/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Scott Collins (original author of nsCOMPtr) * L. David Baron * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef nsAutoPtr_h___ #define nsAutoPtr_h___ // Wrapping includes can speed up compiles (see "Large Scale C++ Software Design") #ifndef nsCOMPtr_h___ // For |already_AddRefed|, |NSCAP_Zero|, // |NSCAP_DONT_PROVIDE_NONCONST_OPEQ|, // |NSCAP_FEATURE_INLINE_STARTASSIGNMENT| #include "nsCOMPtr.h" #endif /*****************************************************************************/ // template class nsAutoPtrGetterTransfers; template class nsAutoPtr { private: void** begin_assignment() { assign(0); return reinterpret_cast(&mRawPtr); } void assign( T* newPtr ) { NS_ABORT_IF_FALSE(mRawPtr != newPtr || !newPtr, "This makes no sense!"); T* oldPtr = mRawPtr; mRawPtr = newPtr; delete oldPtr; } // |class Ptr| helps us prevent implicit "copy construction" // through |operator T*() const| from a |const nsAutoPtr| // because two implicit conversions in a row aren't allowed. // It still allows assignment from T* through implicit conversion // from |T*| to |nsAutoPtr::Ptr| class Ptr { public: Ptr( T* aPtr ) : mPtr(aPtr) { } operator T*() const { return mPtr; } private: T* mPtr; }; private: T* mRawPtr; public: typedef T element_type; ~nsAutoPtr() { delete mRawPtr; } // Constructors nsAutoPtr() : mRawPtr(0) // default constructor { } nsAutoPtr( Ptr aRawPtr ) : mRawPtr(aRawPtr) // construct from a raw pointer (of the right type) { } nsAutoPtr( nsAutoPtr& aSmartPtr ) : mRawPtr( aSmartPtr.forget() ) // Construct by transferring ownership from another smart pointer. { } // Assignment operators nsAutoPtr& operator=( T* rhs ) // assign from a raw pointer (of the right type) { assign(rhs); return *this; } nsAutoPtr& operator=( nsAutoPtr& rhs ) // assign by transferring ownership from another smart pointer. { assign(rhs.forget()); return *this; } // Other pointer operators T* get() const /* Prefer the implicit conversion provided automatically by |operator T*() const|. Use |get()| _only_ to resolve ambiguity. */ { return mRawPtr; } operator T*() const /* ...makes an |nsAutoPtr| act like its underlying raw pointer type whenever it is used in a context where a raw pointer is expected. It is this operator that makes an |nsAutoPtr| substitutable for a raw pointer. Prefer the implicit use of this operator to calling |get()|, except where necessary to resolve ambiguity. */ { return get(); } T* forget() { T* temp = mRawPtr; mRawPtr = 0; return temp; } T* operator->() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsAutoPtr with operator->()."); return get(); } // This operator is needed for gcc <= 4.0.* and for Sun Studio; it // causes internal compiler errors for some MSVC versions. (It's not // clear to me whether it should be needed.) #ifndef _MSC_VER template U& operator->*(U V::* aMember) { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsAutoPtr with operator->*()."); return get()->*aMember; } #endif nsAutoPtr* get_address() // This is not intended to be used by clients. See |address_of| // below. { return this; } const nsAutoPtr* get_address() const // This is not intended to be used by clients. See |address_of| // below. { return this; } public: T& operator*() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsAutoPtr with operator*()."); return *get(); } T** StartAssignment() { #ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT return reinterpret_cast(begin_assignment()); #else assign(0); return reinterpret_cast(&mRawPtr); #endif } }; template inline nsAutoPtr* address_of( nsAutoPtr& aPtr ) { return aPtr.get_address(); } template inline const nsAutoPtr* address_of( const nsAutoPtr& aPtr ) { return aPtr.get_address(); } template class nsAutoPtrGetterTransfers /* ... This class is designed to be used for anonymous temporary objects in the argument list of calls that return COM interface pointers, e.g., nsAutoPtr fooP; ...