/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_RootingAPI_h #define js_RootingAPI_h #include "mozilla/Attributes.h" #include "mozilla/GuardObjects.h" #include "mozilla/LinkedList.h" #include "mozilla/NullPtr.h" #include "mozilla/TypeTraits.h" #include "jspubtd.h" #include "js/TypeDecls.h" #include "js/Utility.h" /* * Moving GC Stack Rooting * * A moving GC may change the physical location of GC allocated things, even * when they are rooted, updating all pointers to the thing to refer to its new * location. The GC must therefore know about all live pointers to a thing, * not just one of them, in order to behave correctly. * * The |Rooted| and |Handle| classes below are used to root stack locations * whose value may be held live across a call that can trigger GC. For a * code fragment such as: * * JSObject *obj = NewObject(cx); * DoSomething(cx); * ... = obj->lastProperty(); * * If |DoSomething()| can trigger a GC, the stack location of |obj| must be * rooted to ensure that the GC does not move the JSObject referred to by * |obj| without updating |obj|'s location itself. This rooting must happen * regardless of whether there are other roots which ensure that the object * itself will not be collected. * * If |DoSomething()| cannot trigger a GC, and the same holds for all other * calls made between |obj|'s definitions and its last uses, then no rooting * is required. * * SpiderMonkey can trigger a GC at almost any time and in ways that are not * always clear. For example, the following innocuous-looking actions can * cause a GC: allocation of any new GC thing; JSObject::hasProperty; * JS_ReportError and friends; and ToNumber, among many others. The following * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_, * rt->malloc_, and friends and JS_ReportOutOfMemory. * * The following family of three classes will exactly root a stack location. * Incorrect usage of these classes will result in a compile error in almost * all cases. Therefore, it is very hard to be incorrectly rooted if you use * these classes exclusively. These classes are all templated on the type T of * the value being rooted. * * - Rooted declares a variable of type T, whose value is always rooted. * Rooted may be automatically coerced to a Handle, below. Rooted * should be used whenever a local variable's value may be held live across a * call which can trigger a GC. * * - Handle is a const reference to a Rooted. Functions which take GC * things or values as arguments and need to root those arguments should * generally use handles for those arguments and avoid any explicit rooting. * This has two benefits. First, when several such functions call each other * then redundant rooting of multiple copies of the GC thing can be avoided. * Second, if the caller does not pass a rooted value a compile error will be * generated, which is quicker and easier to fix than when relying on a * separate rooting analysis. * * - MutableHandle is a non-const reference to Rooted. It is used in the * same way as Handle and includes a |set(const T &v)| method to allow * updating the value of the referenced Rooted. A MutableHandle can be * created from a Rooted by using |Rooted::operator&()|. * * In some cases the small performance overhead of exact rooting (measured to * be a few nanoseconds on desktop) is too much. In these cases, try the * following: * * - Move all Rooted above inner loops: this allows you to re-use the root * on each iteration of the loop. * * - Pass Handle through your hot call stack to avoid re-rooting costs at * every invocation. * * The following diagram explains the list of supported, implicit type * conversions between classes of this family: * * Rooted ----> Handle * | ^ * | | * | | * +---> MutableHandle * (via &) * * All of these types have an implicit conversion to raw pointers. */ namespace js { class ScriptSourceObject; template struct GCMethods {}; template class RootedBase {}; template class HandleBase {}; template class MutableHandleBase {}; template class HeapBase {}; /* * js::NullPtr acts like a nullptr pointer in contexts that require a Handle. * * Handle provides an implicit constructor for js::NullPtr so that, given: * foo(Handle h); * callers can simply write: * foo(js::NullPtr()); * which