementAt(index); nsHttpTransaction *temp = trans; NS_RELEASE(temp); // b/c NS_RELEASE nulls its argument! } } trans->Close(closeCode); } NS_RELEASE(trans); } void nsHttpConnectionMgr::OnMsgProcessPendingQ(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsHttpConnectionInfo *ci = (nsHttpConnectionInfo *) param; if (!ci) { LOG(("nsHttpConnectionMgr::OnMsgProcessPendingQ [ci=nullptr]\n")); // Try and dispatch everything mCT.Enumerate(ProcessAllTransactionsCB, this); return; } LOG(("nsHttpConnectionMgr::OnMsgProcessPendingQ [ci=%s]\n", ci->HashKey().get())); // start by processing the queue identified by the given connection info. nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (!(ent && ProcessPendingQForEntry(ent, false))) { // if we reach here, it means that we couldn't dispatch a transaction // for the specified connection info. walk the connection table... mCT.Enumerate(ProcessOneTransactionCB, this); } NS_RELEASE(ci); } void nsHttpConnectionMgr::OnMsgPruneDeadConnections(int32_t, void *) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgPruneDeadConnections\n")); // Reset mTimeOfNextWakeUp so that we can find a new shortest value. mTimeOfNextWakeUp = UINT64_MAX; // check canreuse() for all idle connections plus any active connections on // connection entries that are using spdy. if (mNumIdleConns || (mNumActiveConns && gHttpHandler->IsSpdyEnabled())) mCT.Enumerate(PruneDeadConnectionsCB, this); } void nsHttpConnectionMgr::OnMsgDoShiftReloadConnectionCleanup(int32_t, void *param) { LOG(("nsHttpConnectionMgr::OnMsgDoShiftReloadConnectionCleanup\n")); MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsRefPtr ci = dont_AddRef(static_cast(param)); mCT.Enumerate(ClosePersistentConnectionsCB, this); if (ci) ResetIPFamilyPreference(ci); } void nsHttpConnectionMgr::OnMsgReclaimConnection(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::OnMsgReclaimConnection [conn=%p]\n", param)); nsHttpConnection *conn = (nsHttpConnection *) param; // // 1) remove the connection from the active list // 2) if keep-alive, add connection to idle list // 3) post event to process the pending transaction queue // nsConnectionEntry *ent = LookupConnectionEntry(conn->ConnectionInfo(), conn, nullptr); nsHttpConnectionInfo *ci = nullptr; if (!ent) { // this should never happen LOG(("nsHttpConnectionMgr::OnMsgReclaimConnection ent == null\n")); MOZ_ASSERT(false, "no connection entry"); NS_ADDREF(ci = conn->ConnectionInfo()); } else { NS_ADDREF(ci = ent->mConnInfo); // If the connection is in the active list, remove that entry // and the reference held by the mActiveConns list. // This is never the final reference on conn as the event context // is also holding one that is released at the end of this function. if (ent->mUsingSpdy) { // Spdy connections aren't reused in the traditional HTTP way in // the idleconns list, they are actively multplexed as active // conns. Even when they have 0 transactions on them they are // considered active connections. So when one is reclaimed it // is really complete and is meant to be shut down and not // reused. conn->DontReuse(); } if (ent->mActiveConns.RemoveElement(conn)) { if (conn == ent->mYellowConnection) ent->OnYellowComplete(); nsHttpConnection *temp = conn; NS_RELEASE(temp); DecrementActiveConnCount(conn); ConditionallyStopTimeoutTick(); } if (conn->CanReuse()) { LOG((" adding connection to idle list\n")); // Keep The idle connection list sorted with the connections that // have moved the largest data pipelines at the front because these // connections have the largest cwnds on the server. // The linear search is ok here because the number of idleconns // in a single entry is generally limited to a small number (i.e. 6) uint32_t idx; for (idx = 0; idx < ent->mIdleConns.Length(); idx++) { nsHttpConnection *idleConn = ent->mIdleConns[idx]; if (idleConn->MaxBytesRead() < conn->MaxBytesRead()) break; } NS_ADDREF(conn); ent->mIdleConns.InsertElementAt(idx, conn); mNumIdleConns++; conn->BeginIdleMonitoring(); // If the added connection was first idle connection or has shortest // time to live among the watched connections, pruning dead // connections needs to be done when it can't be reused anymore. uint32_t timeToLive = conn->TimeToLive(); if(!mTimer || NowInSeconds() + timeToLive < mTimeOfNextWakeUp) PruneDeadConnectionsAfter(timeToLive); } else { LOG((" connection cannot be reused; closing