/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef nsTArray_h__ #define nsTArray_h__ #include "mozilla/Assertions.h" #include "mozilla/Util.h" #include #include "prtypes.h" #include "nsAlgorithm.h" #include "nscore.h" #include "nsQuickSort.h" #include "nsDebug.h" #include "nsTraceRefcnt.h" #include NEW_H // // NB: nsTArray assumes that your "T" can be memmove()d. This is in // contrast to STL containers, which follow C++ // construction/destruction rules. // // Don't use nsTArray if your "T" can't be memmove()d correctly. // // // nsTArray*Allocators must all use the same |free()|, to allow // swapping between fallible and infallible variants. (NS_Free() and // moz_free() end up calling the same underlying free()). // #if defined(MOZALLOC_HAVE_XMALLOC) #include "mozilla/mozalloc_abort.h" struct nsTArrayFallibleAllocator { static void* Malloc(size_t size) { return moz_malloc(size); } static void* Realloc(void* ptr, size_t size) { return moz_realloc(ptr, size); } static void Free(void* ptr) { moz_free(ptr); } static void SizeTooBig() { } }; struct nsTArrayInfallibleAllocator { static void* Malloc(size_t size) { return moz_xmalloc(size); } static void* Realloc(void* ptr, size_t size) { return moz_xrealloc(ptr, size); } static void Free(void* ptr) { moz_free(ptr); } static void SizeTooBig() { mozalloc_abort("Trying to allocate an infallible array that's too big"); } }; #else #include struct nsTArrayFallibleAllocator { static void* Malloc(size_t size) { return malloc(size); } static void* Realloc(void* ptr, size_t size) { return realloc(ptr, size); } static void Free(void* ptr) { free(ptr); } static void SizeTooBig() { } }; #endif #if defined(MOZALLOC_HAVE_XMALLOC) struct nsTArrayDefaultAllocator : public nsTArrayInfallibleAllocator { }; #else struct nsTArrayDefaultAllocator : public nsTArrayFallibleAllocator { }; #endif // nsTArray_base stores elements into the space allocated beyond // sizeof(*this). This is done to minimize the size of the nsTArray // object when it is empty. struct NS_COM_GLUE nsTArrayHeader { static nsTArrayHeader sEmptyHdr; uint32_t mLength; uint32_t mCapacity : 31; uint32_t mIsAutoArray : 1; }; // This class provides a SafeElementAt method to nsTArray which does // not take a second default value parameter. template struct nsTArray_SafeElementAtHelper { typedef E* elem_type; typedef uint32_t index_type; // No implementation is provided for these two methods, and that is on // purpose, since we don't support these functions on non-pointer type // instantiations. elem_type& SafeElementAt(index_type i); const elem_type& SafeElementAt(index_type i) const; }; template struct nsTArray_SafeElementAtHelper { typedef E* elem_type; typedef uint32_t index_type; elem_type SafeElementAt(index_type i) { return static_cast (this)->SafeElementAt(i, nullptr); } const elem_type SafeElementAt(index_type i) const { return static_cast (this)->SafeElementAt(i, nullptr); } }; // E is the base type that the smart pointer is templated over; the // smart pointer can act as E*. template struct nsTArray_SafeElementAtSmartPtrHelper { typedef E* elem_type; typedef uint32_t index_type; elem_type SafeElementAt(index_type i) { return static_cast (this)->SafeElementAt(i, nullptr); } const elem_type SafeElementAt(index_type i) const { return static_cast (this)->SafeElementAt(i, nullptr); } }; template class nsCOMPtr; template struct nsTArray_SafeElementAtHelper, Derived> : public nsTArray_SafeElementAtSmartPtrHelper { }; template class nsRefPtr; template struct nsTArray_SafeElementAtHelper, Derived> : public nsTArray_SafeElementAtSmartPtrHelper { }; // // This class serves as a base class for nsTArray. It shouldn't be used // directly. It holds common implementation code that does not depend on the // element type of the nsTArray. // template class nsTArray_base { // Allow swapping elements with |nsTArray_base|s created using a // different allocator. This is kosher because all allocators use // the same free(). template friend class nsTArray_base; protected: typedef nsTArrayHeader Header; public: typedef uint32_t size_type; typedef uint32_t index_type; // @return The number of elements in the array. size_type Length() const { return mHdr->mLength; } // @return True if the array is empty or false otherwise. bool IsEmpty() const { return Length() == 0; } // @return The number of elements that can fit in the array without forcing // the array to be re-allocated. The length of an array is always less // than or equal to its capacity. size_type Capacity() const { return mHdr->mCapacity; } #ifdef DEBUG void* DebugGetHeader() const { return mHdr; } #endif protected: nsTArray_base(); ~nsTArray_base(); // Resize the storage if necessary to achieve the requested capacity. // @param capacity The requested number of array elements. // @param elemSize The size of an array element. // @return False if insufficient memory is available; true otherwise. bool EnsureCapacity(size_type capacity, size_type elemSize); // Resize the storage to the