avoids creating a Rooted just to pass nullptr. * * This is the SpiderMonkey internal variant. js::NullPtr should be used in * preference to JS::NullPtr to avoid the GOT access required for JS_PUBLIC_API * symbols. */ struct NullPtr { static void * const constNullValue; }; namespace gc { struct Cell; template struct PersistentRootedMarker; } /* namespace gc */ } /* namespace js */ namespace JS { template class Rooted; template class PersistentRooted; /* This is exposing internal state of the GC for inlining purposes. */ JS_FRIEND_API(bool) isGCEnabled(); #if defined(JS_DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) extern void CheckStackRoots(JSContext *cx); #endif /* * JS::NullPtr acts like a nullptr pointer in contexts that require a Handle. * * Handle provides an implicit constructor for JS::NullPtr so that, given: * foo(Handle h); * callers can simply write: * foo(JS::NullPtr()); * which avoids creating a Rooted just to pass nullptr. */ struct JS_PUBLIC_API(NullPtr) { static void * const constNullValue; }; /* * The Heap class is a heap-stored reference to a JS GC thing. All members of * heap classes that refer to GC things should use Heap (or possibly * TenuredHeap, described below). * * Heap is an abstraction that hides some of the complexity required to * maintain GC invariants for the contained reference. It uses operator * overloading to provide a normal pointer interface, but notifies the GC every * time the value it contains is updated. This is necessary for generational GC, * which keeps track of all pointers into the nursery. * * Heap instances must be traced when their containing object is traced to * keep the pointed-to GC thing alive. * * Heap objects should only be used on the heap. GC references stored on the * C/C++ stack must use Rooted/Handle/MutableHandle instead. * * Type T must be one of: JS::Value, jsid, JSObject*, JSString*, JSScript* */ template class Heap : public js::HeapBase { public: Heap() { static_assert(sizeof(T) == sizeof(Heap), "Heap must be binary compatible with T."); init(js::GCMethods::initial()); } explicit Heap(T p) { init(p); } /* * For Heap, move semantics are equivalent to copy semantics. In C++, a * copy constructor taking const-ref is the way to get a single function * that will be used for both lvalue and rvalue copies, so we can simply * omit the rvalue variant. */ explicit Heap(const Heap &p) { init(p.ptr); } ~Heap() { if (js::GCMethods::needsPostBarrier(ptr)) relocate(); } bool operator==(const Heap &other) { return ptr == other.ptr; } bool operator!=(const Heap &other) { return ptr != other.ptr; } bool operator==(const T &other) const { return ptr == other; } bool operator!=(const T &other) const { return ptr != other; } operator T() const { return ptr; } T operator->() const { return ptr; } const T *address() const { return &ptr; } const T &get() const { return ptr; } T *unsafeGet() { return &ptr; } Heap &operator=(T p) { set(p); return *this; } Heap &operator=(const Heap& other) { set(other.get()); return *this; } void set(T newPtr) { MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); if (js::GCMethods::needsPostBarrier(newPtr)) { ptr = newPtr; post(); } else if (js::GCMethods::needsPostBarrier(ptr)) { relocate(); /* Called before overwriting ptr. */ ptr = newPtr; } else { ptr = newPtr; } } private: void init(T newPtr) { MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); ptr = newPtr; if (js::GCMethods::needsPostBarrier(ptr)) post(); } void post() { #ifdef JSGC_GENERATIONAL MOZ_ASSERT(js::GCMethods::needsPostBarrier(ptr)); js::GCMethods::postBarrier(&ptr); #endif } void relocate() { #ifdef JSGC_GENERATIONAL js::GCMethods::relocate(&ptr); #endif } T ptr; }; #ifdef JS_DEBUG /* * For generational GC, assert that an object is in the tenured generation as * opposed to being in the nursery. */ extern JS_FRIEND_API(void) AssertGCThingMustBeTenured(JSObject* obj); #else inline void AssertGCThingMustBeTenured(JSObject *obj) {} #endif /* * The TenuredHeap class is similar to the Heap class above in that it * encapsulates the GC concerns of an on-heap reference to a JS object. However, * it has two important differences: * * 1) Pointers which are statically known to only reference "tenured" objects * can avoid the extra overhead of SpiderMonkey's write barriers. * * 2) Objects in the "tenured" heap have stronger alignment restrictions than * those in the "nursery", so it is possible to store flags in the lower * bits of pointers known to be tenured. TenuredHeap wraps a normal tagged * pointer with a nice API for accessing the flag bits and adds various * assertions to ensure that it is not mis-used. * * GC things are said to be "tenured" when they are located in the long-lived * heap: e.g. they have gained tenure as an object by surviving past at least * one GC. For performance, SpiderMonkey allocates some things which are known * to normally be long lived directly into the tenured generation; for example, * global objects. Additionally, SpiderMonkey does not visit individual objects * when deleting non-tenured objects, so object with finalizers are also always * tenured; for instance, this includes most DOM objects. * * The considerations to keep in mind when using a TenuredHeap vs a normal * Heap are: * * - It is invalid for a TenuredHeap to refer to a non-tenured thing. * - It is however valid for a Heap to refer to a tenured thing. * - It is not possible to store flag bits in a Heap. */ template class TenuredHeap : public js::HeapBase { public: TenuredHeap() : bits(0) { static_assert(sizeof(T) == sizeof(TenuredHeap), "TenuredHeap must be binary compatible with T."); } explicit TenuredHeap(T p) : bits(0) { setPtr(p); } explicit TenuredHeap(const TenuredHeap &p) : bits(0) { setPtr(p.ptr); } bool operator==(const TenuredHeap &other) { return bits == other.bits; } bool operator!=(const TenuredHeap &other) { return bits != other.bits; } void setPtr(T newPtr) { MOZ_ASSERT((reinterpret_cast(newPtr) & flagsMask) == 0); MOZ_ASSERT(!js::GCMethods::poisoned(newPtr)); if (newPtr) AssertGCThingMustBeTenured(newPtr); bits = (bits & flagsMask) | reinterpret_cast(newPtr); } void setFlags(uintptr_t flagsToSet) { MOZ_ASSERT((flagsToSet & ~flagsMask) == 0); bits |= flagsToSet; } void unsetFlags(uintptr_t flagsToUnset) { MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0); bits &= ~flagsToUnset; } bool hasFlag(uintptr_t flag) const { MOZ_ASSERT((flag & ~flagsMask) == 0); return (bits & flag) != 0; } T getPtr() const { return reinterpret_cast(bits & ~flagsMask); } uintptr_t getFlags() const { return bits & flagsMask; } operator T() const { return getPtr(); } T operator->() const { return getPtr(); } TenuredHeap &operator=(T p) { setPtr(p); return *this; } TenuredHeap &operator=(const TenuredHeap& other) { bits = other.bits; return *this; } /* * Set the pointer to a value which will cause a crash if it is * dereferenced. */ void setToCrashOnTouch() { bits = (bits & flagsMask) | crashOnTouchPointer; } bool isSetToCrashOnTouch() { return (bits & ~flagsMask) == crashOnTouchPointer; } private: enum { maskBits = 3, flagsMask = (1 << maskBits) - 1, crashOnTouchPointer = 1 << maskBits }; uintptr_t bits; }; /* * Reference to a T that has been rooted elsewhere. This is most useful * as a parameter type, which guarantees that the T lvalue is properly * rooted. See "Move GC Stack Rooting" above. * * If you want to add additional methods to Handle for a specific * specialization, define a HandleBase specialization containing them. */ template class MOZ_NONHEAP_CLASS Handle : public js::HandleBase { friend class JS::MutableHandle; public: /* Creates a handle from a handle of a type convertible to T. */ template Handle(Handle handle, typename mozilla::EnableIf::value, int>::Type dummy = 0) { static_assert(sizeof(Handle) == sizeof(T *), "Handle must be binary compatible with T*."); ptr = reinterpret_cast(handle.address()); } /* Create a handle for a nullptr pointer. */ Handle(js::NullPtr) { static_assert(mozilla::IsPointer::value, "js::NullPtr overload not valid for non-pointer types"); ptr = reinterpret_cast(&js::NullPtr::constNullValue); } /* Create a handle for a nullptr pointer. */ Handle(JS::NullPtr) { static_assert(mozilla::IsPointer::value, "JS::NullPtr overload not valid for non-pointer types"); ptr = reinterpret_cast(&JS::NullPtr::constNullValue); } Handle(MutableHandle handle) { ptr = handle.address(); } /* * Take care when calling this method! * * This creates a Handle from the