/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef GFX_TILEDLAYERBUFFER_H #define GFX_TILEDLAYERBUFFER_H // Debug defines //#define GFX_TILEDLAYER_DEBUG_OVERLAY //#define GFX_TILEDLAYER_PREF_WARNINGS #include // for uint16_t, uint32_t #include // for int32_t #include "gfxPlatform.h" // for GetTileWidth/GetTileHeight #include "nsDebug.h" // for NS_ABORT_IF_FALSE #include "nsPoint.h" // for nsIntPoint #include "nsRect.h" // for nsIntRect #include "nsRegion.h" // for nsIntRegion #include "nsTArray.h" // for nsTArray #if defined(MOZ_WIDGET_GONK) && ANDROID_VERSION >= 17 #include #endif namespace mozilla { namespace layers { // You can enable all the TILING_LOG print statements by // changing the 0 to a 1 in the following #define. #define ENABLE_TILING_LOG 0 #if ENABLE_TILING_LOG # define TILING_LOG(...) printf_stderr(__VA_ARGS__); #else # define TILING_LOG(...) #endif // An abstract implementation of a tile buffer. This code covers the logic of // moving and reusing tiles and leaves the validation up to the implementor. To // avoid the overhead of virtual dispatch, we employ the curiously recurring // template pattern. // // Tiles are aligned to a grid with one of the grid points at (0,0) and other // grid points spaced evenly in the x- and y-directions by GetTileSize() // multiplied by mResolution. GetScaledTileSize() provides convenience for // accessing these values. // // This tile buffer stores a valid region, which defines the areas that have // up-to-date content. The contents of tiles within this region will be reused // from paint to paint. It also stores the region that was modified in the last // paint operation; this is useful when one tiled layer buffer shadows another // (as in an off-main-thread-compositing scenario), so that the shadow tiled // layer buffer can correctly reflect the updates of the master layer buffer. // // The associated Tile may be of any type as long as the derived class can // validate and return tiles of that type. Tiles will be frequently copied, so // the tile type should be a reference or some other type with an efficient // copy constructor. // // It is required that the derived class specify the base class as a friend. It // must also implement the following public method: // // Tile GetPlaceholderTile() const; // // Returns a temporary placeholder tile used as a marker. This placeholder tile // must never be returned by validateTile and must be == to every instance // of a placeholder tile. // // Additionally, it must implement the following protected methods: // // Tile ValidateTile(Tile aTile, const nsIntPoint& aTileOrigin, // const nsIntRegion& aDirtyRect); // // Validates the dirtyRect. The returned Tile will replace the tile. // // void ReleaseTile(Tile aTile); // // Destroys the given tile. // // void SwapTiles(Tile& aTileA, Tile& aTileB); // // Swaps two tiles. // // The contents of the tile buffer will be rendered at the resolution specified // in mResolution, which can be altered with SetResolution. The resolution // should always be a factor of the tile length, to avoid tiles covering // non-integer amounts of pixels. template class TiledLayerBuffer { public: TiledLayerBuffer() : mRetainedWidth(0) , mRetainedHeight(0) , mResolution(1) , mTileSize(gfxPlatform::GetPlatform()->GetTileWidth(), gfxPlatform::GetPlatform()->GetTileHeight()) {} ~TiledLayerBuffer() {} // Given a tile origin aligned to a multiple of GetScaledTileSize, // return the tile that describes that region. // NOTE: To get the valid area of that tile you must intersect // (aTileOrigin.x, aTileOrigin.y, // GetScaledTileSize().width, GetScaledTileSize().height) // and GetValidRegion() to get the area of the tile that is valid. Tile GetTile(const nsIntPoint& aTileOrigin) const; // Given a tile x, y relative to the top left of the layer, this function // will return the tile for // (x*GetScaledTileSize().width, y*GetScaledTileSize().height, // GetScaledTileSize().width, GetScaledTileSize().height) Tile