minimum required amount. // @param elemSize The size of an array element. // @param elemAlign The alignment in bytes of an array element. void ShrinkCapacity(size_type elemSize, size_t elemAlign); // This method may be called to resize a "gap" in the array by shifting // elements around. It updates mLength appropriately. If the resulting // array has zero elements, then the array's memory is free'd. // @param start The starting index of the gap. // @param oldLen The current length of the gap. // @param newLen The desired length of the gap. // @param elemSize The size of an array element. // @param elemAlign The alignment in bytes of an array element. void ShiftData(index_type start, size_type oldLen, size_type newLen, size_type elemSize, size_t elemAlign); // This method increments the length member of the array's header. // Note that mHdr may actually be sEmptyHdr in the case where a // zero-length array is inserted into our array. But then n should // always be 0. void IncrementLength(uint32_t n) { MOZ_ASSERT(mHdr != EmptyHdr() || n == 0, "bad data pointer"); mHdr->mLength += n; } // This method inserts blank slots into the array. // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of slots to insert // @param elementSize the size of an array element. // @param elemAlign the alignment in bytes of an array element. bool InsertSlotsAt(index_type index, size_type count, size_type elementSize, size_t elemAlign); protected: template bool SwapArrayElements(nsTArray_base& other, size_type elemSize, size_t elemAlign); // This is an RAII class used in SwapArrayElements. class IsAutoArrayRestorer { public: IsAutoArrayRestorer(nsTArray_base &array, size_t elemAlign); ~IsAutoArrayRestorer(); private: nsTArray_base &mArray; size_t mElemAlign; bool mIsAuto; }; // Helper function for SwapArrayElements. Ensures that if the array // is an nsAutoTArray that it doesn't use the built-in buffer. bool EnsureNotUsingAutoArrayBuffer(size_type elemSize); // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer. bool IsAutoArray() const { return mHdr->mIsAutoArray; } // Returns a Header for the built-in buffer of this nsAutoTArray. Header* GetAutoArrayBuffer(size_t elemAlign) { MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); return GetAutoArrayBufferUnsafe(elemAlign); } const Header* GetAutoArrayBuffer(size_t elemAlign) const { MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); return GetAutoArrayBufferUnsafe(elemAlign); } // Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't // assert that we are an nsAutoTArray. Header* GetAutoArrayBufferUnsafe(size_t elemAlign) { return const_cast(static_cast*>(this)-> GetAutoArrayBufferUnsafe(elemAlign)); } const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const; // Returns true if this is an nsAutoTArray and it currently uses the // built-in buffer to store its elements. bool UsesAutoArrayBuffer() const; // The array's elements (prefixed with a Header). This pointer is never // null. If the array is empty, then this will point to sEmptyHdr. Header *mHdr; Header* Hdr() const { return mHdr; } Header** PtrToHdr() { return &mHdr; } static Header* EmptyHdr() { return &Header::sEmptyHdr; } }; // // This class defines convenience functions for element specific operations. // Specialize this template if necessary. // template class nsTArrayElementTraits { public: // Invoke the default constructor in place. static inline void Construct(E *e) { // Do NOT call "E()"! That triggers C++ "default initialization" // which zeroes out POD ("plain old data") types such as regular // ints. We don't want that because it can be a performance issue // and people don't expect it; nsTArray should work like a regular // C/C++ array in this respect. new (static_cast(e)) E; } // Invoke the copy-constructor in place. template static inline void Construct(E *e, const A &arg) { new (static_cast(e)) E(arg); } // Invoke the destructor in place. static inline void Destruct(E *e) { e->~E(); } }; // The default comparator used by nsTArray template class nsDefaultComparator { public: bool Equals(const A& a, const B& b) const { return a == b; } bool LessThan(const A& a, const B& b) const { return a < b; } }; // // The templatized array class that dynamically resizes its storage as // elements are added. This class is designed to behave a bit like // std::vector, though note that unlike std::vector, nsTArray doesn't // follow C++ construction/destruction rules. // // The template parameter specifies the type of the elements (elem_type), and // has the following requirements: // // elem_type MUST define a copy-constructor. // elem_type MAY define operator< for sorting. // elem_type MAY define operator== for searching. // // For methods taking a Comparator instance, the Comparator must be a class // defining the following methods: // // class Comparator { // public: // /** @return True if the elements are equals; false otherwise. */ // bool Equals(const elem_type& a, const Item& b) const; // // /** @return True