/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * Double hashing implementation. */ #include #include #include #include "pldhash.h" #include "mozilla/HashFunctions.h" #include "mozilla/MathAlgorithms.h" #include "nsDebug.h" /* for PR_ASSERT */ #include "nsAlgorithm.h" #include "mozilla/Likely.h" #include "mozilla/MemoryReporting.h" #include "mozilla/ChaosMode.h" #ifdef PL_DHASHMETER # define METER(x) x #else # define METER(x) /* nothing */ #endif /* * The following DEBUG-only code is used to assert that calls to one of * table->ops or to an enumerator do not cause re-entry into a call that * can mutate the table. */ #ifdef DEBUG /* * Most callers that assert about the recursion level don't care about * this magical value because they are asserting that mutation is * allowed (and therefore the level is 0 or 1, depending on whether they * incremented it). * * Only PL_DHashTableFinish needs to allow this special value. */ #define IMMUTABLE_RECURSION_LEVEL ((uint16_t)-1) #define RECURSION_LEVEL_SAFE_TO_FINISH(table_) \ (table_->recursionLevel == 0 || \ table_->recursionLevel == IMMUTABLE_RECURSION_LEVEL) #define INCREMENT_RECURSION_LEVEL(table_) \ do { \ if (table_->recursionLevel != IMMUTABLE_RECURSION_LEVEL) \ ++table_->recursionLevel; \ } while(0) #define DECREMENT_RECURSION_LEVEL(table_) \ do { \ if (table_->recursionLevel != IMMUTABLE_RECURSION_LEVEL) { \ MOZ_ASSERT(table_->recursionLevel > 0); \ --table_->recursionLevel; \ } \ } while(0) #else #define INCREMENT_RECURSION_LEVEL(table_) do { } while(0) #define DECREMENT_RECURSION_LEVEL(table_) do { } while(0) #endif /* defined(DEBUG) */ using namespace mozilla; void* PL_DHashAllocTable(PLDHashTable* aTable, uint32_t aNBytes) { return malloc(aNBytes); } void PL_DHashFreeTable(PLDHashTable* aTable, void* aPtr) { free(aPtr); } PLDHashNumber PL_DHashStringKey(PLDHashTable* aTable, const void* aKey) { return HashString(static_cast(aKey)); } PLDHashNumber PL_DHashVoidPtrKeyStub(PLDHashTable* aTable, const void* aKey) { return (PLDHashNumber)(ptrdiff_t)aKey >> 2; } bool PL_DHashMatchEntryStub(PLDHashTable* aTable, const PLDHashEntryHdr* aEntry, const void* aKey) { const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry; return stub->key == aKey; } bool PL_DHashMatchStringKey(PLDHashTable* aTable, const PLDHashEntryHdr* aEntry, const void* aKey) { const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry; /* XXX tolerate null keys on account of sloppy Mozilla callers. */ return stub->key == aKey || (stub->key && aKey && strcmp((const char*)stub->key, (const char*)aKey) == 0); } void PL_DHashMoveEntryStub(PLDHashTable* aTable, const PLDHashEntryHdr* aFrom, PLDHashEntryHdr* aTo) { memcpy(aTo, aFrom, aTable->entrySize); } void PL_DHashClearEntryStub(PLDHashTable* aTable, PLDHashEntryHdr* aEntry) { memset(aEntry, 0, aTable->entrySize); } void PL_DHashFreeStringKey(PLDHashTable* aTable, PLDHashEntryHdr* aEntry) { const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry; free((void*)stub->key); memset(aEntry, 0, aTable->entrySize); } void PL_DHashFinalizeStub(PLDHashTable* aTable) { } static const PLDHashTableOps stub_ops = { PL_DHashAllocTable, PL_DHashFreeTable, PL_DHashVoidPtrKeyStub, PL_DHashMatchEntryStub, PL_DHashMoveEntryStub, PL_DHashClearEntryStub, PL_DHashFinalizeStub, nullptr }; const PLDHashTableOps* PL_DHashGetStubOps(void) { return &stub_ops; } static bool SizeOfEntryStore(uint32_t aCapacity, uint32_t aEntrySize, uint32_t* aNbytes) { uint64_t nbytes64 = uint64_t(aCapacity) * uint64_t(aEntrySize); *aNbytes = aCapacity * aEntrySize; return uint64_t(*aNbytes) == nbytes64; // returns false on overflow } PLDHashTable* PL_NewDHashTable(const