->GetTransferedPointer(getter_Transfers(fooP)) DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_Transfers()| instead. When initialized with a |nsAutoPtr|, as in the example above, it returns a |void**|, a |T**|, or an |nsISupports**| as needed, that the outer call (|GetTransferedPointer| in this case) can fill in. This type should be a nested class inside |nsAutoPtr|. */ { public: explicit nsAutoPtrGetterTransfers( nsAutoPtr& aSmartPtr ) : mTargetSmartPtr(aSmartPtr) { // nothing else to do } operator void**() { return reinterpret_cast(mTargetSmartPtr.StartAssignment()); } operator T**() { return mTargetSmartPtr.StartAssignment(); } T*& operator*() { return *(mTargetSmartPtr.StartAssignment()); } private: nsAutoPtr& mTargetSmartPtr; }; template inline nsAutoPtrGetterTransfers getter_Transfers( nsAutoPtr& aSmartPtr ) /* Used around a |nsAutoPtr| when ...makes the class |nsAutoPtrGetterTransfers| invisible. */ { return nsAutoPtrGetterTransfers(aSmartPtr); } // Comparing two |nsAutoPtr|s template inline bool operator==( const nsAutoPtr& lhs, const nsAutoPtr& rhs ) { return static_cast(lhs.get()) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoPtr& lhs, const nsAutoPtr& rhs ) { return static_cast(lhs.get()) != static_cast(rhs.get()); } // Comparing an |nsAutoPtr| to a raw pointer template inline bool operator==( const nsAutoPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) == static_cast(rhs); } template inline bool operator==( const U* lhs, const nsAutoPtr& rhs ) { return static_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) != static_cast(rhs); } template inline bool operator!=( const U* lhs, const nsAutoPtr& rhs ) { return static_cast(lhs) != static_cast(rhs.get()); } // To avoid ambiguities caused by the presence of builtin |operator==|s // creating a situation where one of the |operator==| defined above // has a better conversion for one argument and the builtin has a // better conversion for the other argument, define additional // |operator==| without the |const| on the raw pointer. // See bug 65664 for details. #ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ template inline bool operator==( const nsAutoPtr& lhs, U* rhs ) { return static_cast(lhs.get()) == const_cast(rhs); } template inline bool operator==( U* lhs, const nsAutoPtr& rhs ) { return const_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoPtr& lhs, U* rhs ) { return static_cast(lhs.get()) != const_cast(rhs); } template inline bool operator!=( U* lhs, const nsAutoPtr& rhs ) { return const_cast(lhs) != static_cast(rhs.get()); } #endif // Comparing an |nsAutoPtr| to |0| template inline bool operator==( const nsAutoPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( NSCAP_Zero* lhs, const nsAutoPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr != 0| { return static_cast(lhs.get()) != reinterpret_cast(rhs); } template inline bool operator!=( NSCAP_Zero* lhs, const nsAutoPtr& rhs ) // specifically to allow |0 != smartPtr| { return reinterpret_cast(lhs) != static_cast(rhs.get()); } #ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO // We need to explicitly define comparison operators for `int' // because the compiler is lame. template inline bool operator==( const nsAutoPtr& lhs, int rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( int lhs, const nsAutoPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } #endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO) /*****************************************************************************/ // template class nsAutoArrayPtrGetterTransfers; template class nsAutoArrayPtr { private: void** begin_assignment() { assign(0); return reinterpret_cast(&mRawPtr); } void assign( T* newPtr ) { T* oldPtr = mRawPtr; mRawPtr = newPtr; delete [] oldPtr; } private: T* mRawPtr; public: typedef T element_type; ~nsAutoArrayPtr() { delete [] mRawPtr; } // Constructors nsAutoArrayPtr() : mRawPtr(0) // default constructor { } nsAutoArrayPtr( T* aRawPtr ) : mRawPtr(aRawPtr) // construct from a raw pointer (of the right type) { } nsAutoArrayPtr( nsAutoArrayPtr& aSmartPtr ) : mRawPtr( aSmartPtr.forget() ) // Construct by transferring ownership from another smart pointer. { } // Assignment operators nsAutoArrayPtr& operator=( T* rhs ) // assign from a raw pointer (of the right type) { assign(rhs); return *this; } nsAutoArrayPtr& operator=( nsAutoArrayPtr& rhs ) // assign by transferring ownership from another smart pointer. { assign(rhs.forget()); return *this; } // Other pointer operators T* get() const /* Prefer the implicit conversion provided automatically by |operator T*() const|. Use |get()| _only_ to resolve ambiguity. */ { return mRawPtr; } operator T*() const /* ...makes an |nsAutoArrayPtr| act like its underlying raw pointer type whenever it is used in a context where a raw pointer is expected. It is this operator that makes an |nsAutoArrayPtr| substitutable for a raw pointer. Prefer the implicit use of this operator to calling |get()|, except where necessary to resolve ambiguity. */ { return get(); } T* forget() { T* temp = mRawPtr; mRawPtr = 0; return temp; } T* operator->() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsAutoArrayPtr with operator->()."); return get(); } nsAutoArrayPtr* get_address() // This is not intended to be used by clients. See |address_of| // below. { return this; } const nsAutoArrayPtr* get_address() const // This is not intended to be used by clients. See |address_of| // below. { return this; } public: T& operator*() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsAutoArrayPtr with operator*()."); return *get(); } T** StartAssignment() { #ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT return reinterpret_cast(begin_assignment()); #else assign(0); return reinterpret_cast(&mRawPtr); #endif } }; template inline nsAutoArrayPtr* address_of( nsAutoArrayPtr& aPtr ) { return aPtr.get_address(); } template inline const nsAutoArrayPtr* address_of( const nsAutoArrayPtr& aPtr ) { return aPtr.get_address(); } template class nsAutoArrayPtrGetterTransfers /* ... This class is designed to be used for anonymous temporary objects in the argument list of calls that return COM interface pointers, e.g., nsAutoArrayPtr fooP; ...->GetTransferedPointer(getter_Transfers(fooP)) DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_Transfers()| instead. When initialized with a |nsAutoArrayPtr|, as in the example above, it returns a |void**|, a |T**|, or an |nsISupports**| as needed, that the outer call (|GetTransferedPointer| in this case) can fill in. This type should be a nested class inside |nsAutoArrayPtr|. */ { public: explicit nsAutoArrayPtrGetterTransfers( nsAutoArrayPtr& aSmartPtr ) : mTargetSmartPtr(aSmartPtr) { // nothing else to do } operator void**() { return reinterpret_cast(mTargetSmartPtr.StartAssignment()); } operator T**() { return mTargetSmartPtr.StartAssignment(); } T*& operator*() { return *(mTargetSmartPtr.StartAssignment()); } private: nsAutoArrayPtr& mTargetSmartPtr; }; template inline nsAutoArrayPtrGetterTransfers getter_Transfers( nsAutoArrayPtr& aSmartPtr ) /* Used around a |nsAutoArrayPtr| when ...makes the class |nsAutoArrayPtrGetterTransfers| invisible. */ { return nsAutoArrayPtrGetterTransfers(aSmartPtr); } // Comparing two |nsAutoArrayPtr|s template inline bool operator==( const nsAutoArrayPtr& lhs, const nsAutoArrayPtr& rhs ) { return static_cast(lhs.get()) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoArrayPtr& lhs, const nsAutoArrayPtr& rhs ) { return static_cast(lhs.get()) != static_cast(rhs.get()); } // Comparing an |nsAutoArrayPtr| to a raw pointer template inline bool operator==( const nsAutoArrayPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) == static_cast(rhs); } template inline bool operator==( const U* lhs, const nsAutoArrayPtr& rhs ) { return static_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoArrayPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) != static_cast(rhs); } template inline bool operator!