if (a < b); false otherwise. */ // bool LessThan(const elem_type& a, const Item& b) const; // }; // // The Equals method is used for searching, and the LessThan method is used // for sorting. The |Item| type above can be arbitrary, but must match the // Item type passed to the sort or search function. // // The Alloc template parameter can be used to choose between // "fallible" and "infallible" nsTArray (if available), defaulting to // fallible. If the *fallible* allocator is used, the return value of // methods that might allocate needs to be checked; Append() is // one such method. These return values don't need to be checked if // the *in*fallible allocator is chosen. When in doubt, choose the // infallible allocator. // template class nsTArray : public nsTArray_base, public nsTArray_SafeElementAtHelper > { public: typedef nsTArray_base base_type; typedef typename base_type::size_type size_type; typedef typename base_type::index_type index_type; typedef E elem_type; typedef nsTArray self_type; typedef nsTArrayElementTraits elem_traits; typedef nsTArray_SafeElementAtHelper safeelementat_helper_type; using safeelementat_helper_type::SafeElementAt; using base_type::EmptyHdr; // A special value that is used to indicate an invalid or unknown index // into the array. enum { NoIndex = index_type(-1) }; using base_type::Length; // // Finalization method // ~nsTArray() { Clear(); } // // Initialization methods // nsTArray() {} // Initialize this array and pre-allocate some number of elements. explicit nsTArray(size_type capacity) { SetCapacity(capacity); } // The array's copy-constructor performs a 'deep' copy of the given array. // @param other The array object to copy. nsTArray(const self_type& other) { AppendElements(other); } template nsTArray(const nsTArray& other) { AppendElements(other); } // The array's assignment operator performs a 'deep' copy of the given // array. It is optimized to reuse existing storage if possible. // @param other The array object to copy. nsTArray& operator=(const self_type& other) { ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); return *this; } // Return true if this array has the same length and the same // elements as |other|. bool operator==(const self_type& other) const { size_type len = Length(); if (len != other.Length()) return false; // XXX std::equal would be as fast or faster here for (index_type i = 0; i < len; ++i) if (!(operator[](i) == other[i])) return false; return true; } // Return true if this array does not have the same length and the same // elements as |other|. bool operator!=(const self_type& other) const { return !operator==(other); } template nsTArray& operator=(const nsTArray& other) { ReplaceElementsAt(0, Length(), other.Elements(), other.Length()); return *this; } // @return The amount of memory used by this nsTArray, excluding // sizeof(*this). size_t SizeOfExcludingThis(nsMallocSizeOfFun mallocSizeOf) const { if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr()) return 0; return mallocSizeOf(this->Hdr()); } // @return The amount of memory used by this nsTArray, including // sizeof(*this). size_t SizeOfIncludingThis(nsMallocSizeOfFun mallocSizeOf) const { return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf); } // // Accessor methods // // This method provides direct access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. elem_type* Elements() { return reinterpret_cast(Hdr() + 1); } // This method provides direct, readonly access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. const elem_type* Elements() const { return reinterpret_cast(Hdr() + 1); } // This method provides direct access to the i'th element of the array. // The given index must be within the array bounds. // @param i The index of an element in the array. // @return A reference to the i'th element of the array. elem_type& ElementAt(index_type i) { MOZ_ASSERT(i < Length(), "invalid array index"); return Elements()[i]; } // This method provides direct, readonly access to the i'th element of the // array. The given index must be within the array bounds. // @param i The index of an element in the array. // @return A const reference to the i'th element of the array. const elem_type& ElementAt(index_type i) const { MOZ_ASSERT(i < Length(), "invalid array index"); return Elements()[i]; } // This method provides direct access to the i'th element of the array in // a bounds safe manner. If the requested index is out of bounds the // provided default value is returned. // @param i The index of an element in the array. // @param def The value to return if the index is out of bounds. elem_type& SafeElementAt(index_type i, elem_type& def) { return i < Length() ? Elements()[i] : def; } // This method provides direct access to the i'th element of the array in // a bounds safe manner. If the requested index is out of bounds the // provided default value is returned. // @param i The index of an element in the array. // @param def The value to return if the index is out of