/* * Copyright (C) 2011 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "DynamicsCompressor.h" #include "AudioSegment.h" #include #include "AudioNodeEngine.h" #include "nsDebug.h" using mozilla::WEBAUDIO_BLOCK_SIZE; using mozilla::AudioBlockCopyChannelWithScale; namespace WebCore { DynamicsCompressor::DynamicsCompressor(float sampleRate, unsigned numberOfChannels) : m_numberOfChannels(numberOfChannels) , m_sampleRate(sampleRate) , m_compressor(sampleRate, numberOfChannels) { // Uninitialized state - for parameter recalculation. m_lastFilterStageRatio = -1; m_lastAnchor = -1; m_lastFilterStageGain = -1; setNumberOfChannels(numberOfChannels); initializeParameters(); } size_t DynamicsCompressor::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { size_t amount = aMallocSizeOf(this); amount += m_preFilterPacks.SizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < m_preFilterPacks.Length(); i++) { if (m_preFilterPacks[i]) { amount += m_preFilterPacks[i]->sizeOfIncludingThis(aMallocSizeOf); } } amount += m_postFilterPacks.SizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < m_postFilterPacks.Length(); i++) { if (m_postFilterPacks[i]) { amount += m_postFilterPacks[i]->sizeOfIncludingThis(aMallocSizeOf); } } amount += m_sourceChannels.SizeOfExcludingThis(aMallocSizeOf); amount += m_destinationChannels.SizeOfExcludingThis(aMallocSizeOf); amount += m_compressor.sizeOfExcludingThis(aMallocSizeOf); return amount; } void DynamicsCompressor::setParameterValue(unsigned parameterID, float value) { MOZ_ASSERT(parameterID < ParamLast); if (parameterID < ParamLast) m_parameters[parameterID] = value; } void DynamicsCompressor::initializeParameters() { // Initializes compressor to default values. m_parameters[ParamThreshold] = -24; // dB m_parameters[ParamKnee] = 30; // dB m_parameters[ParamRatio] = 12; // unit-less m_parameters[ParamAttack] = 0.003f; // seconds m_parameters[ParamRelease] = 0.250f; // seconds m_parameters[ParamPreDelay] = 0.006f; // seconds // Release zone values 0 -> 1. m_parameters[ParamReleaseZone1] = 0.09f; m_parameters[ParamReleaseZone2] = 0.16f; m_parameters[ParamReleaseZone3] = 0.42f; m_parameters[ParamReleaseZone4] = 0.98f; m_parameters[ParamFilterStageGain] = 4.4f; // dB m_parameters[ParamFilterStageRatio] = 2; m_parameters[ParamFilterAnchor] = 15000 / nyquist(); m_parameters[ParamPostGain] = 0; // dB m_parameters[ParamReduction] = 0; // dB // Linear crossfade (0 -> 1). m_parameters[ParamEffectBlend] = 1; } float DynamicsCompressor::parameterValue(unsigned parameterID) { MOZ_ASSERT(parameterID < ParamLast); return m_parameters[parameterID]; } void DynamicsCompressor::setEmphasisStageParameters(unsigned stageIndex, float gain, float normalizedFrequency /* 0 -> 1 */) { float gk = 1 - gain / 20; float f1 = normalizedFrequency * gk; float f2 = normalizedFrequency / gk; float r1 = expf(-f1 * M_PI); float r2 = expf(-f2 * M_PI); MOZ_ASSERT(m_numberOfChannels == m_preFilterPacks.Length()); for (unsigned i = 0; i < m_numberOfChannels; ++i) { // Set pre-filter zero and pole to create an emphasis filter. ZeroPole& preFilter = m_preFilterPacks[i]->filters[stageIndex]; preFilter.setZero(r1); preFilter.setPole(r2); // Set post-filter with zero and pole reversed to create the de-emphasis filter. // If there were no compressor kernel in between, they would cancel each other out (allpass filter). ZeroPole& postFilter = m_postFilterPacks[i]->filters[stageIndex]; postFilter.setZero(r2); postFilter.setPole(r1); } } void DynamicsCompressor::setEmphasisParameters(float gain, float anchorFreq, float filterStageRatio) { setEmphasisStageParameters(0, gain, anchorFreq); setEmphasisStageParameters(1, gain, anchorFreq / filterStageRatio); setEmphasisStageParameters(2, gain, anchorFreq / (filterStageRatio * filterStageRatio)); setEmphasisStageParameters(3, gain, anchorFreq / (filterStageRatio * filterStageRatio * filterStageRatio)); } void DynamicsCompressor::process(const AudioChunk* sourceChunk, AudioChunk* destinationChunk, unsigned framesToProcess) { // Though numberOfChannels is retrived from destinationBus, we still name it numberOfChannels instead of numberOfDestinationChannels. // It's because we internally match sourceChannels's size to destinationBus by channel up/down mix. Thus we need numberOfChannels // to do the loop work for both m_sourceChannels and m_destinationChannels. unsigned numberOfChannels = destinationChunk->mChannelData.Length(); unsigned numberOfSourceChannels = sourceChunk->mChannelData.Length(); MOZ_ASSERT(numberOfChannels == m_numberOfChannels && numberOfSourceChannels); if (numberOfChannels != m_numberOfChannels || !numberOfSourceChannels) { destinationChunk->SetNull(WEBAUDIO_BLOCK_SIZE); return; } switch (numberOfChannels) { case 2: // stereo