/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include "prlog.h" #include "prdtoa.h" #include "AudioStream.h" #include "VideoUtils.h" #include "mozilla/Monitor.h" #include "mozilla/Mutex.h" #include #include "mozilla/Preferences.h" #include "soundtouch/SoundTouch.h" #include "Latency.h" namespace mozilla { #ifdef PR_LOGGING PRLogModuleInfo* gAudioStreamLog = nullptr; #endif /** * When MOZ_DUMP_AUDIO is set in the environment (to anything), * we'll drop a series of files in the current working directory named * dumped-audio-.wav, one per AudioStream created, containing * the audio for the stream including any skips due to underruns. */ static int gDumpedAudioCount = 0; #define PREF_VOLUME_SCALE "media.volume_scale" #define PREF_CUBEB_LATENCY "media.cubeb_latency_ms" static const uint32_t CUBEB_NORMAL_LATENCY_MS = 100; StaticMutex AudioStream::sMutex; cubeb* AudioStream::sCubebContext; uint32_t AudioStream::sPreferredSampleRate; double AudioStream::sVolumeScale; uint32_t AudioStream::sCubebLatency; bool AudioStream::sCubebLatencyPrefSet; /*static*/ void AudioStream::PrefChanged(const char* aPref, void* aClosure) { if (strcmp(aPref, PREF_VOLUME_SCALE) == 0) { nsAdoptingString value = Preferences::GetString(aPref); StaticMutexAutoLock lock(sMutex); if (value.IsEmpty()) { sVolumeScale = 1.0; } else { NS_ConvertUTF16toUTF8 utf8(value); sVolumeScale = std::max(0, PR_strtod(utf8.get(), nullptr)); } } else if (strcmp(aPref, PREF_CUBEB_LATENCY) == 0) { // Arbitrary default stream latency of 100ms. The higher this // value, the longer stream volume changes will take to become // audible. sCubebLatencyPrefSet = Preferences::HasUserValue(aPref); uint32_t value = Preferences::GetUint(aPref, CUBEB_NORMAL_LATENCY_MS); StaticMutexAutoLock lock(sMutex); sCubebLatency = std::min(std::max(value, 1), 1000); } } /*static*/ double AudioStream::GetVolumeScale() { StaticMutexAutoLock lock(sMutex); return sVolumeScale; } /*static*/ cubeb* AudioStream::GetCubebContext() { StaticMutexAutoLock lock(sMutex); return GetCubebContextUnlocked(); } /*static*/ void AudioStream::InitPreferredSampleRate() { StaticMutexAutoLock lock(sMutex); if (sPreferredSampleRate == 0 && cubeb_get_preferred_sample_rate(GetCubebContextUnlocked(), &sPreferredSampleRate) != CUBEB_OK) { sPreferredSampleRate = 44100; } } /*static*/ cubeb* AudioStream::GetCubebContextUnlocked() { sMutex.AssertCurrentThreadOwns(); if (sCubebContext || cubeb_init(&sCubebContext, "AudioStream") == CUBEB_OK) { return sCubebContext; } NS_WARNING("cubeb_init failed"); return nullptr; } /*static*/ uint32_t AudioStream::GetCubebLatency() { StaticMutexAutoLock lock(sMutex); return sCubebLatency; } /*static*/ bool AudioStream::CubebLatencyPrefSet() { StaticMutexAutoLock lock(sMutex); return sCubebLatencyPrefSet; } #if defined(__ANDROID__) && defined(MOZ_B2G) static cubeb_stream_type ConvertChannelToCubebType(dom::AudioChannelType aType) { switch(aType) { case dom::AUDIO_CHANNEL_NORMAL: return CUBEB_STREAM_TYPE_SYSTEM; case dom::AUDIO_CHANNEL_CONTENT: return CUBEB_STREAM_TYPE_MUSIC; case dom::AUDIO_CHANNEL_NOTIFICATION: return CUBEB_STREAM_TYPE_NOTIFICATION; case dom::AUDIO_CHANNEL_ALARM: return CUBEB_STREAM_TYPE_ALARM; case dom::AUDIO_CHANNEL_TELEPHONY: return CUBEB_STREAM_TYPE_VOICE_CALL; case dom::AUDIO_CHANNEL_RINGER: return CUBEB_STREAM_TYPE_RING; // Currently Android openSLES library doesn't support FORCE_AUDIBLE yet. case dom::AUDIO_CHANNEL_PUBLICNOTIFICATION: default: NS_ERROR("The