connection\n")); conn->Close(NS_ERROR_ABORT); } } OnMsgProcessPendingQ(0, ci); // releases |ci| NS_RELEASE(conn); } void nsHttpConnectionMgr::OnMsgCompleteUpgrade(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsCompleteUpgradeData *data = (nsCompleteUpgradeData *) param; LOG(("nsHttpConnectionMgr::OnMsgCompleteUpgrade " "this=%p conn=%p listener=%p\n", this, data->mConn.get(), data->mUpgradeListener.get())); nsCOMPtr socketTransport; nsCOMPtr socketIn; nsCOMPtr socketOut; nsresult rv; rv = data->mConn->TakeTransport(getter_AddRefs(socketTransport), getter_AddRefs(socketIn), getter_AddRefs(socketOut)); if (NS_SUCCEEDED(rv)) data->mUpgradeListener->OnTransportAvailable(socketTransport, socketIn, socketOut); delete data; } void nsHttpConnectionMgr::OnMsgUpdateParam(int32_t, void *param) { uint16_t name = (NS_PTR_TO_INT32(param) & 0xFFFF0000) >> 16; uint16_t value = NS_PTR_TO_INT32(param) & 0x0000FFFF; switch (name) { case MAX_CONNECTIONS: mMaxConns = value; break; case MAX_PERSISTENT_CONNECTIONS_PER_HOST: mMaxPersistConnsPerHost = value; break; case MAX_PERSISTENT_CONNECTIONS_PER_PROXY: mMaxPersistConnsPerProxy = value; break; case MAX_REQUEST_DELAY: mMaxRequestDelay = value; break; case MAX_PIPELINED_REQUESTS: mMaxPipelinedRequests = value; break; case MAX_OPTIMISTIC_PIPELINED_REQUESTS: mMaxOptimisticPipelinedRequests = value; break; default: NS_NOTREACHED("unexpected parameter name"); } } // nsHttpConnectionMgr::nsConnectionEntry nsHttpConnectionMgr::nsConnectionEntry::~nsConnectionEntry() { if (mSpdyPreferred) gHttpHandler->ConnMgr()->RemoveSpdyPreferredEnt(mCoalescingKey); NS_RELEASE(mConnInfo); } void nsHttpConnectionMgr::OnMsgProcessFeedback(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsHttpPipelineFeedback *fb = (nsHttpPipelineFeedback *)param; PipelineFeedbackInfo(fb->mConnInfo, fb->mInfo, fb->mConn, fb->mData); delete fb; } // Read Timeout Tick handlers void nsHttpConnectionMgr::ActivateTimeoutTick() { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); LOG(("nsHttpConnectionMgr::ActivateTimeoutTick() " "this=%p mTimeoutTick=%p\n")); // The timer tick should be enabled if it is not already pending. // Upon running the tick will rearm itself if there are active // connections available. if (mTimeoutTick && mTimeoutTickArmed) return; if (!mTimeoutTick) { mTimeoutTick = do_CreateInstance(NS_TIMER_CONTRACTID); if (!mTimeoutTick) { NS_WARNING("failed to create timer for http timeout management"); return; } mTimeoutTick->SetTarget(mSocketThreadTarget); } MOZ_ASSERT(!mTimeoutTickArmed, "timer tick armed"); mTimeoutTickArmed = true; mTimeoutTick->Init(this, 1000, nsITimer::TYPE_REPEATING_SLACK); } void nsHttpConnectionMgr::TimeoutTick() { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); MOZ_ASSERT(mTimeoutTick, "no readtimeout tick"); LOG(("nsHttpConnectionMgr::TimeoutTick active=%d\n", mNumActiveConns)); mCT.Enumerate(TimeoutTickCB, this); } PLDHashOperator nsHttpConnectionMgr::TimeoutTickCB(const nsACString &key, nsAutoPtr &ent, void *closure) { nsHttpConnectionMgr *self = (nsHttpConnectionMgr *) closure; LOG(("nsHttpConnectionMgr::TimeoutTickCB() this=%p host=%s\n", self, ent->mConnInfo->Host())); // first call the tick handler for each active connection PRIntervalTime now = PR_IntervalNow(); for (uint32_t index = 0; index < ent->mActiveConns.Length(); ++index) ent->mActiveConns[index]->ReadTimeoutTick(now); // now check for any stalled half open sockets if (ent->mHalfOpens.Length()) { TimeStamp now = TimeStamp::Now(); double maxConnectTime = gHttpHandler->ConnectTimeout(); /* in milliseconds */ for (uint32_t index = ent->mHalfOpens.Length(); index > 0; ) { index--; nsHalfOpenSocket *half = ent->mHalfOpens[index]; double delta = half->Duration(now); // If the socket has timed out, close it so the waiting transaction // will get the proper signal if (delta > maxConnectTime) { LOG(("Force timeout of half open to %s after %.2fms.\n", ent->mConnInfo->HashKey().get(), delta)); if (half->SocketTransport()) half->SocketTransport()->Close(NS_ERROR_ABORT); if (half->BackupTransport()) half->BackupTransport()->Close(NS_ERROR_ABORT); } // If this half open hangs around for 5 seconds after we've closed() it // then just abandon the socket. if (delta > maxConnectTime + 5000) { LOG(("Abandon half open to %s after %.2fms.