bounds. const elem_type& SafeElementAt(index_type i, const elem_type& def) const { return i < Length() ? Elements()[i] : def; } // Shorthand for ElementAt(i) elem_type& operator[](index_type i) { return ElementAt(i); } // Shorthand for ElementAt(i) const elem_type& operator[](index_type i) const { return ElementAt(i); } // Shorthand for ElementAt(length - 1) elem_type& LastElement() { return ElementAt(Length() - 1); } // Shorthand for ElementAt(length - 1) const elem_type& LastElement() const { return ElementAt(Length() - 1); } // Shorthand for SafeElementAt(length - 1, def) elem_type& SafeLastElement(elem_type& def) { return SafeElementAt(Length() - 1, def); } // Shorthand for SafeElementAt(length - 1, def) const elem_type& SafeLastElement(const elem_type& def) const { return SafeElementAt(Length() - 1, def); } // // Search methods // // This method searches for the first element in this array that is equal // to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return true if the element was found. template bool Contains(const Item& item, const Comparator& comp) const { return IndexOf(item, 0, comp) != NoIndex; } // This method searches for the first element in this array that is equal // to the given element. This method assumes that 'operator==' is defined // for elem_type. // @param item The item to search for. // @return true if the element was found. template bool Contains(const Item& item) const { return IndexOf(item) != NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. // @param item The item to search for. // @param start The index to start from. // @param comp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& item, index_type start, const Comparator& comp) const { const elem_type* iter = Elements() + start, *end = Elements() + Length(); for (; iter != end; ++iter) { if (comp.Equals(*iter, item)) return index_type(iter - Elements()); } return NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param item The item to search for. // @param start The index to start from. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& item, index_type start = 0) const { return IndexOf(item, start, nsDefaultComparator()); } // This method searches for the offset of the last element in this // array that is equal to the given element. // @param item The item to search for. // @param start The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @param comp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& item, index_type start, const Comparator& comp) const { if (start >= Length()) start = Length() - 1; const elem_type* end = Elements() - 1, *iter = end + start + 1; for (; iter != end; --iter) { if (comp.Equals(*iter, item)) return index_type(iter - Elements()); } return NoIndex; } // This method searches for the offset of the last element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param item The item to search for. // @param start The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& item, index_type start = NoIndex) const { return LastIndexOf(item, start, nsDefaultComparator()); } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // @param item The item to search for. // @param comp The Comparator used. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& item, const Comparator& comp) const { index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; if (comp.Equals(ElementAt(mid), item)) return mid; if (comp.LessThan(ElementAt(mid), item)) low = mid + 1; else high = mid; } return NoIndex; } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // This method assumes that 'operator==' and 'operator<' are defined. // @param item The item to search for. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& item) const { return BinaryIndexOf(item, nsDefaultComparator()); } // // Mutation methods // // This method replaces a range of elements in this array. // @param start The starting index of the elements to replace. // @param count The number of elements to replace. This may be zero to // insert elements without removing any existing elements. // @param array The values to copy into this array. Must be non-null, // and these elements must not already exist in the array // being modified. // @param arrayLen The number of values to copy into this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type *ReplaceElementsAt(index_type start, size_type count, const Item* array, size_type arrayLen) { // Adjust memory allocation up-front to catch errors. if (!this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))) return nullptr; DestructRange(start, count); this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); AssignRange(start, arrayLen, array); return Elements() + start; } // A variation on the ReplaceElementsAt method defined above. template elem_type *ReplaceElementsAt(index_type start, size_type count, const nsTArray& array) { return ReplaceElementsAt(start, count, array.Elements(), array.