value of AudioChannelType is invalid"); return CUBEB_STREAM_TYPE_MAX; } } #endif AudioStream::AudioStream() : mMonitor("AudioStream") , mInRate(0) , mOutRate(0) , mChannels(0) , mOutChannels(0) , mWritten(0) , mAudioClock(MOZ_THIS_IN_INITIALIZER_LIST()) , mLatencyRequest(HighLatency) , mReadPoint(0) , mLostFrames(0) , mDumpFile(nullptr) , mVolume(1.0) , mBytesPerFrame(0) , mState(INITIALIZED) { // keep a ref in case we shut down later than nsLayoutStatics mLatencyLog = AsyncLatencyLogger::Get(true); } AudioStream::~AudioStream() { Shutdown(); if (mDumpFile) { fclose(mDumpFile); } } /*static*/ void AudioStream::InitLibrary() { #ifdef PR_LOGGING gAudioStreamLog = PR_NewLogModule("AudioStream"); #endif PrefChanged(PREF_VOLUME_SCALE, nullptr); Preferences::RegisterCallback(PrefChanged, PREF_VOLUME_SCALE); PrefChanged(PREF_CUBEB_LATENCY, nullptr); Preferences::RegisterCallback(PrefChanged, PREF_CUBEB_LATENCY); } /*static*/ void AudioStream::ShutdownLibrary() { Preferences::UnregisterCallback(PrefChanged, PREF_VOLUME_SCALE); Preferences::UnregisterCallback(PrefChanged, PREF_CUBEB_LATENCY); StaticMutexAutoLock lock(sMutex); if (sCubebContext) { cubeb_destroy(sCubebContext); sCubebContext = nullptr; } } nsresult AudioStream::EnsureTimeStretcherInitialized() { MonitorAutoLock mon(mMonitor); return EnsureTimeStretcherInitializedUnlocked(); } nsresult AudioStream::EnsureTimeStretcherInitializedUnlocked() { mMonitor.AssertCurrentThreadOwns(); if (!mTimeStretcher) { // SoundTouch does not support a number of channels > 2 if (mOutChannels > 2) { return NS_ERROR_FAILURE; } mTimeStretcher = new soundtouch::SoundTouch(); mTimeStretcher->setSampleRate(mInRate); mTimeStretcher->setChannels(mOutChannels); mTimeStretcher->setPitch(1.0); } return NS_OK; } nsresult AudioStream::SetPlaybackRate(double aPlaybackRate) { NS_ASSERTION(aPlaybackRate > 0.0, "Can't handle negative or null playbackrate in the AudioStream."); // Avoid instantiating the resampler if we are not changing the playback rate. if (aPlaybackRate == mAudioClock.GetPlaybackRate()) { return NS_OK; } if (EnsureTimeStretcherInitialized() != NS_OK) { return NS_ERROR_FAILURE; } mAudioClock.SetPlaybackRate(aPlaybackRate); mOutRate = mInRate / aPlaybackRate; if (mAudioClock.GetPreservesPitch()) { mTimeStretcher->setTempo(aPlaybackRate); mTimeStretcher->setRate(1.0f); } else { mTimeStretcher->setTempo(1.0f); mTimeStretcher->setRate(aPlaybackRate); } return NS_OK; } nsresult AudioStream::SetPreservesPitch(bool aPreservesPitch) { // Avoid instantiating the timestretcher instance if not needed. if (aPreservesPitch == mAudioClock.GetPreservesPitch()) { return NS_OK; } if (EnsureTimeStretcherInitialized() != NS_OK) { return NS_ERROR_FAILURE; } if (aPreservesPitch == true) { mTimeStretcher->setTempo(mAudioClock.GetPlaybackRate()); mTimeStretcher->setRate(1.0f); } else { mTimeStretcher->setTempo(1.0f); mTimeStretcher->setRate(mAudioClock.GetPlaybackRate()); } mAudioClock.SetPreservesPitch(aPreservesPitch); return NS_OK; } int64_t AudioStream::GetWritten() { return mWritten; } /*static*/ int AudioStream::MaxNumberOfChannels() { cubeb* cubebContext = GetCubebContext(); uint32_t maxNumberOfChannels; if (cubebContext && cubeb_get_max_channel_count(cubebContext, &maxNumberOfChannels) == CUBEB_OK) { return static_cast(maxNumberOfChannels); } return 0; } /*static*/ int AudioStream::PreferredSampleRate() { MOZ_ASSERT(sPreferredSampleRate, "sPreferredSampleRate has not been initialized!"); return