// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // * Neither the name of Google, Inc. nor the names of its contributors // may be used to endorse or promote products derived from this // software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. #include "convolver.h" #include #include "skia/include/core/SkTypes.h" #include // ARCH_CPU_X86_FAMILY was defined in build/config.h namespace skia { // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the [begin, end) of the filter. void ConvolveHorizontally_SSE2(const unsigned char* src_data, int begin, int end, const ConvolutionFilter1D& filter, unsigned char* out_row) { int filter_offset, filter_length; __m128i zero = _mm_setzero_si128(); __m128i mask[3]; // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. mask[0] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); // This buffer is used for tails __m128i buffer; // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = begin; out_x < end; out_x++) { const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); __m128i accum = _mm_setzero_si128(); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const __m128i* row_to_filter = reinterpret_cast(&src_data[filter_offset << 2]); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. __m128i coeff, coeff16; // [16] xx xx xx xx c3 c2 c1 c0 coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // [16] xx xx xx xx c1 c1 c0 c0 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); // [16] c1 c1 c1 c1 c0 c0 c0 c0 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // Load four pixels => unpack the first two pixels to 16 bits => // multiply with coefficients => accumulate the convolution result. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 __m128i src8 = _mm_loadu_si128(row_to_filter); // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0*c0 b0*c0 g0*c0 r0*c0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // [32] a1*c1 b1*c1 g1*c1 r1*c1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // Duplicate 3rd and 4th coefficients for all channels => // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients // => accumulate the convolution results. // [16] xx xx xx xx c3 c3 c2 c2 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); // [16] c3 c3 c3 c3 c2 c2 c2 c2 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // [16] a3 g3 b3 r3 a2 g2 b2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2*c2 b2*c2 g2*c2 r2*c2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // [32] a3*c3 b3*c3 g3*c3 r3*c3 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // Advance the pixel and coefficients pointers. row_to_filter += 1; filter_values += 4; } // When |filter_length| is not divisible by 4, we need to decimate some of // the filter coefficient that was loaded incorrectly to zero; Other than // that the algorithm is same with above, except that the 4th pixel will be // always absent. int r = filter_length & 3; if (r) { memcpy(&buffer, row_to_filter, r * 4); // Note: filter_values must be padded to align_up(filter_offset, 8). __m128i coeff, coeff16; coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // Mask out extra filter taps. coeff = _mm_and_si128(coeff, mask[r-1]); coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // Note: line buffer must be padded to align_up(filter_offset, 16). // We resolve this by temporary buffer __m128i src8 = _mm_loadu_si128(&buffer); __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); src16 = _mm_unpackhi_epi8(src8, zero); coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); } // Shift right for fixed point implementation. accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); // Packing 32 bits |accum| to 16 bits per channel (signed saturation). accum = _mm_packs_epi32(accum, zero); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). accum = _mm_packus_epi16(accum, zero); // Store the pixel value of 32 bits. *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum); out_row += 4; } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the [begin, end) of the filter. // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please // refer to that function for detailed comments. void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], int begin, int end, const ConvolutionFilter1D& filter, unsigned char* out_row[4]) { int filter_offset, filter_length; __m128i zero = _mm_setzero_si128(); __m128i mask[3]; // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. mask[0] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = begin; out_x < end; out_x++) { const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // four pixels in a column per iteration. __m128i accum0 = _mm_setzero_si128(); __m128i accum1 = _mm_setzero_si128(); __m128i accum2 = _mm_setzero_si128(); __m128i accum3 = _mm_setzero_si128(); int start = (filter_offset<<2); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { __m128i coeff, coeff16lo, coeff16hi; // [16] xx xx xx xx c3 c2 c1 c0 coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // [16] xx xx xx xx c1 c1 c0 c0 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); // [16] c1 c1 c1 c1 c0 c0 c0 c0 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); // [16] xx xx xx xx c3 c3 c2 c2 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); // [16] c3 c3 c3 c3 c2 c2 c2 c2 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); __m128i src8, src16, mul_hi, mul_lo, t; #define ITERATION(src, accum) \ src8 = _mm_loadu_si128(reinterpret_cast(src)); \ src16 = _mm_unpacklo_epi8(src8, zero); \ mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ src16 = _mm_unpackhi_epi8(src8, zero); \ mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t) ITERATION(src_data[0] + start, accum0); ITERATION(src_data[1] + start, accum1); ITERATION(src_data[2] + start, accum2); ITERATION(src_data[3] + start, accum3); start += 16; filter_values += 4; } int r = filter_length & 3; if (r) { // Note: filter_values must be padded to align_up(filter_offset, 8); __m128i coeff; coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // Mask out extra filter taps. coeff = _mm_and_si128(coeff, mask[r-1]); __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); /* c1 c1 c1 c1 c0 c0 c0 c0 */ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); __m128i