raw location of a T. * * It should be called only if the following conditions hold: * * 1) the location of the T is guaranteed to be marked (for some reason * other than being a Rooted), e.g., if it is guaranteed to be reachable * from an implicit root. * * 2) the contents of the location are immutable, or at least cannot change * for the lifetime of the handle, as its users may not expect its value * to change underneath them. */ static MOZ_CONSTEXPR Handle fromMarkedLocation(const T *p) { return Handle(p, DeliberatelyChoosingThisOverload, ImUsingThisOnlyInFromFromMarkedLocation); } /* * Construct a handle from an explicitly rooted location. This is the * normal way to create a handle, and normally happens implicitly. */ template inline Handle(const Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); template inline Handle(const PersistentRooted &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); /* Construct a read only handle from a mutable handle. */ template inline Handle(MutableHandle &root, typename mozilla::EnableIf::value, int>::Type dummy = 0); const T *address() const { return ptr; } const T& get() const { return *ptr; } /* * Return a reference so passing a Handle to something that * takes a |const T&| is not a GC hazard. */ operator const T&() const { return get(); } T operator->() const { return get(); } bool operator!=(const T &other) const { return *ptr != other; } bool operator==(const T &other) const { return *ptr == other; } /* Change this handle to point to the same rooted location RHS does. */ void repoint(const Handle &rhs) { ptr = rhs.address(); } private: Handle() {} enum Disambiguator { DeliberatelyChoosingThisOverload = 42 }; enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 }; MOZ_CONSTEXPR Handle(const T *p, Disambiguator, CallerIdentity) : ptr(p) {} const T *ptr; template void operator=(S) MOZ_DELETE; void operator=(Handle) MOZ_DELETE; }; /* * Similar to a handle, but the underlying storage can be changed. This is * useful for outparams. * * If you want to add additional methods to MutableHandle for a specific * specialization, define a MutableHandleBase specialization containing * them. */ template class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase { public: inline MutableHandle(Rooted *root); inline MutableHandle(PersistentRooted *root); private: // Disallow true nullptr and emulated nullptr (gcc 4.4/4.5, __null, appears // as int/long [32/64-bit]) for overloading purposes. template MutableHandle(N, typename mozilla::EnableIf::value || mozilla::IsSame::value || mozilla::IsSame::value, int>::Type dummy = 0) MOZ_DELETE; public: void set(T v) { MOZ_ASSERT(!js::GCMethods::poisoned(v)); *ptr = v; } /* * This may be called only if the location of the T is guaranteed * to be marked (for some reason other than being a Rooted), * e.g., if it is guaranteed to be reachable from an implicit root. * * Create a MutableHandle from a raw location of a T. */ static MutableHandle fromMarkedLocation(T *p) { MutableHandle h; h.ptr = p; return h; } T *address() const { return ptr; } const T& get() const { return *ptr; } /* * Return a reference so passing a MutableHandle to something that takes * a |const T&| is not a GC hazard. */ operator const T&() const { return get(); } T operator->() const { return get(); } private: MutableHandle() {} T *ptr; template void operator=(S v) MOZ_DELETE; void operator=(MutableHandle other) MOZ_DELETE; }; #ifdef JSGC_GENERATIONAL JS_FRIEND_API(void) HeapCellPostBarrier(js::gc::Cell **cellp); JS_FRIEND_API(void) HeapCellRelocate(js::gc::Cell **cellp); #endif } /* namespace JS */ namespace js { /* * InternalHandle is a handle to an internal pointer into a gcthing. Use * InternalHandle when you have a pointer to a direct field of a gcthing, or * when you need a parameter type for something that *may* be a pointer to a * direct field of a gcthing. */ template class InternalHandle {}; template class InternalHandle { void * const *holder; size_t offset; public: /* * Create an InternalHandle using a Handle to the gcthing containing the * field in question, and a pointer to the field. */ template InternalHandle(const JS::Handle &handle, T *field) : holder((void**)handle.address()), offset(uintptr_t(field) - uintptr_t(handle.get())) {} /* * Create