sPreferredSampleRate; } static void SetUint16LE(uint8_t* aDest, uint16_t aValue) { aDest[0] = aValue & 0xFF; aDest[1] = aValue >> 8; } static void SetUint32LE(uint8_t* aDest, uint32_t aValue) { SetUint16LE(aDest, aValue & 0xFFFF); SetUint16LE(aDest + 2, aValue >> 16); } static FILE* OpenDumpFile(AudioStream* aStream) { if (!getenv("MOZ_DUMP_AUDIO")) return nullptr; char buf[100]; sprintf(buf, "dumped-audio-%d.wav", gDumpedAudioCount); FILE* f = fopen(buf, "wb"); if (!f) return nullptr; ++gDumpedAudioCount; uint8_t header[] = { // RIFF header 0x52, 0x49, 0x46, 0x46, 0x00, 0x00, 0x00, 0x00, 0x57, 0x41, 0x56, 0x45, // fmt chunk. We always write 16-bit samples. 0x66, 0x6d, 0x74, 0x20, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x10, 0x00, // data chunk 0x64, 0x61, 0x74, 0x61, 0xFE, 0xFF, 0xFF, 0x7F }; static const int CHANNEL_OFFSET = 22; static const int SAMPLE_RATE_OFFSET = 24; static const int BLOCK_ALIGN_OFFSET = 32; SetUint16LE(header + CHANNEL_OFFSET, aStream->GetChannels()); SetUint32LE(header + SAMPLE_RATE_OFFSET, aStream->GetRate()); SetUint16LE(header + BLOCK_ALIGN_OFFSET, aStream->GetChannels()*2); fwrite(header, sizeof(header), 1, f); return f; } static void WriteDumpFile(FILE* aDumpFile, AudioStream* aStream, uint32_t aFrames, void* aBuffer) { if (!aDumpFile) return; uint32_t samples = aStream->GetOutChannels()*aFrames; if (AUDIO_OUTPUT_FORMAT == AUDIO_FORMAT_S16) { fwrite(aBuffer, 2, samples, aDumpFile); return; } NS_ASSERTION(AUDIO_OUTPUT_FORMAT == AUDIO_FORMAT_FLOAT32, "bad format"); nsAutoTArray buf; buf.SetLength(samples*2); float* input = static_cast(aBuffer); uint8_t* output = buf.Elements(); for (uint32_t i = 0; i < samples; ++i) { SetUint16LE(output + i*2, int16_t(input[i]*32767.0f)); } fwrite(output, 2, samples, aDumpFile); fflush(aDumpFile); } nsresult AudioStream::Init(int32_t aNumChannels, int32_t aRate, const dom::AudioChannelType aAudioChannelType, LatencyRequest aLatencyRequest) { cubeb* cubebContext = GetCubebContext(); if (!cubebContext || aNumChannels < 0 || aRate < 0) { return NS_ERROR_FAILURE; } PR_LOG(gAudioStreamLog, PR_LOG_DEBUG, ("%s channels: %d, rate: %d", __FUNCTION__, aNumChannels, aRate)); mInRate = mOutRate = aRate; mChannels = aNumChannels; mOutChannels = (aNumChannels > 2) ? 2 : aNumChannels; mLatencyRequest = aLatencyRequest; mDumpFile = OpenDumpFile(this); cubeb_stream_params params; params.rate = aRate; params.channels = mOutChannels; #if defined(__ANDROID__) #if defined(MOZ_B2G) params.stream_type = ConvertChannelToCubebType(aAudioChannelType); #else params.stream_type = CUBEB_STREAM_TYPE_MUSIC; #endif if (params.stream_type == CUBEB_STREAM_TYPE_MAX) { return NS_ERROR_INVALID_ARG; } #endif if (AUDIO_OUTPUT_FORMAT == AUDIO_FORMAT_S16) { params.format = CUBEB_SAMPLE_S16NE; } else { params.format = CUBEB_SAMPLE_FLOAT32NE; } mBytesPerFrame = sizeof(AudioDataValue) * mOutChannels; mAudioClock.Init(); // If the latency pref is set, use it. Otherwise, if this stream is intended // for low latency playback, try to get the lowest latency possible. // Otherwise, for normal streams, use 100ms. uint32_t latency; if (aLatencyRequest == LowLatency && !CubebLatencyPrefSet()) { if (cubeb_get_min_latency(cubebContext, params, &latency) != CUBEB_OK) { latency = GetCubebLatency(); } } else { latency = GetCubebLatency(); } { cubeb_stream* stream; if (cubeb_stream_init(cubebContext, &stream, "AudioStream", params, latency, DataCallback_S, StateCallback_S, this) == CUBEB_OK) { mCubebStream.own(stream); } } if (!mCubebStream) { return NS_ERROR_FAILURE; } // Size mBuffer for one second of audio. This value is arbitrary, and was // selected based on the observed behaviour of the existing AudioStream // implementations. uint32_t bufferLimit = FramesToBytes(aRate); NS_ABORT_IF_FALSE(bufferLimit % mBytesPerFrame == 0, "Must buffer complete frames"); mBuffer.SetCapacity(bufferLimit); // Start the stream right away when low latency has been requested. This means // that the DataCallback will feed silence to cubeb, until the first frames // are writtent to this AudioStream. if (mLatencyRequest == LowLatency) { Start(); } return NS_OK; } void AudioStream::Shutdown() { if (mState == STARTED) { Pause(); } if (mCubebStream) { mCubebStream.reset(); } } // aTime is the time in ms the samples were inserted into MediaStreamGraph nsresult AudioStream::Write(const AudioDataValue* aBuf, uint32_t aFrames, TimeStamp *aTime) { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState == ERRORED) { return NS_ERROR_FAILURE; } NS_ASSERTION(mState == INITIALIZED || mState == STARTED, "Stream write in unexpected state."); // Downmix to Stereo. if (mChannels > 2 && mChannels <= 8) { DownmixAudioToStereo(const_cast (aBuf), mChannels, aFrames); } else if (mChannels > 8) { return NS_ERROR_FAILURE; } const uint8_t* src = reinterpret_cast(aBuf); uint32_t bytesToCopy = FramesToBytes(aFrames); // XXX this will need to change if we want to enable this on-the-fly! if (PR_LOG_TEST(GetLatencyLog(), PR_LOG_DEBUG)) { // Record the position and time this data was inserted int64_t timeMs; if (aTime && !aTime->IsNull()) { if (mStartTime.IsNull()) { AsyncLatencyLogger::Get(true)->GetStartTime(mStartTime); } timeMs = (*aTime - mStartTime).ToMilliseconds(); } else { timeMs = 0; } struct Inserts insert = { timeMs, aFrames}; mInserts.AppendElement(insert); } while (bytesToCopy > 0) { uint32_t available = std::min(bytesToCopy, mBuffer.Available()); NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames."); mBuffer.AppendElements(src, available); src += available; bytesToCopy -= available; if (bytesToCopy > 0) { // If we are not playing, but our buffer is full, start playing to make // room for soon-to-be-decoded data. if (mState != STARTED) { StartUnlocked(); if (mState != STARTED) { return NS_ERROR_FAILURE; } } mon.Wait(); } } mWritten += aFrames; return NS_OK; } uint32_t AudioStream::Available() { MonitorAutoLock mon(mMonitor); NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Buffer invariant violated."); return BytesToFrames(mBuffer.Available()); } void AudioStream::SetVolume(double aVolume) { MonitorAutoLock mon(mMonitor); NS_ABORT_IF_FALSE(aVolume >= 0.0 && aVolume <= 1.0, "Invalid volume"); mVolume = aVolume; } void AudioStream::Drain() { MonitorAutoLock mon(mMonitor); if (mState != STARTED) { NS_ASSERTION(mBuffer.Available() == 0, "Draining with unplayed audio"); return; } mState = DRAINING; while (mState == DRAINING) { mon.Wait(); } } void AudioStream::Start() { MonitorAutoLock mon(mMonitor); StartUnlocked(); } void AudioStream::StartUnlocked() { mMonitor.AssertCurrentThreadOwns(); if (!mCubebStream || mState != INITIALIZED) { return; } if (mState != STARTED) { int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_start(mCubebStream); } if (mState != ERRORED) { mState = r == CUBEB_OK ? STARTED : ERRORED; } } } void AudioStream::Pause() { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState != STARTED) { return; } int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_stop(mCubebStream); } if (mState != ERRORED && r == CUBEB_OK) { mState = STOPPED; } } void AudioStream::Resume() { MonitorAutoLock mon(mMonitor); if (!mCubebStream || mState != STOPPED) { return; } int r; { MonitorAutoUnlock mon(mMonitor); r = cubeb_stream_start(mCubebStream); } if (mState != ERRORED && r == CUBEB_OK) { mState = STARTED; } } int64_t AudioStream::GetPosition() { return mAudioClock.GetPosition(); } // This function is miscompiled by PGO with MSVC 2010. See bug 768333. #ifdef _MSC_VER #pragma optimize("", off) #endif int64_t AudioStream::GetPositionInFrames() { return mAudioClock.GetPositionInFrames(); } #ifdef _MSC_VER #pragma optimize("", on) #endif int64_t AudioStream::GetPositionInFramesInternal() { MonitorAutoLock mon(mMonitor); return GetPositionInFramesUnlocked(); } int64_t AudioStream::GetPositionInFramesUnlocked() { mMonitor.AssertCurrentThreadOwns(); if (!mCubebStream || mState == ERRORED) { return -1; } uint64_t position = 0; { MonitorAutoUnlock mon(mMonitor); if (cubeb_stream_get_position(mCubebStream, &position) != CUBEB_OK) { return -1; } } // Adjust the reported position by the number of silent frames written // during stream underruns. uint64_t adjustedPosition = 0; if (position >= mLostFrames) { adjustedPosition = position - mLostFrames; } return std::min(adjustedPosition, INT64_MAX); } int64_t AudioStream::GetLatencyInFrames() { uint32_t latency; if (cubeb_stream_get_latency(mCubebStream, &latency)) { NS_WARNING("Could not get cubeb latency."); return 0; } return static_cast(latency); } bool AudioStream::IsPaused() { MonitorAutoLock mon(mMonitor); return mState == STOPPED; } void AudioStream::GetBufferInsertTime(int64_t &aTimeMs) { if (mInserts.Length() > 0) { // Find the right block, but don't leave the array empty while (mInserts.Length() > 1 && mReadPoint >= mInserts[0].mFrames) { mReadPoint -= mInserts[0].mFrames; mInserts.RemoveElementAt(0); } // offset for amount already read // XXX Note: could misreport if we couldn't find a block in the right timeframe aTimeMs = mInserts[0].mTimeMs + ((mReadPoint * 1000) / mOutRate); } else { aTimeMs = INT64_MAX; } } long AudioStream::GetUnprocessed(void* aBuffer, long aFrames, int64_t &aTimeMs) { uint8_t* wpos = reinterpret_cast(aBuffer); // Flush the timestretcher pipeline, if we were playing using a playback rate // other than 1.0. uint32_t flushedFrames = 0; if (mTimeStretcher && mTimeStretcher->numSamples()) { flushedFrames = mTimeStretcher->receiveSamples(reinterpret_cast(wpos), aFrames); wpos += FramesToBytes(flushedFrames); } uint32_t toPopBytes = FramesToBytes(aFrames - flushedFrames); uint32_t available = std::min(toPopBytes, mBuffer.Length()); void* input[2]; uint32_t input_size[2]; mBuffer.PopElements(available, &input[0], &input_size[0], &input[1], &input_size[1]); memcpy(wpos, input[0], input_size[0]); wpos += input_size[0]; memcpy(wpos, input[1], input_size[1]); // First time block now has our first returned sample mReadPoint += BytesToFrames(available); GetBufferInsertTime(aTimeMs); return BytesToFrames(available) + flushedFrames; } // Get unprocessed samples, and pad the beginning of the buffer with silence if // there is not enough data. long AudioStream::GetUnprocessedWithSilencePadding(void* aBuffer, long aFrames, int64_t& aTimeMs) { uint32_t toPopBytes = FramesToBytes(aFrames); uint32_t available = std::min(toPopBytes, mBuffer.Length()); uint32_t silenceOffset = toPopBytes - available; uint8_t* wpos = reinterpret_cast(aBuffer); memset(wpos, 0, silenceOffset); wpos += silenceOffset; void* input[2]; uint32_t input_size[2]; mBuffer.PopElements(available, &input[0], &input_size[0], &input[1], &input_size[1]); memcpy(wpos, input[0], input_size[0]); wpos += input_size[0]; memcpy(wpos, input[1], input_size[1]); GetBufferInsertTime(aTimeMs); return aFrames; } long AudioStream::GetTimeStretched(void* aBuffer, long aFrames, int64_t &aTimeMs) { long processedFrames = 0; // We need to call the non-locking version, because we already have the lock. if (EnsureTimeStretcherInitializedUnlocked() != NS_OK) { return 0; } uint8_t* wpos = reinterpret_cast(aBuffer); double playbackRate = static_cast(mInRate) / mOutRate; uint32_t toPopBytes = FramesToBytes(ceil(aFrames / playbackRate)); uint32_t available = 0; bool lowOnBufferedData = false; do { // Check if we already have enough data in the time stretcher pipeline. if (mTimeStretcher->numSamples() <= static_cast(aFrames)) { void* input[2]; uint32_t input_size[2]; available = std::min(mBuffer.Length(), toPopBytes); if (available != toPopBytes) { lowOnBufferedData = true; } mBuffer.PopElements(available, &input[0], &input_size[0], &input[1], &input_size[1]); mReadPoint += BytesToFrames(available); for(uint32_t i = 0; i < 2; i++) { mTimeStretcher->putSamples(reinterpret_cast(input[i]), BytesToFrames(input_size[i])); } } uint32_t receivedFrames = mTimeStretcher->receiveSamples(reinterpret_cast(wpos), aFrames - processedFrames); wpos += FramesToBytes(receivedFrames); processedFrames += receivedFrames; } while (processedFrames < aFrames && !lowOnBufferedData); GetBufferInsertTime(aTimeMs); return processedFrames; } long AudioStream::DataCallback(void* aBuffer, long aFrames) { MonitorAutoLock mon(mMonitor); uint32_t available = std::min(static_cast(FramesToBytes(aFrames)), mBuffer.Length()); NS_ABORT_IF_FALSE(available % mBytesPerFrame == 0, "Must copy complete frames"); AudioDataValue* output = reinterpret_cast(aBuffer); uint32_t underrunFrames = 0; uint32_t servicedFrames = 0; int64_t insertTime; if (available) { // When we are playing a low latency stream, and it is the first time we are // getting data from the buffer, we prefer to add the silence for an // underrun at the beginning of the buffer, so the first buffer is not cut // in half by the silence inserted to compensate for the underrun. if (mInRate == mOutRate) { if (mLatencyRequest == LowLatency && !mWritten) { servicedFrames = GetUnprocessedWithSilencePadding(output, aFrames, insertTime); } else { servicedFrames = GetUnprocessed(output, aFrames, insertTime); } } else { servicedFrames = GetTimeStretched(output, aFrames, insertTime); } float scaled_volume = float(GetVolumeScale() * mVolume); ScaleAudioSamples(output, aFrames * mOutChannels, scaled_volume); NS_ABORT_IF_FALSE(mBuffer.Length() % mBytesPerFrame == 0, "Must copy complete frames"); // Notify any blocked Write() call that more space is available in mBuffer. mon.NotifyAll(); } else { GetBufferInsertTime(insertTime); } underrunFrames = aFrames - servicedFrames; if (mState != DRAINING) { uint8_t* rpos = static_cast(aBuffer) + FramesToBytes(aFrames - underrunFrames); memset(rpos, 0, FramesToBytes(underrunFrames)); if (underrunFrames) { PR_LOG(gAudioStreamLog, PR_LOG_WARNING, ("AudioStream %p lost %d frames", this, underrunFrames)); } mLostFrames += underrunFrames; servicedFrames += underrunFrames; } WriteDumpFile(mDumpFile, this, aFrames, aBuffer); // Don't