\n", ent->mConnInfo->HashKey().get(), delta)); half->Abandon(); } } } return PL_DHASH_NEXT; } //----------------------------------------------------------------------------- // nsHttpConnectionMgr::nsConnectionHandle nsHttpConnectionMgr::nsConnectionHandle::~nsConnectionHandle() { if (mConn) { gHttpHandler->ReclaimConnection(mConn); NS_RELEASE(mConn); } } NS_IMPL_THREADSAFE_ISUPPORTS0(nsHttpConnectionMgr::nsConnectionHandle) nsHttpConnectionMgr::nsConnectionEntry * nsHttpConnectionMgr::GetOrCreateConnectionEntry(nsHttpConnectionInfo *ci) { nsConnectionEntry *ent = mCT.Get(ci->HashKey()); if (ent) return ent; nsHttpConnectionInfo *clone = ci->Clone(); ent = new nsConnectionEntry(clone); mCT.Put(ci->HashKey(), ent); return ent; } nsresult nsHttpConnectionMgr::nsConnectionHandle::OnHeadersAvailable(nsAHttpTransaction *trans, nsHttpRequestHead *req, nsHttpResponseHead *resp, bool *reset) { return mConn->OnHeadersAvailable(trans, req, resp, reset); } void nsHttpConnectionMgr::nsConnectionHandle::CloseTransaction(nsAHttpTransaction *trans, nsresult reason) { mConn->CloseTransaction(trans, reason); } nsresult nsHttpConnectionMgr:: nsConnectionHandle::TakeTransport(nsISocketTransport **aTransport, nsIAsyncInputStream **aInputStream, nsIAsyncOutputStream **aOutputStream) { return mConn->TakeTransport(aTransport, aInputStream, aOutputStream); } void nsHttpConnectionMgr::OnMsgSpeculativeConnect(int32_t, void *param) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsRefPtr trans = dont_AddRef(static_cast(param)); LOG(("nsHttpConnectionMgr::OnMsgSpeculativeConnect [ci=%s]\n", trans->ConnectionInfo()->HashKey().get())); nsConnectionEntry *ent = GetOrCreateConnectionEntry(trans->ConnectionInfo()); // If spdy has previously made a preferred entry for this host via // the ip pooling rules. If so, connect to the preferred host instead of // the one directly passed in here. nsConnectionEntry *preferredEntry = GetSpdyPreferredEnt(ent); if (preferredEntry) ent = preferredEntry; if (mNumHalfOpenConns < gHttpHandler->ParallelSpeculativeConnectLimit() && !ent->mIdleConns.Length() && !RestrictConnections(ent) && !AtActiveConnectionLimit(ent, trans->Caps())) { CreateTransport(ent, trans, trans->Caps(), true); } else { LOG((" Transport not created due to existing connection count\n")); } } bool nsHttpConnectionMgr::nsConnectionHandle::IsPersistent() { return mConn->IsPersistent(); } bool nsHttpConnectionMgr::nsConnectionHandle::IsReused() { return mConn->IsReused(); } void nsHttpConnectionMgr::nsConnectionHandle::DontReuse() { mConn->DontReuse(); } nsresult nsHttpConnectionMgr::nsConnectionHandle::PushBack(const char *buf, uint32_t bufLen) { return mConn->PushBack(buf, bufLen); } //////////////////////// nsHalfOpenSocket NS_IMPL_THREADSAFE_ISUPPORTS4(nsHttpConnectionMgr::nsHalfOpenSocket, nsIOutputStreamCallback, nsITransportEventSink, nsIInterfaceRequestor, nsITimerCallback) nsHttpConnectionMgr:: nsHalfOpenSocket::nsHalfOpenSocket(nsConnectionEntry *ent, nsAHttpTransaction *trans, uint32_t caps) : mEnt(ent), mTransaction(trans), mCaps(caps), mSpeculative(false), mHasConnected(false) { MOZ_ASSERT(ent && trans, "constructor with null arguments"); LOG(("Creating nsHalfOpenSocket [this=%p trans=%p ent=%s]\n", this, trans, ent->mConnInfo->Host())); } nsHttpConnectionMgr::nsHalfOpenSocket::~nsHalfOpenSocket() { MOZ_ASSERT(!mStreamOut); MOZ_ASSERT(!mBackupStreamOut); MOZ_ASSERT(!mSynTimer); LOG(("Destroying nsHalfOpenSocket [this=%p]\n", this)); if (mEnt) mEnt->RemoveHalfOpen(this); } nsresult nsHttpConnectionMgr:: nsHalfOpenSocket::SetupStreams(nsISocketTransport **transport, nsIAsyncInputStream **instream, nsIAsyncOutputStream **outstream, bool isBackup) { nsresult rv; const char* types[1]; types[0] = (mEnt->mConnInfo->UsingSSL()) ? "ssl" : gHttpHandler->DefaultSocketType(); uint32_t typeCount = (types[0] != nullptr); nsCOMPtr socketTransport; nsCOMPtr sts; sts = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv); NS_ENSURE_SUCCESS(rv, rv); rv = sts->CreateTransport(types, typeCount, nsDependentCString(mEnt->mConnInfo->Host()), mEnt->mConnInfo->Port(), mEnt->mConnInfo->ProxyInfo(), getter_AddRefs(socketTransport)); NS_ENSURE_SUCCESS(rv, rv); uint32_t tmpFlags = 0; if (mCaps & NS_HTTP_REFRESH_DNS) tmpFlags = nsISocketTransport::BYPASS_CACHE; if (mCaps & NS_HTTP_LOAD_ANONYMOUS) tmpFlags |= nsISocketTransport::ANONYMOUS_CONNECT; if (mEnt->mConnInfo->GetPrivate()) tmpFlags |= nsISocketTransport::NO_PERMANENT_STORAGE; // For backup connections, we disable IPv6. That's because some users