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type *ReplaceElementsAt(index_type start, size_type count, const Item& item) { return ReplaceElementsAt(start, count, &item, 1); } // A variation on the ReplaceElementsAt method defined above. template elem_type *ReplaceElementAt(index_type index, const Item& item) { return ReplaceElementsAt(index, 1, &item, 1); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementsAt(index_type index, const Item* array, size_type arrayLen) { return ReplaceElementsAt(index, 0, array, arrayLen); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementsAt(index_type index, const nsTArray& array) { return ReplaceElementsAt(index, 0, array.Elements(), array.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type *InsertElementAt(index_type index, const Item& item) { return ReplaceElementsAt(index, 0, &item, 1); } // Insert a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly inserted element, or null on OOM. elem_type* InsertElementAt(index_type index) { if (!this->EnsureCapacity(Length() + 1, sizeof(elem_type))) return nullptr; this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); elem_type *elem = Elements() + index; elem_traits::Construct(elem); return elem; } // This method searches for the least index of the greatest // element less than or equal to |item|. If |item| is inserted at // this index, the array will remain sorted. True is returned iff // this index is also equal to |item|. In this case, the returned // index may point to the start of multiple copies of |item|. // @param item The item to search for. // @param comp The Comparator used. // @outparam idx The index of greatest element <= to |item| // @return True iff |item == array[*idx]|. // @precondition The array is sorted template bool GreatestIndexLtEq(const Item& item, const Comparator& comp, index_type* idx) const { // Nb: we could replace all the uses of "BinaryIndexOf" with this // function, but BinaryIndexOf will be oh-so-slightly faster so // it's not strictly desired to do. // invariant: low <= [idx] < high index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; if (comp.Equals(ElementAt(mid), item)) { // we might have the array [..., 2, 4, 4, 4, 4, 4, 5, ...] // and be searching for "4". it's arbitrary where mid ends // up here, so we back it up to the first instance to maintain // the "least index ..." we promised above. do { --mid; } while (NoIndex != mid && comp.Equals(ElementAt(mid), item)); *idx = ++mid; return true; } if (comp.LessThan(ElementAt(mid), item)) // invariant: low <= idx < high low = mid + 1; else // invariant: low <= idx < high high = mid; } // low <= idx < high, so insert at high ("shifting" high up by // 1) to maintain invariant. // (or insert at low, since low==high; just a matter of taste here.) *idx = high; return false; } // A variation on the GreatestIndexLtEq method defined above. template bool GreatestIndexLtEq(const Item& item, index_type& idx, const Comparator& comp) const { return GreatestIndexLtEq(item, comp, &idx); } // A variation on the GreatestIndexLtEq method defined above. template bool GreatestIndexLtEq(const Item& item, index_type& idx) const { return GreatestIndexLtEq(item, nsDefaultComparator(), &idx); } // Inserts |item| at such an index to guarantee that if the array // was previously sorted, it will remain sorted after this // insertion. template elem_type *InsertElementSorted(const Item& item, const Comparator& comp) { index_type index; GreatestIndexLtEq(item, comp, &index); return InsertElementAt(index, item); } // A variation on the InsertElementSorted method defined above. template elem_type *InsertElementSorted(const Item& item) { return InsertElementSorted(item, nsDefaultComparator()); } // This method appends elements to the end of this array. // @param array The elements to append to this array. // @param arrayLen The number of elements to append to this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type *AppendElements(const Item* array, size_type arrayLen) { if (!this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type))) return nullptr; index_type len = Length(); AssignRange(len, arrayLen, array); this->IncrementLength(arrayLen); return Elements() + len; } // A variation on the AppendElements method defined above. template elem_type *AppendElements(const nsTArray& array) { return AppendElements(array.Elements(), array.Length()); } // A variation on the AppendElements method defined above. template elem_type *AppendElement(const Item& item) { return AppendElements(&item, 1); } // Append new elements without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended elements, or null on OOM. elem_type *AppendElements(size_type count) { if (!this->EnsureCapacity(Length() + count, sizeof(elem_type))) return nullptr; elem_type *elems = Elements() + Length(); size_type i; for (i = 0; i < count; ++i) { elem_traits::Construct(elems + i); } this->IncrementLength(count); return elems; } // Append a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended element, or null on OOM. elem_type *AppendElement() { return