=( const U* lhs, const nsAutoArrayPtr& rhs ) { return static_cast(lhs) != static_cast(rhs.get()); } // To avoid ambiguities caused by the presence of builtin |operator==|s // creating a situation where one of the |operator==| defined above // has a better conversion for one argument and the builtin has a // better conversion for the other argument, define additional // |operator==| without the |const| on the raw pointer. // See bug 65664 for details. #ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ template inline bool operator==( const nsAutoArrayPtr& lhs, U* rhs ) { return static_cast(lhs.get()) == const_cast(rhs); } template inline bool operator==( U* lhs, const nsAutoArrayPtr& rhs ) { return const_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoArrayPtr& lhs, U* rhs ) { return static_cast(lhs.get()) != const_cast(rhs); } template inline bool operator!=( U* lhs, const nsAutoArrayPtr& rhs ) { return const_cast(lhs) != static_cast(rhs.get()); } #endif // Comparing an |nsAutoArrayPtr| to |0| template inline bool operator==( const nsAutoArrayPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( NSCAP_Zero* lhs, const nsAutoArrayPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsAutoArrayPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr != 0| { return static_cast(lhs.get()) != reinterpret_cast(rhs); } template inline bool operator!=( NSCAP_Zero* lhs, const nsAutoArrayPtr& rhs ) // specifically to allow |0 != smartPtr| { return reinterpret_cast(lhs) != static_cast(rhs.get()); } #ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO // We need to explicitly define comparison operators for `int' // because the compiler is lame. template inline bool operator==( const nsAutoArrayPtr& lhs, int rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( int lhs, const nsAutoArrayPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } #endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO) /*****************************************************************************/ // template class nsRefPtrGetterAddRefs; template class nsRefPtr { private: void assign_with_AddRef( T* rawPtr ) { if ( rawPtr ) rawPtr->AddRef(); assign_assuming_AddRef(rawPtr); } void** begin_assignment() { assign_assuming_AddRef(0); return reinterpret_cast(&mRawPtr); } void assign_assuming_AddRef( T* newPtr ) { T* oldPtr = mRawPtr; mRawPtr = newPtr; if ( oldPtr ) oldPtr->Release(); } private: T* mRawPtr; public: typedef T element_type; ~nsRefPtr() { if ( mRawPtr ) mRawPtr->Release(); } // Constructors nsRefPtr() : mRawPtr(0) // default constructor { } nsRefPtr( const nsRefPtr& aSmartPtr ) : mRawPtr(aSmartPtr.mRawPtr) // copy-constructor { if ( mRawPtr ) mRawPtr->AddRef(); } nsRefPtr( T* aRawPtr ) : mRawPtr(aRawPtr) // construct from a raw pointer (of the right type) { if ( mRawPtr ) mRawPtr->AddRef(); } template nsRefPtr( const already_AddRefed& aSmartPtr ) : mRawPtr(aSmartPtr.mRawPtr) // construct from |dont_AddRef(expr)| { } nsRefPtr( const nsCOMPtr_helper& helper ) { void* newRawPtr; if (NS_FAILED(helper(NS_GET_TEMPLATE_IID(T), &newRawPtr))) newRawPtr = 0; mRawPtr = static_cast(newRawPtr); } // Assignment operators nsRefPtr& operator=( const nsRefPtr& rhs ) // copy assignment operator { assign_with_AddRef(rhs.mRawPtr); return *this; } nsRefPtr& operator=( T* rhs ) // assign from a raw pointer (of the right type) { assign_with_AddRef(rhs); return *this; } template nsRefPtr& operator=( const already_AddRefed& rhs ) // assign from |dont_AddRef(expr)| { assign_assuming_AddRef(rhs.mRawPtr); return *this; } nsRefPtr& operator=( const nsCOMPtr_helper& helper ) { void* newRawPtr; if (NS_FAILED(helper(NS_GET_TEMPLATE_IID(T), &newRawPtr))) newRawPtr = 0; assign_assuming_AddRef(static_cast(newRawPtr)); return *this; } // Other pointer operators void swap( nsRefPtr& rhs ) // ...exchange ownership with |rhs|; can save a pair of refcount operations { T* temp = rhs.mRawPtr; rhs.mRawPtr = mRawPtr; mRawPtr = temp; } void swap( T*& rhs ) // ...exchange ownership with |rhs|; can save a pair of refcount operations { T* temp = rhs; rhs = mRawPtr; mRawPtr = temp; } already_AddRefed