GetTile(int x, int y) const; // This operates the same as GetTile(aTileOrigin), but will also replace the // specified tile with the placeholder tile. This does not call ReleaseTile // on the removed tile. bool RemoveTile(const nsIntPoint& aTileOrigin, Tile& aRemovedTile); // This operates the same as GetTile(x, y), but will also replace the // specified tile with the placeholder tile. This does not call ReleaseTile // on the removed tile. bool RemoveTile(int x, int y, Tile& aRemovedTile); const gfx::IntSize& GetTileSize() const { return mTileSize; } gfx::IntSize GetScaledTileSize() const { return RoundedToInt(gfx::Size(mTileSize) / mResolution); } unsigned int GetTileCount() const { return mRetainedTiles.Length(); } const nsIntRegion& GetValidRegion() const { return mValidRegion; } const nsIntRegion& GetPaintedRegion() const { return mPaintedRegion; } void ClearPaintedRegion() { mPaintedRegion.SetEmpty(); } void ResetPaintedAndValidState() { mPaintedRegion.SetEmpty(); mValidRegion.SetEmpty(); mRetainedWidth = 0; mRetainedHeight = 0; for (size_t i = 0; i < mRetainedTiles.Length(); i++) { if (!IsPlaceholder(mRetainedTiles[i])) { AsDerived().ReleaseTile(mRetainedTiles[i]); } } mRetainedTiles.Clear(); } // Given a position i, this function returns the position inside the current tile. int GetTileStart(int i, int aTileLength) const { return (i >= 0) ? (i % aTileLength) : ((aTileLength - (-i % aTileLength)) % aTileLength); } // Rounds the given coordinate down to the nearest tile boundary. int RoundDownToTileEdge(int aX, int aTileLength) const { return aX - GetTileStart(aX, aTileLength); } // Get and set draw scaling. mResolution affects the resolution at which the // contents of the buffer are drawn. mResolution has no effect on the // coordinate space of the valid region, but does affect the size of an // individual tile's rect in relation to the valid region. // Setting the resolution will invalidate the buffer. float GetResolution() const { return mResolution; } void SetResolution(float aResolution) { if (mResolution == aResolution) { return; } Update(nsIntRegion(), nsIntRegion()); mResolution = aResolution; } bool IsLowPrecision() const { return mResolution < 1; } typedef Tile* Iterator; Iterator TilesBegin() { return mRetainedTiles.Elements(); } Iterator TilesEnd() { return mRetainedTiles.Elements() + mRetainedTiles.Length(); } void Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml); protected: // The implementor should call Update() to change // the new valid region. This implementation will call // validateTile on each tile that is dirty, which is left // to the implementor. void Update(const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion); nsIntRegion mValidRegion; nsIntRegion mPaintedRegion; /** * mRetainedTiles is a rectangular buffer of mRetainedWidth x mRetainedHeight * stored as column major with the same origin as mValidRegion.GetBounds(). * Any tile that does not intersect mValidRegion is a PlaceholderTile. * Only the region intersecting with mValidRegion should be read from a tile, * another other region is assumed to be uninitialized. The contents of the * tiles is scaled by mResolution. */ nsTArray mRetainedTiles; int mRetainedWidth; // in tiles int mRetainedHeight; // in tiles float mResolution; gfx::IntSize mTileSize; private: const Derived& AsDerived() const { return *static_cast(this); } Derived& AsDerived() { return *static_cast(this); } bool IsPlaceholder(Tile aTile) const { return aTile == AsDerived().GetPlaceholderTile(); } }; class ClientTiledLayerBuffer; class SurfaceDescriptorTiles; class ISurfaceAllocator; // Shadow layers may implement this interface in order to be notified when a // tiled layer buffer is updated. class TiledLayerComposer { public: /** * Update the current retained layer with the updated layer data. * It is expected that the tiles described by aTiledDescriptor are all in the * ReadLock state, so that the locks can be