have // broken IPv6 connectivity (leading to very long timeouts), and disabling // IPv6 on the backup connection gives them a much better user experience // with dual-stack hosts, though they still pay the 250ms delay for each new // connection. This strategy is also known as "happy eyeballs". if (mEnt->mPreferIPv6) { tmpFlags |= nsISocketTransport::DISABLE_IPV4; } else if (mEnt->mPreferIPv4 || (isBackup && gHttpHandler->FastFallbackToIPv4())) { tmpFlags |= nsISocketTransport::DISABLE_IPV6; } socketTransport->SetConnectionFlags(tmpFlags); socketTransport->SetQoSBits(gHttpHandler->GetQoSBits()); rv = socketTransport->SetEventSink(this, nullptr); NS_ENSURE_SUCCESS(rv, rv); rv = socketTransport->SetSecurityCallbacks(this); NS_ENSURE_SUCCESS(rv, rv); nsCOMPtr sout; rv = socketTransport->OpenOutputStream(nsITransport::OPEN_UNBUFFERED, 0, 0, getter_AddRefs(sout)); NS_ENSURE_SUCCESS(rv, rv); nsCOMPtr sin; rv = socketTransport->OpenInputStream(nsITransport::OPEN_UNBUFFERED, 0, 0, getter_AddRefs(sin)); NS_ENSURE_SUCCESS(rv, rv); socketTransport.forget(transport); CallQueryInterface(sin, instream); CallQueryInterface(sout, outstream); rv = (*outstream)->AsyncWait(this, 0, 0, nullptr); if (NS_SUCCEEDED(rv)) gHttpHandler->ConnMgr()->StartedConnect(); return rv; } nsresult nsHttpConnectionMgr::nsHalfOpenSocket::SetupPrimaryStreams() { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsresult rv; mPrimarySynStarted = TimeStamp::Now(); rv = SetupStreams(getter_AddRefs(mSocketTransport), getter_AddRefs(mStreamIn), getter_AddRefs(mStreamOut), false); LOG(("nsHalfOpenSocket::SetupPrimaryStream [this=%p ent=%s rv=%x]", this, mEnt->mConnInfo->Host(), rv)); if (NS_FAILED(rv)) { if (mStreamOut) mStreamOut->AsyncWait(nullptr, 0, 0, nullptr); mStreamOut = nullptr; mStreamIn = nullptr; mSocketTransport = nullptr; } return rv; } nsresult nsHttpConnectionMgr::nsHalfOpenSocket::SetupBackupStreams() { mBackupSynStarted = TimeStamp::Now(); nsresult rv = SetupStreams(getter_AddRefs(mBackupTransport), getter_AddRefs(mBackupStreamIn), getter_AddRefs(mBackupStreamOut), true); LOG(("nsHalfOpenSocket::SetupBackupStream [this=%p ent=%s rv=%x]", this, mEnt->mConnInfo->Host(), rv)); if (NS_FAILED(rv)) { if (mBackupStreamOut) mBackupStreamOut->AsyncWait(nullptr, 0, 0, nullptr); mBackupStreamOut = nullptr; mBackupStreamIn = nullptr; mBackupTransport = nullptr; } return rv; } void nsHttpConnectionMgr::nsHalfOpenSocket::SetupBackupTimer() { uint16_t timeout = gHttpHandler->GetIdleSynTimeout(); MOZ_ASSERT(!mSynTimer, "timer already initd"); if (timeout && !mTransaction->IsDone()) { // Setup the timer that will establish a backup socket // if we do not get a writable event on the main one. // We do this because a lost SYN takes a very long time // to repair at the TCP level. // // Failure to setup the timer is something we can live with, // so don't return an error in that case. nsresult rv; mSynTimer = do_CreateInstance(NS_TIMER_CONTRACTID, &rv); if (NS_SUCCEEDED(rv)) { mSynTimer->InitWithCallback(this, timeout, nsITimer::TYPE_ONE_SHOT); LOG(("nsHalfOpenSocket::SetupBackupTimer() [this=%p]", this)); } } else if (timeout) { LOG(("nsHalfOpenSocket::SetupBackupTimer() [this=%p]," " transaction already done!", this)); } } void nsHttpConnectionMgr::nsHalfOpenSocket::CancelBackupTimer() { // If the syntimer is still armed, we can cancel it because no backup // socket should be formed at this point if (!mSynTimer) return; LOG(("nsHalfOpenSocket::CancelBackupTimer()")); mSynTimer->Cancel(); mSynTimer = nullptr; } void nsHttpConnectionMgr::nsHalfOpenSocket::Abandon() { LOG(("nsHalfOpenSocket::Abandon [this=%p ent=%s]", this, mEnt->mConnInfo->Host())); MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsRefPtr deleteProtector(this); if (mStreamOut) { gHttpHandler->ConnMgr()->RecvdConnect(); mStreamOut->AsyncWait(nullptr, 0, 0, nullptr); mStreamOut = nullptr; } if (mBackupStreamOut) { gHttpHandler->ConnMgr()->RecvdConnect(); mBackupStreamOut->AsyncWait(nullptr, 0, 0, nullptr); mBackupStreamOut = nullptr; } CancelBackupTimer(); if (mEnt) mEnt->RemoveHalfOpen(this); mEnt = nullptr; } double nsHttpConnectionMgr::nsHalfOpenSocket::Duration(TimeStamp epoch) { if (mPrimarySynStarted.IsNull()) return 0; return (epoch - mPrimarySynStarted).ToMilliseconds(); } NS_IMETHODIMP // method for nsITimerCallback nsHttpConnectionMgr::nsHalfOpenSocket::Notify(nsITimer *timer) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); MOZ_ASSERT(timer == mSynTimer, "wrong timer"); SetupBackupStreams(); mSynTimer = nullptr; return NS_OK; } // method for nsIAsyncOutputStreamCallback NS_IMETHODIMP nsHttpConnectionMgr:: nsHalfOpenSocket::OnOutputStreamReady(nsIAsyncOutputStream *out) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); MOZ_ASSERT(out == mStreamOut || out == mBackupStreamOut, "stream mismatch"); LOG(("nsHalfOpenSocket::OnOutputStreamReady [this=%p ent=%s %s]\n", this, mEnt->mConnInfo->Host(), out == mStreamOut ? "primary" : "backup")); int32_t index; nsresult rv; gHttpHandler->ConnMgr()->RecvdConnect(); CancelBackupTimer(); // assign the new socket to the http connection nsRefPtr conn = new nsHttpConnection(); LOG(("nsHalfOpenSocket::OnOutputStreamReady " "Created new nshttpconnection %p\n", conn.get())); // Some capabilities are needed before a transaciton actually gets // scheduled (e.g. how to negotiate false start) conn->SetTransactionCaps(mTransaction->Caps()); NetAddr peeraddr; nsCOMPtr callbacks; mTransaction->GetSecurityCallbacks(getter_AddRefs(callbacks)); if (out == mStreamOut) { TimeDuration rtt = TimeStamp::Now() - mPrimarySynStarted; rv = conn->Init(mEnt->mConnInfo, gHttpHandler->ConnMgr()->mMaxRequestDelay, mSocketTransport, mStreamIn, mStreamOut, callbacks, PR_MillisecondsToInterval( static_cast(rtt.ToMilliseconds()))); if (NS_SUCCEEDED(mSocketTransport->GetPeerAddr(&peeraddr))) mEnt->RecordIPFamilyPreference(peeraddr.raw.family); // The nsHttpConnection object now owns these streams and sockets mStreamOut = nullptr; mStreamIn = nullptr; mSocketTransport = nullptr; } else { TimeDuration rtt = TimeStamp::Now() - mBackupSynStarted; rv = conn->Init(mEnt->mConnInfo, gHttpHandler->ConnMgr()->mMaxRequestDelay, mBackupTransport, mBackupStreamIn, mBackupStreamOut, callbacks, PR_MillisecondsToInterval( static_cast(rtt.ToMilliseconds()))); if (NS_SUCCEEDED(mBackupTransport->GetPeerAddr(&peeraddr))) mEnt->RecordIPFamilyPreference(peeraddr.raw.family); // The nsHttpConnection object now owns these streams and sockets mBackupStreamOut = nullptr; mBackupStreamIn = nullptr; mBackupTransport = nullptr; } if (NS_FAILED(rv)) { LOG(("nsHalfOpenSocket::OnOutputStreamReady " "conn->init (%p) failed %x\n", conn.get(), rv)); return rv; } // This half-open socket has created a connection. This flag excludes it // from counter of actual connections used for checking limits. mHasConnected = true; // if this is still in the pending list, remove it and dispatch it index = mEnt->mPendingQ.IndexOf(mTransaction); if (index != -1) { MOZ_ASSERT(!mSpeculative, "Speculative Half Open found mTranscation"); nsRefPtr temp = dont_AddRef(mEnt->mPendingQ[index]); mEnt->mPendingQ.RemoveElementAt(index); gHttpHandler->ConnMgr()->AddActiveConn(conn, mEnt); rv = gHttpHandler->ConnMgr()->DispatchTransaction(mEnt, temp, conn); } else { // this transaction was dispatched off the pending q before all the // sockets established themselves. // We need to establish a small non-zero idle timeout so the connection // mgr perceives this socket as suitable for persistent connection reuse const PRIntervalTime k5Sec = PR_SecondsToInterval(5); if (k5Sec < gHttpHandler->IdleTimeout()) conn->SetIdleTimeout(k5Sec); else conn->SetIdleTimeout(gHttpHandler->IdleTimeout()); // After about 1 second allow for the possibility of restarting a // transaction due to server close. Keep at sub 1 second as that is the // minimum granularity we can expect a server to be timing out with. conn->SetIsReusedAfter(950); // if we are using ssl and no other transactions are waiting right now, // then form a null transaction to drive the SSL handshake to // completion. Afterwards the connection will be 100% ready for the next // transaction to use it. Make an exception for SSL over HTTP proxy as the // NullHttpTransaction does not know how to drive CONNECT. if (mEnt->mConnInfo->UsingSSL() && !mEnt->mPendingQ.Length() && !mEnt->mConnInfo->UsingHttpProxy()) { LOG(("nsHalfOpenSocket::OnOutputStreamReady null transaction will " "be used to finish SSL handshake on conn %p\n", conn.get())); nsRefPtr trans = new NullHttpTransaction(mEnt->mConnInfo, callbacks, mCaps & ~NS_HTTP_ALLOW_PIPELINING); gHttpHandler->ConnMgr()->AddActiveConn(conn, mEnt); conn->Classify(nsAHttpTransaction::CLASS_SOLO); rv = gHttpHandler->ConnMgr()-> DispatchAbstractTransaction(mEnt, trans, mCaps, conn, 0); } else { // otherwise