/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_PATHHELPERS_H_ #define MOZILLA_GFX_PATHHELPERS_H_ #include "2D.h" #include "mozilla/Constants.h" #include "mozilla/TypedEnum.h" #include "UserData.h" namespace mozilla { namespace gfx { template void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, float aStartAngle, float aEndAngle, bool aAntiClockwise) { Point startPoint(aOrigin.x + cosf(aStartAngle) * aRadius.width, aOrigin.y + sinf(aStartAngle) * aRadius.height); aSink->LineTo(startPoint); // Clockwise we always sweep from the smaller to the larger angle, ccw // it's vice versa. if (!aAntiClockwise && (aEndAngle < aStartAngle)) { Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI))); aEndAngle += float(correction * 2.0f * M_PI); } else if (aAntiClockwise && (aStartAngle < aEndAngle)) { Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI)); aStartAngle += float(correction * 2.0f * M_PI); } // Sweeping more than 2 * pi is a full circle. if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) { aEndAngle = float(aStartAngle + 2.0f * M_PI); } else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) { aEndAngle = float(aStartAngle - 2.0f * M_PI); } // Calculate the total arc we're going to sweep. Float arcSweepLeft = fabs(aEndAngle - aStartAngle); Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; Float currentStartAngle = aStartAngle; while (arcSweepLeft > 0) { // We guarantee here the current point is the start point of the next // curve segment. Float currentEndAngle; if (arcSweepLeft > M_PI / 2.0f) { currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection); } else { currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection; } Point currentStartPoint(aOrigin.x + cosf(currentStartAngle) * aRadius.width, aOrigin.y + sinf(currentStartAngle) * aRadius.height); Point currentEndPoint(aOrigin.x + cosf(currentEndAngle) * aRadius.width, aOrigin.y + sinf(currentEndAngle) * aRadius.height); // Calculate kappa constant for partial curve. The sign of angle in the // tangent will actually ensure this is negative for a counter clockwise // sweep, so changing signs later isn't needed. Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f); Float kappaX = kappaFactor * aRadius.width; Float kappaY = kappaFactor * aRadius.height; Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle)); Point cp1 = currentStartPoint; cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle)); Point cp2 = currentEndPoint; cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); aSink->BezierTo(cp1, cp2, currentEndPoint); arcSweepLeft -= Float(M_PI / 2.0f); currentStartAngle = currentEndAngle; } } /* This is basically the ArcToBezier with the parameters for drawing a circle * inlined which vastly simplifies it and avoids a bunch of transcedental function * calls which should make it faster. */ template void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius) { Point startPoint(aOrigin.x + aRadius.width, aOrigin.y); aSink->LineTo(startPoint); // Calculate kappa constant for partial curve. The sign of angle in the // tangent will actually ensure this is negative for a counter clockwise // sweep, so changing signs later isn't needed. Float kappaFactor = (4.0f / 3.0f) * tan((M_PI/2.0f) / 4.0f); Float kappaX = kappaFactor * aRadius.width; Float kappaY = kappaFactor * aRadius.height; Float cosStartAngle = 1; Float sinStartAngle = 0; for (int i = 0; i < 4; i++) { // We guarantee here the current point is the start point of the next // curve segment. Point currentStartPoint(aOrigin.x + cosStartAngle * aRadius.width, aOrigin.y + sinStartAngle * aRadius.height); Point currentEndPoint(aOrigin.x + -sinStartAngle * aRadius.width, aOrigin.y + cosStartAngle * aRadius.height); Point tangentStart(-sinStartAngle, cosStartAngle); Point cp1 = currentStartPoint; cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); Point revTangentEnd(cosStartAngle, sinStartAngle); Point cp2 = currentEndPoint; cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); aSink->BezierTo(cp1, cp2, currentEndPoint); // cos(x+pi/2) == -sin(x) // sin(x+pi/2) == cos(x) Float tmp = cosStartAngle; cosStartAngle = -sinStartAngle; sinStartAngle = tmp; } } /** * Appends a path represending a rectangle to the path being built by * aPathBuilder. * * aRect The rectangle to append. * aDrawClockwise If set to true, the path will start at the left of the top * left edge and draw clockwise. If set to false the path will * start at the right of the top left edge and draw counter- * clockwise. */ GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, bool aDrawClockwise = true); inline TemporaryRef MakePathForRect(const DrawTarget& aDrawTarget, const Rect& aRect, bool aDrawClockwise = true) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendRectToPath(builder, aRect, aDrawClockwise); return builder->Finish(); } struct RectCornerRadii { Size radii[RectCorner::Count]; RectCornerRadii() {} explicit RectCornerRadii(Float radius) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].SizeTo(radius, radius); } } explicit RectCornerRadii(Float radiusX, Float radiusY) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].SizeTo(radiusX, radiusY); } } RectCornerRadii(Float tl, Float tr, Float br, Float bl) { radii[RectCorner::TopLeft].SizeTo(tl, tl); radii[RectCorner::TopRight].SizeTo(tr, tr); radii[RectCorner::BottomRight].SizeTo(br, br); radii[RectCorner::BottomLeft].SizeTo(bl, bl); } RectCornerRadii(const Size& tl, const Size& tr, const Size& br, const Size& bl) { radii[RectCorner::TopLeft] = tl; radii[RectCorner::TopRight] = tr; radii[RectCorner::BottomRight] = br; radii[RectCorner::BottomLeft] = bl; } const Size& operator[](size_t