adopted when recreating a * ClientTiledLayerBuffer locally. This lock will be retained until the buffer * has completed uploading. * * Returns false if a deserialization error happened, in which case we will * have to kill the child process. */ virtual bool UseTiledLayerBuffer(ISurfaceAllocator* aAllocator, const SurfaceDescriptorTiles& aTiledDescriptor) = 0; /** * If some part of the buffer is being rendered at a lower precision, this * returns that region. If it is not, an empty region will be returned. */ virtual const nsIntRegion& GetValidLowPrecisionRegion() const = 0; #if defined(MOZ_WIDGET_GONK) && ANDROID_VERSION >= 17 /** * Store a fence that will signal when the current buffer is no longer being read. * Similar to android's GLConsumer::setReleaseFence() */ virtual void SetReleaseFence(const android::sp& aReleaseFence) = 0; #endif }; // Normal integer division truncates towards zero, // we instead want to floor to hangle negative numbers. static inline int floor_div(int a, int b) { int rem = a % b; int div = a/b; if (rem == 0) { return div; } else { // If the signs are different substract 1. int sub; sub = a ^ b; // The results of this shift is either 0 or -1. sub >>= 8*sizeof(int)-1; return div+sub; } } template Tile TiledLayerBuffer::GetTile(const nsIntPoint& aTileOrigin) const { // TODO Cache firstTileOriginX/firstTileOriginY // Find the tile x/y of the first tile and the target tile relative to the (0, 0) // origin, the difference is the tile x/y relative to the start of the tile buffer. gfx::IntSize scaledTileSize = GetScaledTileSize(); int firstTileX = floor_div(mValidRegion.GetBounds().x, scaledTileSize.width); int firstTileY = floor_div(mValidRegion.GetBounds().y, scaledTileSize.height); return GetTile(floor_div(aTileOrigin.x, scaledTileSize.width) - firstTileX, floor_div(aTileOrigin.y, scaledTileSize.height) - firstTileY); } template Tile TiledLayerBuffer::GetTile(int x, int y) const { int index = x * mRetainedHeight + y; return mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile()); } template bool TiledLayerBuffer::RemoveTile(const nsIntPoint& aTileOrigin, Tile& aRemovedTile) { gfx::IntSize scaledTileSize = GetScaledTileSize(); int firstTileX = floor_div(mValidRegion.GetBounds().x, scaledTileSize.width); int firstTileY = floor_div(mValidRegion.GetBounds().y, scaledTileSize.height); return RemoveTile(floor_div(aTileOrigin.x, scaledTileSize.width) - firstTileX, floor_div(aTileOrigin.y, scaledTileSize.height) - firstTileY, aRemovedTile); } template bool TiledLayerBuffer::RemoveTile(int x, int y, Tile& aRemovedTile) { int index = x * mRetainedHeight + y; const Tile& tileToRemove = mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile()); if (!IsPlaceholder(tileToRemove)) { aRemovedTile = tileToRemove; mRetainedTiles[index] = AsDerived().GetPlaceholderTile(); return true; } return false; } template void TiledLayerBuffer::Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml) { nsIntRect visibleRect = GetValidRegion().GetBounds(); gfx::IntSize scaledTileSize = GetScaledTileSize(); for (int32_t x = visibleRect.x; x < visibleRect.x + visibleRect.width;) { int32_t tileStartX = GetTileStart(x, scaledTileSize.width); int32_t w = scaledTileSize.width - tileStartX; for (int32_t y = visibleRect.y; y < visibleRect.y + visibleRect.height;) { int32_t tileStartY = GetTileStart(y, scaledTileSize.height); Tile tileTexture = GetTile(nsIntPoint(RoundDownToTileEdge(x, scaledTileSize.width), RoundDownToTileEdge(y, scaledTileSize.height))); int32_t h = scaledTileSize.height - tileStartY; aStream << "\n" << aPrefix << "Tile (x=" << RoundDownToTileEdge(x, scaledTileSize.width) << ", y=" << RoundDownToTileEdge(y, scaledTileSize.height) << "): "; if (tileTexture != AsDerived().GetPlaceholderTile()) { tileTexture.DumpTexture(aStream); } else { aStream << "empty tile"; } y += h; } x += w; } } template void TiledLayerBuffer::Update(const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion) { gfx::IntSize