just put this in the persistent connection pool LOG(("nsHalfOpenSocket::OnOutputStreamReady no transaction match " "returning conn %p to pool\n", conn.get())); nsRefPtr copy(conn); // forget() to effectively addref because onmsg*() will drop a ref gHttpHandler->ConnMgr()->OnMsgReclaimConnection( 0, conn.forget().get()); } } return rv; } // method for nsITransportEventSink NS_IMETHODIMP nsHttpConnectionMgr::nsHalfOpenSocket::OnTransportStatus(nsITransport *trans, nsresult status, uint64_t progress, uint64_t progressMax) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); if (mTransaction) mTransaction->OnTransportStatus(trans, status, progress); if (trans != mSocketTransport) return NS_OK; // if we are doing spdy coalescing and haven't recorded the ip address // for this entry before then make the hash key if our dns lookup // just completed. We can't do coalescing if using a proxy because the // ip addresses are not available to the client. if (status == NS_NET_STATUS_CONNECTED_TO && gHttpHandler->IsSpdyEnabled() && gHttpHandler->CoalesceSpdy() && mEnt && mEnt->mConnInfo && mEnt->mConnInfo->UsingSSL() && !mEnt->mConnInfo->UsingProxy() && mEnt->mCoalescingKey.IsEmpty()) { NetAddr addr; nsresult rv = mSocketTransport->GetPeerAddr(&addr); if (NS_SUCCEEDED(rv)) { mEnt->mCoalescingKey.SetCapacity(kIPv6CStrBufSize + 26); NetAddrToString(&addr, mEnt->mCoalescingKey.BeginWriting(), kIPv6CStrBufSize); mEnt->mCoalescingKey.SetLength( strlen(mEnt->mCoalescingKey.BeginReading())); if (mEnt->mConnInfo->GetAnonymous()) mEnt->mCoalescingKey.AppendLiteral("~A:"); else mEnt->mCoalescingKey.AppendLiteral("~.:"); mEnt->mCoalescingKey.AppendInt(mEnt->mConnInfo->Port()); LOG(("nsHttpConnectionMgr::nsHalfOpenSocket::OnTransportStatus " "STATUS_CONNECTED_TO Established New Coalescing Key for host " "%s [%s]", mEnt->mConnInfo->Host(), mEnt->mCoalescingKey.get())); gHttpHandler->ConnMgr()->ProcessSpdyPendingQ(mEnt); } } switch (status) { case NS_NET_STATUS_CONNECTING_TO: // Passed DNS resolution, now trying to connect, start the backup timer // only prevent creating another backup transport. // We also check for mEnt presence to not instantiate the timer after // this half open socket has already been abandoned. It may happen // when we get this notification right between main-thread calls to // nsHttpConnectionMgr::Shutdown and nsSocketTransportService::Shutdown // where the first abandones all half open socket instances and only // after that the second stops the socket thread. if (mEnt && !mBackupTransport && !mSynTimer) SetupBackupTimer(); break; case NS_NET_STATUS_CONNECTED_TO: // TCP connection's up, now transfer or SSL negotiantion starts, // no need for backup socket CancelBackupTimer(); break; default: break; } return NS_OK; } // method for nsIInterfaceRequestor NS_IMETHODIMP nsHttpConnectionMgr::nsHalfOpenSocket::GetInterface(const nsIID &iid, void **result) { if (mTransaction) { nsCOMPtr callbacks; mTransaction->GetSecurityCallbacks(getter_AddRefs(callbacks)); if (callbacks) return callbacks->GetInterface(iid, result); } return NS_ERROR_NO_INTERFACE; } nsHttpConnection * nsHttpConnectionMgr::nsConnectionHandle::TakeHttpConnection() { // return our connection object to the caller and clear it internally // do not drop our reference - the caller now owns it. MOZ_ASSERT(mConn); nsHttpConnection *conn = mConn; mConn = nullptr; return conn; } uint32_t nsHttpConnectionMgr::nsConnectionHandle::CancelPipeline(nsresult reason) { // no pipeline to cancel return 0; } nsAHttpTransaction::Classifier nsHttpConnectionMgr::nsConnectionHandle::Classification() { if (mConn) return mConn->Classification(); LOG(("nsConnectionHandle::Classification this=%p " "has null mConn using CLASS_SOLO default", this)); return nsAHttpTransaction::CLASS_SOLO; } // nsConnectionEntry nsHttpConnectionMgr:: nsConnectionEntry::nsConnectionEntry(nsHttpConnectionInfo *ci) : mConnInfo(ci) , mPipelineState(PS_YELLOW) , mYellowGoodEvents(0) , mYellowBadEvents(0) , mYellowConnection(nullptr) , mGreenDepth(kPipelineOpen) , mPipeliningPenalty(0) , mSpdyCWND(0) , mUsingSpdy(false) , mTestedSpdy(false) , mSpdyPreferred(false) , mPreferIPv4(false) , mPreferIPv6(false) { NS_ADDREF(mConnInfo); if (gHttpHandler->GetPipelineAggressive()) { mGreenDepth = kPipelineUnlimited; mPipelineState = PS_GREEN; } mInitialGreenDepth = mGreenDepth; memset(mPipeliningClassPenalty, 