aCorner) const { return radii[aCorner]; } Size& operator[](size_t aCorner) { return radii[aCorner]; } void Scale(Float aXScale, Float aYScale) { for (int i = 0; i < RectCorner::Count; i++) { radii[i].Scale(aXScale, aYScale); } } const Size TopLeft() const { return radii[RectCorner::TopLeft]; } Size& TopLeft() { return radii[RectCorner::TopLeft]; } const Size TopRight() const { return radii[RectCorner::TopRight]; } Size& TopRight() { return radii[RectCorner::TopRight]; } const Size BottomRight() const { return radii[RectCorner::BottomRight]; } Size& BottomRight() { return radii[RectCorner::BottomRight]; } const Size BottomLeft() const { return radii[RectCorner::BottomLeft]; } Size& BottomLeft() { return radii[RectCorner::BottomLeft]; } }; /** * Appends a path represending a rounded rectangle to the path being built by * aPathBuilder. * * aRect The rectangle to append. * aCornerRadii Contains the radii of the top-left, top-right, bottom-right * and bottom-left corners, in that order. * aDrawClockwise If set to true, the path will start at the left of the top * left edge and draw clockwise. If set to false the path will * start at the right of the top left edge and draw counter- * clockwise. */ GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii, bool aDrawClockwise = true); inline TemporaryRef MakePathForRoundedRect(const DrawTarget& aDrawTarget, const Rect& aRect, const RectCornerRadii& aRadii, bool aDrawClockwise = true) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise); return builder->Finish(); } /** * Appends a path represending an ellipse to the path being built by * aPathBuilder. * * The ellipse extends aDimensions.width / 2.0 in the horizontal direction * from aCenter, and aDimensions.height / 2.0 in the vertical direction. */ GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter, const Size& aDimensions); inline TemporaryRef MakePathForEllipse(const DrawTarget& aDrawTarget, const Point& aCenter, const Size& aDimensions) { RefPtr builder = aDrawTarget.CreatePathBuilder(); AppendEllipseToPath(builder, aCenter, aDimensions); return builder->Finish(); } /** * If aDrawTarget's transform only contains a translation, and if this line is * a horizontal or vertical line, this function will snap the line's vertices * to align with the device pixel grid so that stroking the line with a one * pixel wide stroke will result in a crisp line that is not antialiased over * two pixels across its width. * * @return Returns true if this function snaps aRect's vertices, else returns * false. */ GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2, const DrawTarget& aDrawTarget); /** * This function paints each edge of aRect separately, snapping the edges using * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths * helps ensure not only that the stroke spans a single row of device pixels if * possible, but also that the ends of stroke dashes start and end on device * pixels too. */ GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget, const ColorPattern& aColor, const StrokeOptions& aStrokeOptions); extern UserDataKey sDisablePixelSnapping; /** * If aDrawTarget's transform only contains a translation or, if * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this * function will convert aRect to device space and snap it to device pixels. * This function returns true if aRect is modified, otherwise it returns false. * * Note that the snapping is such that filling the rect using a DrawTarget * which has the identity matrix as its transform will result in crisp edges. * (That is, aRect will have integer values, aligning its edges between pixel * boundaries.) If on the other hand you stroking the rect with an odd valued * stroke width then the edges of the stroke will be antialiased (assuming an * AntialiasMode that does antialiasing). */ inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget, bool aAllowScaleOr90DegreeRotate = false) { if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) { return false; } Matrix mat = aDrawTarget.GetTransform(); const Float epsilon = 0.0000001f; #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) if (!aAllowScaleOr90DegreeRotate && (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) || !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) { // We have non-translation, but only translation is allowed. return false; } #undef WITHIN_E Point p1 = mat * aRect.TopLeft(); Point p2 = mat * aRect.TopRight(); Point p3 = mat * aRect.BottomRight(); // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, // two opposite corners define the entire rectangle. So check if // the axis-aligned rectangle with opposite corners p1 and p3 // define an axis-aligned rectangle whose other corners are p2 and p4. // We actually only need to check one of p2 and p4, since an affine // transform maps parallelograms to parallelograms. if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { p1.Round(); p3.Round(); aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), std::max(p1.y, p3.y) - aRect.Y())); return true; } return false; } /** * This function has the same behavior as UserToDevicePixelSnapped except that * aRect is not transformed to device space. */ inline void MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget, bool aIgnoreScale = false) { if (UserToDevicePixelSnapped(aRect, aDrawTarget, aIgnoreScale)) { // Since UserToDevicePixelSnapped returned true we know there is no // rotation/skew in 'mat', so we can just use TransformBounds() here. Matrix mat = aDrawTarget.GetTransform(); mat.Invert(); aRect = mat.TransformBounds(aRect); } } } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_PATHHELPERS_H_ */