forget() // return the value of mRawPtr and null out mRawPtr. Useful for // already_AddRefed return values. { T* temp = 0; swap(temp); return temp; } template void forget( I** rhs) // Set the target of rhs to the value of mRawPtr and null out mRawPtr. // Useful to avoid unnecessary AddRef/Release pairs with "out" // parameters where rhs bay be a T** or an I** where I is a base class // of T. { NS_ASSERTION(rhs, "Null pointer passed to forget!"); *rhs = mRawPtr; mRawPtr = 0; } T* get() const /* Prefer the implicit conversion provided automatically by |operator T*() const|. Use |get()| to resolve ambiguity or to get a castable pointer. */ { return const_cast(mRawPtr); } operator T*() const /* ...makes an |nsRefPtr| act like its underlying raw pointer type whenever it is used in a context where a raw pointer is expected. It is this operator that makes an |nsRefPtr| substitutable for a raw pointer. Prefer the implicit use of this operator to calling |get()|, except where necessary to resolve ambiguity. */ { return get(); } T* operator->() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsRefPtr with operator->()."); return get(); } // This operator is needed for gcc <= 4.0.* and for Sun Studio; it // causes internal compiler errors for some MSVC versions. (It's not // clear to me whether it should be needed.) #ifndef _MSC_VER template U& operator->*(U V::* aMember) { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsRefPtr with operator->*()."); return get()->*aMember; } #endif nsRefPtr* get_address() // This is not intended to be used by clients. See |address_of| // below. { return this; } const nsRefPtr* get_address() const // This is not intended to be used by clients. See |address_of| // below. { return this; } public: T& operator*() const { NS_PRECONDITION(mRawPtr != 0, "You can't dereference a NULL nsRefPtr with operator*()."); return *get(); } T** StartAssignment() { #ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT return reinterpret_cast(begin_assignment()); #else assign_assuming_AddRef(0); return reinterpret_cast(&mRawPtr); #endif } }; template inline nsRefPtr* address_of( nsRefPtr& aPtr ) { return aPtr.get_address(); } template inline const nsRefPtr* address_of( const nsRefPtr& aPtr ) { return aPtr.get_address(); } template class nsRefPtrGetterAddRefs /* ... This class is designed to be used for anonymous temporary objects in the argument list of calls that return COM interface pointers, e.g., nsRefPtr fooP; ...->GetAddRefedPointer(getter_AddRefs(fooP)) DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_AddRefs()| instead. When initialized with a |nsRefPtr|, as in the example above, it returns a |void**|, a |T**|, or an |nsISupports**| as needed, that the outer call (|GetAddRefedPointer| in this case) can fill in. This type should be a nested class inside |nsRefPtr|. */ { public: explicit nsRefPtrGetterAddRefs( nsRefPtr& aSmartPtr ) : mTargetSmartPtr(aSmartPtr) { // nothing else to do } operator void**() { return reinterpret_cast(mTargetSmartPtr.StartAssignment()); } operator T**() { return mTargetSmartPtr.StartAssignment(); } T*& operator*() { return *(mTargetSmartPtr.StartAssignment()); } private: nsRefPtr& mTargetSmartPtr; }; template inline nsRefPtrGetterAddRefs getter_AddRefs( nsRefPtr& aSmartPtr ) /* Used around a |nsRefPtr| when ...makes the class |nsRefPtrGetterAddRefs| invisible. */ { return nsRefPtrGetterAddRefs(aSmartPtr); } // Comparing two |nsRefPtr|s template inline bool operator==( const nsRefPtr& lhs, const nsRefPtr& rhs ) { return static_cast(lhs.get()) == static_cast(rhs.get()); } template inline bool operator!=( const nsRefPtr& lhs, const nsRefPtr& rhs ) { return static_cast(lhs.get()) != static_cast(rhs.get()); } // Comparing an |nsRefPtr| to a raw pointer template inline bool operator==( const nsRefPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) == static_cast(rhs); } template inline bool operator==( const U* lhs, const nsRefPtr& rhs ) { return static_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsRefPtr& lhs, const U* rhs ) { return static_cast(lhs.get()) != static_cast(rhs); } template inline bool operator!