an InternalHandle to a field within a Rooted<>. */ template InternalHandle(const JS::Rooted &root, T *field) : holder((void**)root.address()), offset(uintptr_t(field) - uintptr_t(root.get())) {} InternalHandle(const InternalHandle& other) : holder(other.holder), offset(other.offset) {} T *get() const { return reinterpret_cast(uintptr_t(*holder) + offset); } const T &operator*() const { return *get(); } T *operator->() const { return get(); } static InternalHandle fromMarkedLocation(T *fieldPtr) { return InternalHandle(fieldPtr); } private: /* * Create an InternalHandle to something that is not a pointer to a * gcthing, and so does not need to be rooted in the first place. Use these * InternalHandles to pass pointers into functions that also need to accept * regular InternalHandles to gcthing fields. * * Make this private to prevent accidental misuse; this is only for * fromMarkedLocation(). */ InternalHandle(T *field) : holder(reinterpret_cast(&js::NullPtr::constNullValue)), offset(uintptr_t(field)) {} void operator=(InternalHandle other) MOZ_DELETE; }; /* * By default, pointers should use the inheritance hierarchy to find their * ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that * Rooted may be used without the class definition being available. */ template struct RootKind { static ThingRootKind rootKind() { return T::rootKind(); } }; template struct GCMethods { static T *initial() { return nullptr; } static ThingRootKind kind() { return RootKind::rootKind(); } static bool poisoned(T *v) { return JS::IsPoisonedPtr(v); } static bool needsPostBarrier(T *v) { return v; } #ifdef JSGC_GENERATIONAL static void postBarrier(T **vp) { JS::HeapCellPostBarrier(reinterpret_cast(vp)); } static void relocate(T **vp) { JS::HeapCellRelocate(reinterpret_cast(vp)); } #endif }; #ifdef JS_DEBUG /* This helper allows us to assert that Rooted is scoped within a request. */ extern JS_PUBLIC_API(bool) IsInRequest(JSContext *cx); #endif } /* namespace js */ namespace JS { /* * Local variable of type T whose value is always rooted. This is typically * used for local variables, or for non-rooted values being passed to a * function that requires a handle, e.g. Foo(Root(cx, x)). * * If you want to add additional methods to Rooted for a specific * specialization, define a RootedBase specialization containing them. */ template class MOZ_STACK_CLASS Rooted : public js::RootedBase { /* Note: CX is a subclass of either ContextFriendFields or PerThreadDataFriendFields. */ template void init(CX *cx) { #ifdef JSGC_TRACK_EXACT_ROOTS js::ThingRootKind kind = js::GCMethods::kind(); this->stack = &cx->thingGCRooters[kind]; this->prev = *stack; *stack = reinterpret_cast*>(this); MOZ_ASSERT(!js::GCMethods::poisoned(ptr)); #endif } public: Rooted(JSContext *cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(js::GCMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; #ifdef JS_DEBUG MOZ_ASSERT(js::IsInRequest(cx)); #endif init(js::ContextFriendFields::get(cx)); } Rooted(JSContext *cx, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; #ifdef JS_DEBUG MOZ_ASSERT(js::IsInRequest(cx)); #endif init(js::ContextFriendFields::get(cx)); } Rooted(js::ContextFriendFields *cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(js::GCMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(cx); } Rooted(js::ContextFriendFields *cx, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(cx); } Rooted(js::PerThreadDataFriendFields *pt MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(js::GCMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(pt); } Rooted(js::PerThreadDataFriendFields *pt, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(pt); } Rooted(JSRuntime *rt MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(js::GCMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(js::PerThreadDataFriendFields::getMainThread(rt)); } Rooted(JSRuntime *rt, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; init(js::PerThreadDataFriendFields::getMainThread(rt)); } // Note that we need to let the compiler generate the default destructor in // non-exact-rooting builds because of a bug in the instrumented PGO builds // using MSVC, see bug 915735 for more details. #ifdef