0, sizeof(int16_t) * nsAHttpTransaction::CLASS_MAX); } bool nsHttpConnectionMgr::nsConnectionEntry::SupportsPipelining() { return mPipelineState != nsHttpConnectionMgr::PS_RED; } nsHttpConnectionMgr::PipeliningState nsHttpConnectionMgr::nsConnectionEntry::PipelineState() { return mPipelineState; } void nsHttpConnectionMgr:: nsConnectionEntry::OnPipelineFeedbackInfo( nsHttpConnectionMgr::PipelineFeedbackInfoType info, nsHttpConnection *conn, uint32_t data) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); if (mPipelineState == PS_YELLOW) { if (info & kPipelineInfoTypeBad) mYellowBadEvents++; else if (info & (kPipelineInfoTypeNeutral | kPipelineInfoTypeGood)) mYellowGoodEvents++; } if (mPipelineState == PS_GREEN && info == GoodCompletedOK) { int32_t depth = data; LOG(("Transaction completed at pipeline depth of %d. Host = %s\n", depth, mConnInfo->Host())); if (depth >= 3) mGreenDepth = kPipelineUnlimited; } nsAHttpTransaction::Classifier classification; if (conn) classification = conn->Classification(); else if (info == BadInsufficientFraming || info == BadUnexpectedLarge) classification = (nsAHttpTransaction::Classifier) data; else classification = nsAHttpTransaction::CLASS_SOLO; if (gHttpHandler->GetPipelineAggressive() && info & kPipelineInfoTypeBad && info != BadExplicitClose && info != RedVersionTooLow && info != RedBannedServer && info != RedCorruptedContent && info != BadInsufficientFraming) { LOG(("minor negative feedback ignored " "because of pipeline aggressive mode")); } else if (info & kPipelineInfoTypeBad) { if ((info & kPipelineInfoTypeRed) && (mPipelineState != PS_RED)) { LOG(("transition to red from %d. Host = %s.\n", mPipelineState, mConnInfo->Host())); mPipelineState = PS_RED; mPipeliningPenalty = 0; } if (mLastCreditTime.IsNull()) mLastCreditTime = TimeStamp::Now(); // Red* events impact the host globally via mPipeliningPenalty, while // Bad* events impact the per class penalty. // The individual penalties should be < 16bit-signed-maxint - 25000 // (approx 7500). Penalties are paid-off either when something promising // happens (a successful transaction, or promising headers) or when // time goes by at a rate of 1 penalty point every 16 seconds. switch (info) { case RedVersionTooLow: mPipeliningPenalty += 1000; break; case RedBannedServer: mPipeliningPenalty += 7000; break; case RedCorruptedContent: mPipeliningPenalty += 7000; break; case RedCanceledPipeline: mPipeliningPenalty += 60; break; case BadExplicitClose: mPipeliningClassPenalty[classification] += 250; break; case BadSlowReadMinor: mPipeliningClassPenalty[classification] += 5; break; case BadSlowReadMajor: mPipeliningClassPenalty[classification] += 25; break; case BadInsufficientFraming: mPipeliningClassPenalty[classification] += 7000; break; case BadUnexpectedLarge: mPipeliningClassPenalty[classification] += 120; break; default: MOZ_ASSERT(false, "Unknown Bad/Red Pipeline Feedback Event"); } const int16_t kPenalty = 25000; mPipeliningPenalty = std::min(mPipeliningPenalty, kPenalty); mPipeliningClassPenalty[classification] = std::min(mPipeliningClassPenalty[classification], kPenalty); LOG(("Assessing red penalty to %s class %d for event %d. " "Penalty now %d, throttle[%d] = %d\n", mConnInfo->Host(), classification, info, mPipeliningPenalty, classification, mPipeliningClassPenalty[classification])); } else { // hand out credits for neutral and good events such as // "headers look ok" events mPipeliningPenalty = std::max(mPipeliningPenalty - 1, 0); mPipeliningClassPenalty[classification] = std::max(mPipeliningClassPenalty[classification] - 1, 0); } if (mPipelineState == PS_RED && !mPipeliningPenalty) { LOG(("transition %s to yellow\n", mConnInfo->Host())); mPipelineState = PS_YELLOW; mYellowConnection = nullptr; } } void nsHttpConnectionMgr:: nsConnectionEntry::SetYellowConnection(nsHttpConnection *conn) { MOZ_ASSERT(!mYellowConnection && mPipelineState == PS_YELLOW, "yellow connection already set or state is not yellow"); mYellowConnection = conn; mYellowGoodEvents = mYellowBadEvents = 0; } void nsHttpConnectionMgr:: nsConnectionEntry::OnYellowComplete() { if (mPipelineState == PS_YELLOW) { if (mYellowGoodEvents && !mYellowBadEvents) { LOG(("transition %s to green\n", mConnInfo->Host())); mPipelineState = PS_GREEN; mGreenDepth = mInitialGreenDepth; } else { // The purpose of the yellow state is to witness at least // one successful pipelined transaction without seeing any // kind of