/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ gTestfile = '11.5.3.js'; /** File Name: 11.5.3.js ECMA Section: 11.5.3 Applying the % operator Description: The binary % operator is said to yield the remainder of its operands from an implied division; the left operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts only integral operands, but in ECMAScript, it also accepts floating-point operands. The result of a floating-point remainder operation as computed by the % operator is not the same as the "remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the C library function fmod. The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: If either operand is NaN, the result is NaN. The sign of the result equals the sign of the dividend. If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. If the dividend is finite and the divisor is an infinity, the result equals the dividend. If the dividend is a zero and the divisor is finite, the result is the same as the dividend. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient of n and d. Author: christine@netscape.com Date: 12 november 1997 */ var SECTION = "11.5.3"; var VERSION = "ECMA_1"; var BUGNUMBER="111202"; startTest(); writeHeaderToLog( SECTION + " Applying the % operator"); // if either operand is NaN, the result is NaN. new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. // dividend is an infinity new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); // divisor is 0 new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); // If the dividend is finite and the divisor is an infinity, the result equals the dividend. new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); // If the dividend is a zero and the divisor is finite, the result is the same as the dividend. new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as // possible without exceeding the magnitude of the true mathematical quotient of n and d. test();