log if we're not interested or if the stream is inactive if (PR_LOG_TEST(GetLatencyLog(), PR_LOG_DEBUG) && insertTime != INT64_MAX && servicedFrames > underrunFrames) { uint32_t latency = UINT32_MAX; if (cubeb_stream_get_latency(mCubebStream, &latency)) { NS_WARNING("Could not get latency from cubeb."); } TimeStamp now = TimeStamp::Now(); mLatencyLog->Log(AsyncLatencyLogger::AudioStream, reinterpret_cast(this), insertTime, now); mLatencyLog->Log(AsyncLatencyLogger::Cubeb, reinterpret_cast(mCubebStream.get()), (latency * 1000) / mOutRate, now); } mAudioClock.UpdateWritePosition(servicedFrames); return servicedFrames; } void AudioStream::StateCallback(cubeb_state aState) { MonitorAutoLock mon(mMonitor); if (aState == CUBEB_STATE_DRAINED) { mState = DRAINED; } else if (aState == CUBEB_STATE_ERROR) { mState = ERRORED; } mon.NotifyAll(); } AudioClock::AudioClock(AudioStream* aStream) :mAudioStream(aStream), mOldOutRate(0), mBasePosition(0), mBaseOffset(0), mOldBaseOffset(0), mOldBasePosition(0), mPlaybackRateChangeOffset(0), mPreviousPosition(0), mWritten(0), mOutRate(0), mInRate(0), mPreservesPitch(true), mCompensatingLatency(false) {} void AudioClock::Init() { mOutRate = mAudioStream->GetRate(); mInRate = mAudioStream->GetRate(); mOldOutRate = mOutRate; } void AudioClock::UpdateWritePosition(uint32_t aCount) { mWritten += aCount; } uint64_t AudioClock::GetPosition() { int64_t position = mAudioStream->GetPositionInFramesInternal(); int64_t diffOffset; NS_ASSERTION(position < 0 || (mInRate != 0 && mOutRate != 0), "AudioClock not initialized."); if (position >= 0) { if (position < mPlaybackRateChangeOffset) { // See if we are still playing frames pushed with the old playback rate in // the backend. If we are, use the old output rate to compute the // position. mCompensatingLatency = true; diffOffset = position - mOldBaseOffset; position = static_cast(mOldBasePosition + static_cast(USECS_PER_S * diffOffset) / mOldOutRate); mPreviousPosition = position; return position; } if (mCompensatingLatency) { diffOffset = position - mPlaybackRateChangeOffset; mCompensatingLatency = false; mBasePosition = mPreviousPosition; } else { diffOffset = position - mPlaybackRateChangeOffset; } position = static_cast(mBasePosition + (static_cast(USECS_PER_S * diffOffset) / mOutRate)); return position; } return UINT64_MAX; } uint64_t AudioClock::GetPositionInFrames() { return (GetPosition() * mOutRate) / USECS_PER_S; } void AudioClock::SetPlaybackRate(double aPlaybackRate) { int64_t position = mAudioStream->GetPositionInFramesInternal(); if (position > mPlaybackRateChangeOffset) { mOldBasePosition = mBasePosition; mBasePosition = GetPosition(); mOldBaseOffset = mPlaybackRateChangeOffset; mBaseOffset = position; mPlaybackRateChangeOffset = mWritten; mOldOutRate = mOutRate; mOutRate = static_cast(mInRate / aPlaybackRate); } else { // The playbackRate has been changed before the end of the latency // compensation phase. We don't update the mOld* variable. That way, the // last playbackRate set is taken into account. mBasePosition = GetPosition(); mBaseOffset = position; mPlaybackRateChangeOffset = mWritten; mOutRate = static_cast(mInRate / aPlaybackRate); } } double AudioClock::GetPlaybackRate() { return static_cast(mInRate) / mOutRate; } void AudioClock::SetPreservesPitch(bool aPreservesPitch) { mPreservesPitch = aPreservesPitch; } bool AudioClock::GetPreservesPitch() { return mPreservesPitch; } } // namespace mozilla