JSGC_TRACK_EXACT_ROOTS ~Rooted() { MOZ_ASSERT(*stack == reinterpret_cast*>(this)); *stack = prev; } #endif #ifdef JSGC_TRACK_EXACT_ROOTS Rooted *previous() { return prev; } #endif /* * Important: Return a reference here so passing a Rooted to * something that takes a |const T&| is not a GC hazard. */ operator const T&() const { return ptr; } T operator->() const { return ptr; } T *address() { return &ptr; } const T *address() const { return &ptr; } T &get() { return ptr; } const T &get() const { return ptr; } T &operator=(T value) { MOZ_ASSERT(!js::GCMethods::poisoned(value)); ptr = value; return ptr; } T &operator=(const Rooted &value) { ptr = value; return ptr; } void set(T value) { MOZ_ASSERT(!js::GCMethods::poisoned(value)); ptr = value; } bool operator!=(const T &other) const { return ptr != other; } bool operator==(const T &other) const { return ptr == other; } private: #ifdef JSGC_TRACK_EXACT_ROOTS Rooted **stack, *prev; #endif #if defined(JS_DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) /* Has the rooting analysis ever scanned this Rooted's stack location? */ friend void JS::CheckStackRoots(JSContext*); #endif #ifdef JSGC_ROOT_ANALYSIS bool scanned; #endif /* * |ptr| must be the last field in Rooted because the analysis treats all * Rooted as Rooted during the analysis. See bug 829372. */ T ptr; MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER Rooted(const Rooted &) MOZ_DELETE; }; } /* namespace JS */ namespace js { /* * Augment the generic Rooted interface when T = JSObject* with * class-querying and downcasting operations. * * Given a Rooted obj, one can view * Handle h = obj.as(); * as an optimization of * Rooted rooted(cx, &obj->as()); * Handle h = rooted; */ template <> class RootedBase { public: template JS::Handle as() const; }; /* * Mark a stack location as a root for the rooting analysis, without actually * rooting it in release builds. This should only be used for stack locations * of GC things that cannot be relocated by a garbage collection, and that * are definitely reachable via another path. */ class SkipRoot { #if defined(JS_DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) SkipRoot **stack, *prev; const uint8_t *start; const uint8_t *end; template void init(CX *cx, const T *ptr, size_t count) { SkipRoot **head = &cx->skipGCRooters; this->stack = head; this->prev = *stack; *stack = this; this->start = (const uint8_t *) ptr; this->end = this->start + (sizeof(T) * count); } public: ~SkipRoot() { MOZ_ASSERT(*stack == this); *stack = prev; } SkipRoot *previous() { return prev; } bool contains(const uint8_t *v, size_t len) { return v >= start && v + len <= end; } #else /* JS_DEBUG && JSGC_ROOT_ANALYSIS */ template void init(js::ContextFriendFields *cx, const T *ptr, size_t count) {} public: ~SkipRoot() { // An empty destructor is needed to avoid warnings from clang about // unused local variables of this type. } #endif /* JS_DEBUG && JSGC_ROOT_ANALYSIS */ template SkipRoot(JSContext *cx, const T *ptr, size_t count = 1 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) { init(ContextFriendFields::get(cx), ptr, count); MOZ_GUARD_OBJECT_NOTIFIER_INIT; } template SkipRoot(ContextFriendFields *cx, const T *ptr, size_t count = 1 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) { init(cx, ptr, count); MOZ_GUARD_OBJECT_NOTIFIER_INIT; } template SkipRoot(PerThreadData *pt, const T *ptr, size_t count = 1 MOZ_GUARD_OBJECT_NOTIFIER_PARAM) { init(PerThreadDataFriendFields::get(pt), ptr, count); MOZ_GUARD_OBJECT_NOTIFIER_INIT; } MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER }; /* * RootedGeneric allows a class to instantiate its own Rooted type by * including the following two methods: * * static inline js::ThingRootKind rootKind() { return js::THING_ROOT_CUSTOM; } * void trace(JSTracer *trc); * * The trace() method must trace all of the class's fields. * * Implementation: * * RootedGeneric works by placing a pointer to its 'rooter' field into the * usual list of rooters when it is instantiated. When marking, it backs up * from this pointer to find a vtable containing a type-appropriate trace() * method. */ template class JS_PUBLIC_API(RootedGeneric) { public: JS::Rooted rooter; SkipRoot skip; RootedGeneric(js::ContextFriendFields *cx) : rooter(cx), skip(cx, rooter.address()) { } RootedGeneric(js::ContextFriendFields *cx, const GCType &initial) : rooter(cx, initial), skip(cx, rooter.address()) { } virtual inline void trace(JSTracer *trc); operator const GCType&() const { return rooter.get(); } GCType operator->() const { return rooter.get(); } }; template inline void RootedGeneric::trace(JSTracer *trc) { rooter->trace(trc); } // We will instantiate RootedGeneric in RootMarking.cpp, and MSVC will // notice that void*s have no trace() method defined on them and complain (even // though it's never called.) MSVC's complaint is not unreasonable, so // specialize for void*. template <> inline void RootedGeneric::trace(JSTracer *trc) { MOZ_ASSUME_UNREACHABLE("RootedGeneric::trace()"); } /* Interface substitute for Rooted which does not root the variable's memory. */ template class FakeRooted : public RootedBase { public: template FakeRooted(CX *cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(GCMethods::initial()) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; } template FakeRooted(CX *cx, T initial MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : ptr(initial) { MOZ_GUARD_OBJECT_NOTIFIER_INIT; } operator T() const { return ptr; } T operator->() const { return ptr; } T *address() { return &ptr; } const T *address() const { return &ptr; } T &get() { return ptr; } const T &get() const { return ptr; } FakeRooted &operator=(T value) { MOZ_ASSERT(!GCMethods::poisoned(value)); ptr = value; return *this; } FakeRooted &operator=(const FakeRooted &other) { MOZ_ASSERT(!GCMethods::poisoned(other.ptr)); ptr = other.ptr; return *this; } bool operator!=(const T &other) const { return ptr != other; } bool operator==(const T &other) const { return ptr == other; } private: T ptr; MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER FakeRooted(const FakeRooted &) MOZ_DELETE; }; /* Interface substitute for MutableHandle which is not required to point to rooted memory. */ template class FakeMutableHandle : public js::MutableHandleBase { public: FakeMutableHandle(T *t) { ptr = t; } FakeMutableHandle(FakeRooted *root) { ptr = root->address(); } void set(T v) { MOZ_ASSERT(!js::GCMethods::poisoned(v)); *ptr = v; } T *address() const { return ptr; } T get() const { return *ptr; } operator T() const { return get(); } T operator->() const { return get(); } private: FakeMutableHandle() {} T *ptr; template void operator=(S v) MOZ_DELETE; void operator=(const FakeMutableHandle& other) MOZ_DELETE; }; /* * Types for a variable that either should or shouldn't be rooted, depending on * the template parameter Rooted. Used for implementing functions that can * operate on either rooted or unrooted data. * * The toHandle() and toMutableHandle() functions are for calling functions * which require handle types and are only called in the CanGC case. These * allow the calling code to type check. */ enum AllowGC { NoGC = 0, CanGC = 1 }; template class MaybeRooted { }; template class MaybeRooted { public: typedef JS::Handle HandleType; typedef JS::Rooted RootType; typedef JS::MutableHandle MutableHandleType; static inline JS::Handle toHandle(HandleType v) { return v; } static inline JS::MutableHandle toMutableHandle(MutableHandleType v) { return v; } }; template class MaybeRooted { public: typedef T HandleType; typedef FakeRooted RootType; typedef FakeMutableHandle MutableHandleType; static inline JS::Handle toHandle(HandleType v) { MOZ_ASSUME_UNREACHABLE("Bad conversion"); } static inline JS::MutableHandle toMutableHandle(MutableHandleType v) { MOZ_ASSUME_UNREACHABLE("Bad conversion"); } }; } /* namespace js */ namespace JS { template template inline Handle::Handle(const Rooted &root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle(const PersistentRooted &root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle(MutableHandle &root, typename mozilla::EnableIf::value, int>::Type dummy) { ptr = reinterpret_cast(root.address()); } template inline MutableHandle::MutableHandle(Rooted *root) { static_assert(sizeof(MutableHandle) == sizeof(T *), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } template inline MutableHandle::MutableHandle(PersistentRooted *root) { static_assert(sizeof(MutableHandle) == sizeof(T *), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } /* * A copyable, assignable global GC root type with arbitrary lifetime, an * infallible constructor, and automatic unrooting on destruction. * * These roots can be used in heap-allocated data structures, so they are not * associated with any particular JSContext or stack. They are registered with * the JSRuntime itself, without locking, so they require a full JSContext to be * constructed, not one of its more restricted superclasses. * * Note that you must not use an PersistentRooted in an object owned by a JS * object: * * Whenever one object whose lifetime is decided by the GC refers to another * such object, that edge must be traced only if the owning JS object is traced. * This applies not only to JS objects (which obviously are managed by the GC) * but also to C++ objects owned by JS objects. * * If you put a PersistentRooted in such a C++ object, that is almost certainly * a leak. When a GC begins, the referent of the PersistentRooted is treated as * live, unconditionally (because a PersistentRooted is a *root*), even if the * JS object that owns it is unreachable. If there is any path from that * referent back to the JS object, then the C++ object containing the * PersistentRooted will not be destructed, and the whole blob of objects will * not be freed, even if there are no references to them from the outside. * * In the context of Firefox, this is a severe restriction: almost everything in * Firefox is owned by some JS object or another, so using PersistentRooted in * such objects would introduce leaks. For these kinds of edges, Heap or * TenuredHeap would be better types. It's up to the implementor of the type * containing Heap or TenuredHeap members to make sure their referents get * marked when the object itself is marked. */ template class PersistentRooted : private mozilla::LinkedListElement > { friend class mozilla::LinkedList; friend class mozilla::LinkedListElement; friend class js::gc::PersistentRootedMarker; void registerWithRuntime(JSRuntime *rt) { JS::shadow::Runtime *srt = JS::shadow::Runtime::asShadowRuntime(rt); srt->getPersistentRootedList().insertBack(this); } public: PersistentRooted(JSContext *cx) : ptr(js::GCMethods::initial()) { registerWithRuntime(js::GetRuntime(cx)); } PersistentRooted(JSContext *cx, T initial) : ptr(initial) { registerWithRuntime(js::GetRuntime(cx)); } PersistentRooted(JSRuntime *rt) : ptr(js::GCMethods::initial()) { registerWithRuntime(rt); } PersistentRooted(JSRuntime *rt, T initial) : ptr(initial) { registerWithRuntime(rt); } PersistentRooted(PersistentRooted &rhs) : ptr(rhs.ptr) { /* * Copy construction takes advantage of the fact that the original * is already inserted, and simply adds itself to whatever list the * original was on - no JSRuntime pointer needed. */ rhs.setNext(this); } /* * Important: Return a reference here so passing a Rooted to * something that takes a |const T&| is not a GC hazard. */ operator const T&() const { return ptr; } T operator->() const { return ptr; } T *address() { return &ptr; } const T *address() const { return &ptr; } T &get() { return ptr; } const T &get() const { return ptr; } T &operator=(T value) { MOZ_ASSERT(!js::GCMethods::poisoned(value)); ptr = value; return ptr; } T &operator=(const PersistentRooted &value) { ptr = value; return ptr; } void set(T value) { MOZ_ASSERT(!js::GCMethods::poisoned(value)); ptr = value; } bool operator!=(const T &other) const { return ptr != other; } bool operator==(const T &other) const { return ptr == other; } private: T ptr; }; } /* namespace JS */ namespace js { /* * Hook for dynamic root analysis. Checks the native stack and poisons * references to GC things which have not been rooted. */ inline void MaybeCheckStackRoots(JSContext *cx) { #if defined(JS_DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE) JS::CheckStackRoots(cx); #endif } /* Base class for automatic read-only object rooting during compilation. */ class CompilerRootNode { protected: CompilerRootNode(js::gc::Cell *ptr) : next(nullptr), ptr_(ptr) {} public: void **address() { return (void **)&ptr_; } public: CompilerRootNode *next; protected: js::gc::Cell *ptr_; }; } /* namespace js */ #endif /* js_RootingAPI_h */