scaledTileSize = GetScaledTileSize(); nsTArray newRetainedTiles; nsTArray& oldRetainedTiles = mRetainedTiles; const nsIntRect oldBound = mValidRegion.GetBounds(); const nsIntRect newBound = aNewValidRegion.GetBounds(); const nsIntPoint oldBufferOrigin(RoundDownToTileEdge(oldBound.x, scaledTileSize.width), RoundDownToTileEdge(oldBound.y, scaledTileSize.height)); const nsIntPoint newBufferOrigin(RoundDownToTileEdge(newBound.x, scaledTileSize.width), RoundDownToTileEdge(newBound.y, scaledTileSize.height)); const nsIntRegion& oldValidRegion = mValidRegion; const nsIntRegion& newValidRegion = aNewValidRegion; const int oldRetainedHeight = mRetainedHeight; // Pass 1: Recycle valid content from the old buffer // Recycle tiles from the old buffer that contain valid regions. // Insert placeholders tiles if we have no valid area for that tile // which we will allocate in pass 2. // TODO: Add a tile pool to reduce new allocation int tileX = 0; int tileY = 0; int tilesMissing = 0; // Iterate over the new drawing bounds in steps of tiles. for (int32_t x = newBound.x; x < newBound.XMost(); tileX++) { // Compute tileRect(x,y,width,height) in layer space coordinate // giving us the rect of the tile that hits the newBounds. int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width); if (x + width > newBound.XMost()) { width = newBound.x + newBound.width - x; } tileY = 0; for (int32_t y = newBound.y; y < newBound.YMost(); tileY++) { int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height); if (y + height > newBound.y + newBound.height) { height = newBound.y + newBound.height - y; } const nsIntRect tileRect(x,y,width,height); if (oldValidRegion.Intersects(tileRect) && newValidRegion.Intersects(tileRect)) { // This old tiles contains some valid area so move it to the new tile // buffer. Replace the tile in the old buffer with a placeholder // to leave the old buffer index unaffected. int tileX = floor_div(x - oldBufferOrigin.x, scaledTileSize.width); int tileY = floor_div(y - oldBufferOrigin.y, scaledTileSize.height); int index = tileX * oldRetainedHeight + tileY; // The tile may have been removed, skip over it in this case. if (IsPlaceholder(oldRetainedTiles. SafeElementAt(index, AsDerived().GetPlaceholderTile()))) { newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile()); } else { Tile tileWithPartialValidContent = oldRetainedTiles[index]; newRetainedTiles.AppendElement(tileWithPartialValidContent); oldRetainedTiles[index] = AsDerived().GetPlaceholderTile(); } } else { // This tile is either: // 1) Outside the new valid region and will simply be an empty // placeholder forever. // 2) The old buffer didn't have any data for this tile. We postpone // the allocation of this tile after we've reused any tile with // valid content because then we know we can safely recycle // with taking from a tile that has recyclable content. newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile()); if (aPaintRegion.Intersects(tileRect)) { tilesMissing++; } } y += height; } x += width; } // Keep track of the number of horizontal/vertical tiles // in the buffer so that we can easily look up a tile. mRetainedWidth = tileX; mRetainedHeight = tileY; // Pass 1.5: Release excess tiles in oldRetainedTiles // Tiles in oldRetainedTiles that aren't in newRetainedTiles will be recycled // before creating new ones, but there could still be excess unnecessary // tiles. As tiles may not have a fixed memory cost (for example, due to // double-buffering), we should release these excess tiles first. int oldTileCount = 0; for (size_t i = 0; i < oldRetainedTiles.Length(); i++) { Tile oldTile = oldRetainedTiles[i]; if (IsPlaceholder(oldTile)) { continue; } if (oldTileCount >= tilesMissing) { oldRetainedTiles[i] = AsDerived().GetPlaceholderTile(); AsDerived().ReleaseTile(oldTile); } else { oldTileCount ++; } } NS_ABORT_IF_FALSE(aNewValidRegion.Contains(aPaintRegion), "Painting a region outside the visible region"); #ifdef DEBUG