AppendElements(1); } // Move all elements from another array to the end of this array without // calling copy constructors or destructors. // @return A pointer to the newly appended elements, or null on OOM. template elem_type *MoveElementsFrom(nsTArray& array) { MOZ_ASSERT(&array != this, "argument must be different array"); index_type len = Length(); index_type otherLen = array.Length(); if (!this->EnsureCapacity(len + otherLen, sizeof(elem_type))) return nullptr; memcpy(Elements() + len, array.Elements(), otherLen * sizeof(elem_type)); this->IncrementLength(otherLen); array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); return Elements() + len; } // This method removes a range of elements from this array. // @param start The starting index of the elements to remove. // @param count The number of elements to remove. void RemoveElementsAt(index_type start, size_type count) { MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index"); MOZ_ASSERT(start + count <= Length(), "Invalid length"); // Check that the previous assert didn't overflow MOZ_ASSERT(start <= start + count, "Start index plus length overflows"); DestructRange(start, count); this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); } // A variation on the RemoveElementsAt method defined above. void RemoveElementAt(index_type index) { RemoveElementsAt(index, 1); } // A variation on the RemoveElementsAt method defined above. void Clear() { RemoveElementsAt(0, Length()); } // This helper function combines IndexOf with RemoveElementAt to "search // and destroy" the first element that is equal to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return true if the element was found template bool RemoveElement(const Item& item, const Comparator& comp) { index_type i = IndexOf(item, 0, comp); if (i == NoIndex) return false; RemoveElementAt(i); return true; } // A variation on the RemoveElement method defined above that assumes // that 'operator==' is defined for elem_type. template bool RemoveElement(const Item& item) { return RemoveElement(item, nsDefaultComparator()); } // This helper function combines GreatestIndexLtEq with // RemoveElementAt to "search and destroy" the first element that // is equal to the given element. // @param item The item to search for. // @param comp The Comparator used to determine element equality. // @return true if the element was found template bool RemoveElementSorted(const Item& item, const Comparator& comp) { index_type index; bool found = GreatestIndexLtEq(item, comp, &index); if (found) RemoveElementAt(index); return found; } // A variation on the RemoveElementSorted method defined above. template bool RemoveElementSorted(const Item& item) { return RemoveElementSorted(item, nsDefaultComparator()); } // This method causes the elements contained in this array and the given // array to be swapped. template bool SwapElements(nsTArray& other) { return this->SwapArrayElements(other, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); } // // Allocation // // This method may increase the capacity of this array object by the // specified amount. This method may be called in advance of several // AppendElement operations to minimize heap re-allocations. This method // will not reduce the number of elements in this array. // @param capacity The desired capacity of this array. // @return True if the operation succeeded; false if we ran out of memory bool SetCapacity(size_type capacity) { return this->EnsureCapacity(capacity, sizeof(elem_type)); } // This method modifies the length of the array. If the new length is // larger than the existing length of the array, then new elements will be // constructed using elem_type's default constructor. Otherwise, this call // removes elements from the array (see also RemoveElementsAt). // @param newLen The desired length of this array. // @return True if the operation succeeded; false otherwise. // See also TruncateLength if the new length is guaranteed to be // smaller than the old. bool SetLength(size_type newLen) { size_type oldLen = Length(); if (newLen > oldLen) { return InsertElementsAt(oldLen, newLen - oldLen) != nullptr; } TruncateLength(newLen); return true; } // This method modifies the length of the array, but may only be // called when the new length is shorter than the old. It can // therefore be called when elem_type has no default constructor, // unlike SetLength. It removes elements from the array (see also // RemoveElementsAt). // @param newLen The desired length of this array. void TruncateLength(size_type newLen) { size_type oldLen = Length(); NS_ABORT_IF_FALSE(newLen <= oldLen, "caller should use SetLength instead"); RemoveElementsAt(newLen, oldLen - newLen); } // This method ensures that the array has length at least the given // length. If the current length is shorter than the given length, // then new elements will be constructed using elem_type's default // constructor. // @param minLen The desired minimum length of this array. // @return True if the operation