src8, src16, mul_hi, mul_lo, t; ITERATION(src_data[0] + start, accum0); ITERATION(src_data[1] + start, accum1); ITERATION(src_data[2] + start, accum2); ITERATION(src_data[3] + start, accum3); } accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); accum0 = _mm_packs_epi32(accum0, zero); accum0 = _mm_packus_epi16(accum0, zero); accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); accum1 = _mm_packs_epi32(accum1, zero); accum1 = _mm_packus_epi16(accum1, zero); accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); accum2 = _mm_packs_epi32(accum2, zero); accum2 = _mm_packus_epi16(accum2, zero); accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); accum3 = _mm_packs_epi32(accum3, zero); accum3 = _mm_packus_epi16(accum3, zero); *(reinterpret_cast(out_row[0])) = _mm_cvtsi128_si32(accum0); *(reinterpret_cast(out_row[1])) = _mm_cvtsi128_si32(accum1); *(reinterpret_cast(out_row[2])) = _mm_cvtsi128_si32(accum2); *(reinterpret_cast(out_row[3])) = _mm_cvtsi128_si32(accum3); out_row[0] += 4; out_row[1] += 4; out_row[2] += 4; out_row[3] += 4; } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |end - begin| wide. // // The output must have room for |(end - begin) * 4| bytes. template void ConvolveVertically_SSE2_impl(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int begin, int end, unsigned char* out_row) { __m128i zero = _mm_setzero_si128(); __m128i accum0, accum1, accum2, accum3, coeff16; const __m128i* src; int out_x; // Output four pixels per iteration (16 bytes). for (out_x = begin; out_x + 3 < end; out_x += 4) { // Accumulated result for each pixel. 32 bits per RGBA channel. accum0 = _mm_setzero_si128(); accum1 = _mm_setzero_si128(); accum2 = _mm_setzero_si128(); accum3 = _mm_setzero_si128(); // Convolve with one filter coefficient per iteration. for (int filter_y = 0; filter_y < filter_length; filter_y++) { // Duplicate the filter coefficient 8 times. // [16] cj cj cj cj cj cj cj cj coeff16 = _mm_set1_epi16(filter_values[filter_y]); // Load four pixels (16 bytes) together. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 src = reinterpret_cast( &source_data_rows[filter_y][out_x << 2]); __m128i src8 = _mm_loadu_si128(src); // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0 b0 g0 r0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum0 = _mm_add_epi32(accum0, t); // [32] a1 b1 g1 r1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum1 = _mm_add_epi32(accum1, t); // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a3 b3 g3 r3 a2 b2 g2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2 b2 g2 r2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum2 = _mm_add_epi32(accum2, t); // [32] a3 b3 g3 r3 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum3 = _mm_add_epi32(accum3, t); } // Shift right for fixed point implementation. accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); // Packing 32 bits |accum| to 16 bits per channel (signed saturation). // [16] a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packs_epi32(accum0, accum1); // [16] a3 b3 g3 r3 a2 b2 g2 r2 accum2 = _mm_packs_epi32(accum2, accum3); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packus_epi16(accum0, accum2); if (has_alpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 __m128i a = _mm_srli_epi32(accum0, 8); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = _mm_srli_epi32(accum0, 16); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = _mm_max_epu8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = _mm_slli_epi32(b, 24); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum0 = _mm_max_epu8(b, accum0); } else { // Set value of alpha channels to 0xFF. __m128i mask = _mm_set1_epi32(0xff000000); accum0 = _mm_or_si128(accum0, mask); } // Store the convolution result (16 bytes) and advance the pixel pointers. _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); out_row += 16; } // When the width of the output is not divisible by 4, We need to save one // pixel (4 bytes) each time. And also the fourth pixel is always absent. int r = end - out_x; if (r > 0) { // Since accum3 is never used here, we'll use it as a buffer __m128i *buffer = &accum3; accum0 = _mm_setzero_si128(); accum1 = _mm_setzero_si128(); accum2 = _mm_setzero_si128(); for (int filter_y = 0; filter_y < filter_length; ++filter_y) { coeff16 = _mm_set1_epi16(filter_values[filter_y]); // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 src = reinterpret_cast( &source_data_rows[filter_y][out_x * 4]); memcpy(buffer, src, r * 4); __m128i src8 = _mm_loadu_si128(buffer); // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0 b0 g0 r0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum0 = _mm_add_epi32(accum0, t); // [32] a1 b1 g1 r1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum1 = _mm_add_epi32(accum1, t); // [16] a3 b3 g3 r3 a2 b2 g2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2 b2 g2 r2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum2 = _mm_add_epi32(accum2, t); } accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); // [16] a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packs_epi32(accum0, accum1); // [16] a3 b3 g3 r3 a2 b2 g2 r2 accum2 = _mm_packs_epi32(accum2, zero); // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packus_epi16(accum0, accum2); if (has_alpha) { // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 __m128i a = _mm_srli_epi32(accum0, 8); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = _mm_srli_epi32(accum0, 16); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = _mm_max_epu8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = _mm_slli_epi32(b, 24); accum0 = _mm_max_epu8(b, accum0); } else { __m128i mask = _mm_set1_epi32(0xff000000); accum0 = _mm_or_si128(accum0, mask); } for (; out_x < end; out_x++) { *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum0); accum0 = _mm_srli_si128(accum0, 4); out_row += 4; } } } void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int begin, int end, unsigned char* out_row, bool has_alpha) { if (has_alpha) { ConvolveVertically_SSE2_impl(filter_values, filter_length, source_data_rows, begin, end, out_row); } else { ConvolveVertically_SSE2_impl(filter_values, filter_length, source_data_rows, begin, end, out_row); } } } // namespace skia