nsIntRegion oldAndPainted(oldValidRegion); oldAndPainted.Or(oldAndPainted, aPaintRegion); #endif NS_ABORT_IF_FALSE(oldAndPainted.Contains(newValidRegion), "newValidRegion has not been fully painted"); nsIntRegion regionToPaint(aPaintRegion); // Pass 2: Validate // We know at this point that any tile in the new buffer that had valid content // from the previous buffer is placed correctly in the new buffer. // We know that any tile in the old buffer that isn't a place holder is // of no use and can be recycled. // We also know that any place holder tile in the new buffer must be // allocated. tileX = 0; #ifdef GFX_TILEDLAYER_PREF_WARNINGS printf_stderr("Update %i, %i, %i, %i\n", newBound.x, newBound.y, newBound.width, newBound.height); #endif for (int x = newBound.x; x < newBound.x + newBound.width; tileX++) { // Compute tileRect(x,y,width,height) in layer space coordinate // giving us the rect of the tile that hits the newBounds. int tileStartX = RoundDownToTileEdge(x, scaledTileSize.width); int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width); if (x + width > newBound.XMost()) width = newBound.XMost() - x; tileY = 0; for (int y = newBound.y; y < newBound.y + newBound.height; tileY++) { int tileStartY = RoundDownToTileEdge(y, scaledTileSize.height); int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height); if (y + height > newBound.YMost()) { height = newBound.YMost() - y; } const nsIntRect tileRect(x, y, width, height); nsIntRegion tileDrawRegion; tileDrawRegion.And(tileRect, regionToPaint); if (tileDrawRegion.IsEmpty()) { // We have a tile but it doesn't hit the draw region // because we can reuse all of the content from the // previous buffer. #ifdef DEBUG int currTileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width); int currTileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height); int index = currTileX * mRetainedHeight + currTileY; // If allocating a tile failed we can run into this assertion. // Rendering is going to be glitchy but we don't want to crash. NS_ASSERTION(!newValidRegion.Intersects(tileRect) || !IsPlaceholder(newRetainedTiles. SafeElementAt(index, AsDerived().GetPlaceholderTile())), "Unexpected placeholder tile"); #endif y += height; continue; } int tileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width); int tileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height); int index = tileX * mRetainedHeight + tileY; NS_ABORT_IF_FALSE(index >= 0 && static_cast(index) < newRetainedTiles.Length(), "index out of range"); Tile newTile = newRetainedTiles[index]; // Try to reuse a tile from the old retained tiles that had no partially // valid content. while (IsPlaceholder(newTile) && oldRetainedTiles.Length() > 0) { AsDerived().SwapTiles(newTile, oldRetainedTiles[oldRetainedTiles.Length()-1]); oldRetainedTiles.RemoveElementAt(oldRetainedTiles.Length()-1); if (!IsPlaceholder(newTile)) { oldTileCount--; } } // We've done our best effort to recycle a tile but it can be null // in which case it's up to the derived class's ValidateTile() // implementation to allocate a new tile before drawing nsIntPoint tileOrigin(tileStartX, tileStartY); newTile = AsDerived().ValidateTile(newTile, nsIntPoint(tileStartX, tileStartY), tileDrawRegion); NS_ASSERTION(!IsPlaceholder(newTile), "Unexpected placeholder tile - failed to allocate?"); #ifdef GFX_TILEDLAYER_PREF_WARNINGS printf_stderr("Store Validate tile %i, %i -> %i\n", tileStartX, tileStartY, index); #endif newRetainedTiles[index] = newTile; y += height; } x += width; } AsDerived().PostValidate(aPaintRegion); for (unsigned int i = 0; i < newRetainedTiles.Length(); ++i) { AsDerived().UnlockTile(newRetainedTiles[i]); } // At this point, oldTileCount should be zero NS_ABORT_IF_FALSE(oldTileCount == 0, "Failed to release old tiles"); mRetainedTiles = newRetainedTiles; mValidRegion = aNewValidRegion; mPaintedRegion.Or(mPaintedRegion, aPaintRegion); } } // layers } // mozilla #endif // GFX_TILEDLAYERBUFFER_H