m_sourceChannels[0] = static_cast(sourceChunk->mChannelData[0]); if (numberOfSourceChannels > 1) m_sourceChannels[1] = static_cast(sourceChunk->mChannelData[1]); else // Simply duplicate mono channel input data to right channel for stereo processing. m_sourceChannels[1] = m_sourceChannels[0]; break; default: // FIXME : support other number of channels. NS_WARNING("Support other number of channels"); destinationChunk->SetNull(WEBAUDIO_BLOCK_SIZE); return; } for (unsigned i = 0; i < numberOfChannels; ++i) m_destinationChannels[i] = const_cast(static_cast( destinationChunk->mChannelData[i])); float filterStageGain = parameterValue(ParamFilterStageGain); float filterStageRatio = parameterValue(ParamFilterStageRatio); float anchor = parameterValue(ParamFilterAnchor); if (filterStageGain != m_lastFilterStageGain || filterStageRatio != m_lastFilterStageRatio || anchor != m_lastAnchor) { m_lastFilterStageGain = filterStageGain; m_lastFilterStageRatio = filterStageRatio; m_lastAnchor = anchor; setEmphasisParameters(filterStageGain, anchor, filterStageRatio); } float sourceWithVolume[WEBAUDIO_BLOCK_SIZE]; // Apply pre-emphasis filter. // Note that the final three stages are computed in-place in the destination buffer. for (unsigned i = 0; i < numberOfChannels; ++i) { const float* sourceData; if (sourceChunk->mVolume == 1.0f) { // Fast path, the volume scale doesn't need to get taken into account sourceData = m_sourceChannels[i]; } else { AudioBlockCopyChannelWithScale(m_sourceChannels[i], sourceChunk->mVolume, sourceWithVolume); sourceData = sourceWithVolume; } float* destinationData = m_destinationChannels[i]; ZeroPole* preFilters = m_preFilterPacks[i]->filters; preFilters[0].process(sourceData, destinationData, framesToProcess); preFilters[1].process(destinationData, destinationData, framesToProcess); preFilters[2].process(destinationData, destinationData, framesToProcess); preFilters[3].process(destinationData, destinationData, framesToProcess); } float dbThreshold = parameterValue(ParamThreshold); float dbKnee = parameterValue(ParamKnee); float ratio = parameterValue(ParamRatio); float attackTime = parameterValue(ParamAttack); float releaseTime = parameterValue(ParamRelease); float preDelayTime = parameterValue(ParamPreDelay); // This is effectively a master volume on the compressed signal (pre-blending). float dbPostGain = parameterValue(ParamPostGain); // Linear blending value from dry to completely processed (0 -> 1) // 0 means the signal is completely unprocessed. // 1 mixes in only the compressed signal. float effectBlend = parameterValue(ParamEffectBlend); float releaseZone1 = parameterValue(ParamReleaseZone1); float releaseZone2 = parameterValue(ParamReleaseZone2); float releaseZone3 = parameterValue(ParamReleaseZone3); float releaseZone4 = parameterValue(ParamReleaseZone4); // Apply compression to the pre-filtered signal. // The processing is performed in place. m_compressor.process(m_destinationChannels.get(), m_destinationChannels.get(), numberOfChannels, framesToProcess, dbThreshold, dbKnee, ratio, attackTime, releaseTime, preDelayTime, dbPostGain, effectBlend, releaseZone1, releaseZone2, releaseZone3, releaseZone4 ); // Update the compression amount. setParameterValue(ParamReduction, m_compressor.meteringGain()); // Apply de-emphasis filter. for (unsigned i = 0; i < numberOfChannels; ++i) { float* destinationData = m_destinationChannels[i]; ZeroPole* postFilters = m_postFilterPacks[i]->filters; postFilters[0].process(destinationData, destinationData, framesToProcess); postFilters[1].process(destinationData, destinationData, framesToProcess); postFilters[2].process(destinationData, destinationData, framesToProcess); postFilters[3].process(destinationData, destinationData, framesToProcess); } } void DynamicsCompressor::reset() { m_lastFilterStageRatio = -1; // for recalc m_lastAnchor = -1; m_lastFilterStageGain = -1; for (unsigned channel = 0; channel < m_numberOfChannels; ++channel) { for (unsigned stageIndex = 0; stageIndex < 4; ++stageIndex) { m_preFilterPacks[channel]->filters[stageIndex].reset(); m_postFilterPacks[channel]->filters[stageIndex].reset(); } } m_compressor.reset(); } void DynamicsCompressor::setNumberOfChannels(unsigned numberOfChannels) { if (m_preFilterPacks.Length() == numberOfChannels) return; m_preFilterPacks.Clear(); m_postFilterPacks.Clear(); for (unsigned i = 0; i < numberOfChannels; ++i) { m_preFilterPacks.AppendElement(new ZeroPoleFilterPack4()); m_postFilterPacks.AppendElement(new ZeroPoleFilterPack4()); } m_sourceChannels = new const float* [numberOfChannels]; m_destinationChannels = new float* [numberOfChannels]; m_compressor.setNumberOfChannels(numberOfChannels); m_numberOfChannels = numberOfChannels; } } // namespace WebCore