succeeded; false otherwise. bool EnsureLengthAtLeast(size_type minLen) { size_type oldLen = Length(); if (minLen > oldLen) { return InsertElementsAt(oldLen, minLen - oldLen) != nullptr; } return true; } // This method inserts elements into the array, constructing // them using elem_type's default constructor. // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of elements to insert elem_type *InsertElementsAt(index_type index, size_type count) { if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Initialize the extra array elements elem_type *iter = Elements() + index, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Construct(iter); } return Elements() + index; } // This method inserts elements into the array, constructing them // elem_type's copy constructor (or whatever one-arg constructor // happens to match the Item type). // @param index the place to insert the new elements. This must be no // greater than the current length of the array. // @param count the number of elements to insert. // @param item the value to use when constructing the new elements. template elem_type *InsertElementsAt(index_type index, size_type count, const Item& item) { if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Initialize the extra array elements elem_type *iter = Elements() + index, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Construct(iter, item); } return Elements() + index; } // This method may be called to minimize the memory used by this array. void Compact() { ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type)); } // // Sorting // // This function is meant to be used with the NS_QuickSort function. It // maps the callback API expected by NS_QuickSort to the Comparator API // used by nsTArray. See nsTArray::Sort. template static int Compare(const void* e1, const void* e2, void *data) { const Comparator* c = reinterpret_cast(data); const elem_type* a = static_cast(e1); const elem_type* b = static_cast(e2); return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1); } // This method sorts the elements of the array. It uses the LessThan // method defined on the given Comparator object to collate elements. // @param comp The Comparator used to collate elements. template void Sort(const Comparator& comp) { NS_QuickSort(Elements(), Length(), sizeof(elem_type), Compare, const_cast(&comp)); } // A variation on the Sort method defined above that assumes that // 'operator<' is defined for elem_type. void Sort() { Sort(nsDefaultComparator()); } // // Binary Heap // // Sorts the array into a binary heap. // @param comp The Comparator used to create the heap template void MakeHeap(const Comparator& comp) { if (!Length()) { return; } index_type index = (Length() - 1) / 2; do { SiftDown(index, comp); } while (index--); } // A variation on the MakeHeap method defined above. void MakeHeap() { MakeHeap(nsDefaultComparator()); } // Adds an element to the heap // @param item The item to add // @param comp The Comparator used to sift-up the item template elem_type *PushHeap(const Item& item, const Comparator& comp) { if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Sift up the new node elem_type *elem = Elements(); index_type index = Length() - 1; index_type parent_index = (index - 1) / 2; while (index && comp.LessThan(elem[parent_index], item)) { elem[index] = elem[parent_index]; index = parent_index; parent_index = (index - 1) / 2; } elem[index] = item; return &elem[index]; } // A variation on the PushHeap method defined above. template elem_type *PushHeap(const Item& item) { return PushHeap(item, nsDefaultComparator()); } // Delete the root of the heap and restore the heap // @param comp The Comparator used to restore the heap template void PopHeap(const Comparator& comp) { if (!Length()) { return; } index_type last_index = Length() - 1; elem_type *elem = Elements(); elem[0] = elem[last_index]; TruncateLength(last_index); if (Length()) { SiftDown(0, comp); } } // A variation on the PopHeap method defined above. void PopHeap() { PopHeap(nsDefaultComparator()); } protected: using base_type::Hdr; using base_type::ShrinkCapacity; // This method invokes elem_type's destructor on a range of elements. // @param start The index of the first element to destroy. // @param count The number of elements to destroy. void DestructRange(index_type start, size_type count) { elem_type *iter = Elements() + start, *end = iter + count; for (; iter != end; ++iter) { elem_traits::Destruct(iter); } } // This method invokes elem_type's copy-constructor on a range of elements. // @param start The index of the first element to construct. // @param count The number of elements to construct. // @param values The array of elements to copy. template void AssignRange(index_type start, size_type count, const Item *values) { elem_type *iter = Elements() + start, *end = iter + count; for (; iter != end; ++iter, ++values) { elem_traits::Construct(iter, *values); } } // This method sifts an item down to its proper place in a binary heap // @param index The index of the node to start sifting down from // @param comp The Comparator used to sift down template void SiftDown(index_type index, const Comparator& comp) { elem_type *elem = Elements(); elem_type item = elem[index]; index_type end = Length() - 1; while ((index * 2) < end) { const index_type left = (index * 2) + 1; const index_type right = (index * 2) + 2; const index_type parent_index = index; if (comp.LessThan(item, elem[left])) { if (left < end && comp.LessThan(elem[left], elem[right])) { index = right; } else { index = left; } } else if (left < end && comp.LessThan(item, elem[right])) { index = right; } else { break; } elem[parent_index] = elem[index]; } elem[index] = item; } }; // // Convenience subtypes of nsTArray. // template class FallibleTArray : public nsTArray { public: typedef nsTArray base_type; typedef typename base_type::size_type size_type; FallibleTArray() {} explicit FallibleTArray(size_type capacity) : base_type(capacity) {} FallibleTArray(const FallibleTArray& other) : base_type(other) {} }; #ifdef MOZALLOC_HAVE_XMALLOC template class InfallibleTArray : public nsTArray { public: typedef nsTArray base_type; typedef typename base_type::size_type size_type; InfallibleTArray() {} explicit InfallibleTArray(size_type capacity) : base_type(capacity) {} InfallibleTArray(const InfallibleTArray& other) : base_type(other) {} }; #endif template class nsAutoArrayBase : public TArrayBase { public: typedef TArrayBase base_type; typedef typename base_type::Header Header; typedef typename base_type::elem_type elem_type; protected: nsAutoArrayBase() { Init(); } // We need this constructor because nsAutoTArray and friends all have // implicit copy-constructors. If we don't have this method, those // copy-constructors will call nsAutoArrayBase's implicit copy-constructor, // which won't call Init() and set up the auto buffer! nsAutoArrayBase(const TArrayBase &aOther) { Init(); AppendElements(aOther); } private: // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer // to mAutoBuf. template friend class nsTArray_base; void Init() { MOZ_STATIC_ASSERT(MOZ_ALIGNOF(elem_type) <= 8, "can't handle alignments greater than 8, " "see nsTArray_base::UsesAutoArrayBuffer()"); // Temporary work around for VS2012 RC compiler crash Header** phdr = base_type::PtrToHdr(); *phdr = reinterpret_cast(&mAutoBuf); (*phdr)->mLength = 0; (*phdr)->mCapacity = N; (*phdr)->mIsAutoArray = 1; MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) == reinterpret_cast(&mAutoBuf), "GetAutoArrayBuffer needs to be fixed"); } // Declare mAutoBuf aligned to the maximum of the header's alignment and // elem_type's alignment. We need to use a union rather than // MOZ_ALIGNED_DECL because GCC is picky about what goes into // __attribute__((aligned(foo))). union { char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)]; mozilla::AlignedElem mAlign; }; }; template class nsAutoTArray : public nsAutoArrayBase, N> { typedef nsAutoArrayBase, N> Base; public: nsAutoTArray() {} template nsAutoTArray(const nsTArray& other) { Base::AppendElements(other); } }; // Assert that nsAutoTArray doesn't have any extra padding inside. // // It's important that the data stored in this auto array takes up a multiple of // 8 bytes; e.g. nsAutoTArray wouldn't work. Since nsAutoTArray // contains a pointer, its size must be a multiple of alignof(void*). (This is // because any type may be placed into an array, and there's no padding between // elements of an array.) The compiler pads the end of the structure to // enforce this rule. // // If we used nsAutoTArray below, this assertion would fail on a // 64-bit system, where the compiler inserts 4 bytes of padding at the end of // the auto array to make its size a multiple of alignof(void*) == 8 bytes. MOZ_STATIC_ASSERT(sizeof(nsAutoTArray) == sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2, "nsAutoTArray shouldn't contain any extra padding, " "see the comment"); template class AutoFallibleTArray : public nsAutoArrayBase, N> { typedef nsAutoArrayBase, N> Base; public: AutoFallibleTArray() {} template AutoFallibleTArray(const nsTArray& other) { Base::AppendElements(other); } }; #if defined(MOZALLOC_HAVE_XMALLOC) template class AutoInfallibleTArray : public nsAutoArrayBase, N> { typedef nsAutoArrayBase, N> Base; public: AutoInfallibleTArray() {} template AutoInfallibleTArray(const nsTArray& other) { Base::AppendElements(other); } }; #endif // specializations for N = 0. this makes the inheritance model easier for // templated users of nsAutoTArray. template class nsAutoTArray : public nsAutoArrayBase< nsTArray, 0> { public: nsAutoTArray() {} }; template class AutoFallibleTArray : public nsAutoArrayBase< FallibleTArray, 0> { public: AutoFallibleTArray() {} }; #if defined(MOZALLOC_HAVE_XMALLOC) template class AutoInfallibleTArray : public nsAutoArrayBase< InfallibleTArray, 0> { public: AutoInfallibleTArray() {} }; #endif // Definitions of nsTArray methods #include "nsTArray-inl.h" #endif // nsTArray_h__