=( const U* lhs, const nsRefPtr& rhs ) { return static_cast(lhs) != static_cast(rhs.get()); } // To avoid ambiguities caused by the presence of builtin |operator==|s // creating a situation where one of the |operator==| defined above // has a better conversion for one argument and the builtin has a // better conversion for the other argument, define additional // |operator==| without the |const| on the raw pointer. // See bug 65664 for details. #ifndef NSCAP_DONT_PROVIDE_NONCONST_OPEQ template inline bool operator==( const nsRefPtr& lhs, U* rhs ) { return static_cast(lhs.get()) == const_cast(rhs); } template inline bool operator==( U* lhs, const nsRefPtr& rhs ) { return const_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsRefPtr& lhs, U* rhs ) { return static_cast(lhs.get()) != const_cast(rhs); } template inline bool operator!=( U* lhs, const nsRefPtr& rhs ) { return const_cast(lhs) != static_cast(rhs.get()); } #endif // Comparing an |nsRefPtr| to |0| template inline bool operator==( const nsRefPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( NSCAP_Zero* lhs, const nsRefPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } template inline bool operator!=( const nsRefPtr& lhs, NSCAP_Zero* rhs ) // specifically to allow |smartPtr != 0| { return static_cast(lhs.get()) != reinterpret_cast(rhs); } template inline bool operator!=( NSCAP_Zero* lhs, const nsRefPtr& rhs ) // specifically to allow |0 != smartPtr| { return reinterpret_cast(lhs) != static_cast(rhs.get()); } #ifdef HAVE_CPP_TROUBLE_COMPARING_TO_ZERO // We need to explicitly define comparison operators for `int' // because the compiler is lame. template inline bool operator==( const nsRefPtr& lhs, int rhs ) // specifically to allow |smartPtr == 0| { return static_cast(lhs.get()) == reinterpret_cast(rhs); } template inline bool operator==( int lhs, const nsRefPtr& rhs ) // specifically to allow |0 == smartPtr| { return reinterpret_cast(lhs) == static_cast(rhs.get()); } #endif // !defined(HAVE_CPP_TROUBLE_COMPARING_TO_ZERO) template inline nsresult CallQueryInterface( nsRefPtr& aSourcePtr, DestinationType** aDestPtr ) { return CallQueryInterface(aSourcePtr.get(), aDestPtr); } /*****************************************************************************/ template class nsQueryObject : public nsCOMPtr_helper { public: nsQueryObject(T* aRawPtr) : mRawPtr(aRawPtr) {} virtual nsresult NS_FASTCALL operator()( const nsIID& aIID, void** aResult ) const { nsresult status = mRawPtr ? mRawPtr->QueryInterface(aIID, aResult) : NS_ERROR_NULL_POINTER; return status; } private: T* mRawPtr; }; template class nsQueryObjectWithError : public nsCOMPtr_helper { public: nsQueryObjectWithError(T* aRawPtr, nsresult* aErrorPtr) : mRawPtr(aRawPtr), mErrorPtr(aErrorPtr) {} virtual nsresult NS_FASTCALL operator()( const nsIID& aIID, void** aResult ) const { nsresult status = mRawPtr ? mRawPtr->QueryInterface(aIID, aResult) : NS_ERROR_NULL_POINTER; if (mErrorPtr) *mErrorPtr = status; return status; } private: T* mRawPtr; nsresult* mErrorPtr; }; template inline nsQueryObject do_QueryObject(T* aRawPtr) { return nsQueryObject(aRawPtr); } template inline nsQueryObject do_QueryObject(nsCOMPtr& aRawPtr) { return nsQueryObject(aRawPtr); } template inline nsQueryObject do_QueryObject(nsRefPtr& aRawPtr) { return nsQueryObject(aRawPtr); } template inline nsQueryObjectWithError do_QueryObject(T* aRawPtr, nsresult* aErrorPtr) { return nsQueryObjectWithError(aRawPtr, aErrorPtr); } template inline nsQueryObjectWithError do_QueryObject(nsCOMPtr& aRawPtr, nsresult* aErrorPtr) { return nsQueryObjectWithError(aRawPtr, aErrorPtr); } template inline nsQueryObjectWithError do_QueryObject(nsRefPtr& aRawPtr, nsresult* aErrorPtr) { return nsQueryObjectWithError(aRawPtr, aErrorPtr); } /*****************************************************************************/ #endif // !defined(nsAutoPtr_h___)