negative feedback before opening the flood gates. // If we haven't confirmed that, then transfer back to red. LOG(("transition %s to red from yellow return\n", mConnInfo->Host())); mPipelineState = PS_RED; } } mYellowConnection = nullptr; } void nsHttpConnectionMgr:: nsConnectionEntry::CreditPenalty() { if (mLastCreditTime.IsNull()) return; // Decrease penalty values by 1 for every 16 seconds // (i.e 3.7 per minute, or 1000 every 4h20m) TimeStamp now = TimeStamp::Now(); TimeDuration elapsedTime = now - mLastCreditTime; uint32_t creditsEarned = static_cast(elapsedTime.ToSeconds()) >> 4; bool failed = false; if (creditsEarned > 0) { mPipeliningPenalty = std::max(int32_t(mPipeliningPenalty - creditsEarned), 0); if (mPipeliningPenalty > 0) failed = true; for (int32_t i = 0; i < nsAHttpTransaction::CLASS_MAX; ++i) { mPipeliningClassPenalty[i] = std::max(int32_t(mPipeliningClassPenalty[i] - creditsEarned), 0); failed = failed || (mPipeliningClassPenalty[i] > 0); } // update last credit mark to reflect elapsed time mLastCreditTime += TimeDuration::FromSeconds(creditsEarned << 4); } else { failed = true; /* just assume this */ } // If we are no longer red then clear the credit counter - you only // get credits for time spent in the red state if (!failed) mLastCreditTime = TimeStamp(); /* reset to null timestamp */ if (mPipelineState == PS_RED && !mPipeliningPenalty) { LOG(("transition %s to yellow based on time credit\n", mConnInfo->Host())); mPipelineState = PS_YELLOW; mYellowConnection = nullptr; } } uint32_t nsHttpConnectionMgr:: nsConnectionEntry::MaxPipelineDepth(nsAHttpTransaction::Classifier aClass) { // Still subject to configuration limit no matter return value if ((mPipelineState == PS_RED) || (mPipeliningClassPenalty[aClass] > 0)) return 0; if (mPipelineState == PS_YELLOW) return kPipelineRestricted; return mGreenDepth; } PLDHashOperator nsHttpConnectionMgr::ReadConnectionEntry(const nsACString &key, nsAutoPtr &ent, void *aArg) { nsTArray *args = static_cast *> (aArg); HttpRetParams data; data.host = ent->mConnInfo->Host(); data.port = ent->mConnInfo->Port(); for (uint32_t i = 0; i < ent->mActiveConns.Length(); i++) { HttpConnInfo info; info.ttl = ent->mActiveConns[i]->TimeToLive(); info.rtt = ent->mActiveConns[i]->Rtt(); if (ent->mActiveConns[i]->UsingSpdy()) info.SetHTTP2ProtocolVersion(ent->mActiveConns[i]->GetSpdyVersion()); else info.SetHTTP1ProtocolVersion(ent->mActiveConns[i]->GetLastHttpResponseVersion()); data.active.AppendElement(info); } for (uint32_t i = 0; i < ent->mIdleConns.Length(); i++) { HttpConnInfo info; info.ttl = ent->mIdleConns[i]->TimeToLive(); info.rtt = ent->mIdleConns[i]->Rtt(); info.SetHTTP1ProtocolVersion(ent->mIdleConns[i]->GetLastHttpResponseVersion()); data.idle.AppendElement(info); } data.spdy = ent->mUsingSpdy; data.ssl = ent->mConnInfo->UsingSSL(); args->AppendElement(data); return PL_DHASH_NEXT; } bool nsHttpConnectionMgr::GetConnectionData(nsTArray *aArg) { mCT.Enumerate(ReadConnectionEntry, aArg); return true; } void nsHttpConnectionMgr::ResetIPFamilyPreference(nsHttpConnectionInfo *ci) { MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread); nsConnectionEntry *ent = LookupConnectionEntry(ci, nullptr, nullptr); if (ent) ent->ResetIPFamilyPreference(); } uint32_t nsHttpConnectionMgr:: nsConnectionEntry::UnconnectedHalfOpens() { uint32_t unconnectedHalfOpens = 0; for (uint32_t i = 0; i < mHalfOpens.Length(); ++i) { if (!mHalfOpens[i]->HasConnected()) ++unconnectedHalfOpens; } return unconnectedHalfOpens; } void nsHttpConnectionMgr:: nsConnectionEntry::RemoveHalfOpen(nsHalfOpenSocket *halfOpen) { // A failure to create the transport object at all // will result in it not being present in the halfopen table // so ignore failures of RemoveElement() mHalfOpens.RemoveElement(halfOpen); gHttpHandler->ConnMgr()->mNumHalfOpenConns--; if (!UnconnectedHalfOpens()) // perhaps this reverted RestrictConnections() // use the PostEvent version of processpendingq to avoid // altering the pending q vector from an arbitrary stack gHttpHandler->ConnMgr()->ProcessPendingQ(mConnInfo); } void nsHttpConnectionMgr:: nsConnectionEntry::RecordIPFamilyPreference(uint16_t family) { if (family == PR_AF_INET && !mPreferIPv6) mPreferIPv4 = true; if (family == PR_AF_INET6 && !mPreferIPv4) mPreferIPv6 = true; } void nsHttpConnectionMgr:: nsConnectionEntry::ResetIPFamilyPreference() { mPreferIPv4 = false; mPreferIPv6 = false; }