PLDHashTableOps* aOps, void* aData, uint32_t aEntrySize, uint32_t aCapacity) { PLDHashTable* table = (PLDHashTable*)malloc(sizeof(*table)); if (!table) { return nullptr; } if (!PL_DHashTableInit(table, aOps, aData, aEntrySize, aCapacity, fallible_t())) { free(table); return nullptr; } return table; } void PL_DHashTableDestroy(PLDHashTable* aTable) { PL_DHashTableFinish(aTable); free(aTable); } bool PL_DHashTableInit(PLDHashTable* aTable, const PLDHashTableOps* aOps, void* aData, uint32_t aEntrySize, uint32_t aCapacity, const fallible_t&) { #ifdef DEBUG if (aEntrySize > 16 * sizeof(void*)) { printf_stderr( "pldhash: for the aTable at address %p, the given aEntrySize" " of %lu definitely favors chaining over double hashing.\n", (void*)aTable, (unsigned long) aEntrySize); } #endif aTable->ops = aOps; aTable->data = aData; if (aCapacity < PL_DHASH_MIN_SIZE) { aCapacity = PL_DHASH_MIN_SIZE; } int log2 = CeilingLog2(aCapacity); aCapacity = 1u << log2; if (aCapacity > PL_DHASH_MAX_SIZE) { return false; } aTable->hashShift = PL_DHASH_BITS - log2; aTable->entrySize = aEntrySize; aTable->entryCount = aTable->removedCount = 0; aTable->generation = 0; uint32_t nbytes; if (!SizeOfEntryStore(aCapacity, aEntrySize, &nbytes)) return false; // overflowed aTable->entryStore = (char*)aOps->allocTable(aTable, nbytes); if (!aTable->entryStore) { return false; } memset(aTable->entryStore, 0, nbytes); METER(memset(&aTable->stats, 0, sizeof(aTable->stats))); #ifdef DEBUG aTable->recursionLevel = 0; #endif return true; } void PL_DHashTableInit(PLDHashTable* aTable, const PLDHashTableOps* aOps, void* aData, uint32_t aEntrySize, uint32_t aCapacity) { if (!PL_DHashTableInit(aTable, aOps, aData, aEntrySize, aCapacity, fallible_t())) { if (aCapacity > PL_DHASH_MAX_SIZE) { MOZ_CRASH(); } uint32_t nbytes; if (!SizeOfEntryStore(aCapacity, aEntrySize, &nbytes)) { MOZ_CRASH(); } NS_ABORT_OOM(nbytes); } } /* * Compute max and min load numbers (entry counts). We have a secondary max * that allows us to overload a table reasonably if it cannot be grown further * (i.e. if ChangeTable() fails). The table slows down drastically if the * secondary max is too close to 1, but 0.96875 gives only a slight slowdown * while allowing 1.3x more elements. */ static inline uint32_t MaxLoad(uint32_t aSize) { return aSize - (aSize >> 2); // == aSize * 0.75 } static inline uint32_t MaxLoadOnGrowthFailure(uint32_t aSize) { return aSize - (aSize >> 5); // == aSize * 0.96875 } static inline uint32_t MinLoad(uint32_t aSize) { return aSize >> 2; // == aSize * 0.25 } /* * Double hashing needs the second hash code to be relatively prime to table * size, so we simply make hash2 odd. */ #define HASH1(hash0, shift) ((hash0) >> (shift)) #define HASH2(hash0,log2,shift) ((((hash0) << (log2)) >> (shift)) | 1) /* * Reserve keyHash 0 for free entries and 1 for removed-entry sentinels. Note * that a removed-entry sentinel need be stored only if the removed entry had * a colliding entry added after it. Therefore we can use 1 as the collision * flag in addition to the removed-entry sentinel value. Multiplicative hash * uses the high order bits of keyHash, so this least-significant reservation * should not hurt the hash function's effectiveness much. * * If you change any of these magic numbers, also update PL_DHASH_ENTRY_IS_LIVE * in pldhash.h. It used to be private to pldhash.c, but then became public to * assist iterator writers who inspect table->entryStore directly. */ #define COLLISION_FLAG ((PLDHashNumber) 1) #define MARK_ENTRY_FREE(entry) ((entry)->keyHash = 0) #define MARK_ENTRY_REMOVED(entry) ((entry)->keyHash = 1) #define ENTRY_IS_REMOVED(entry) ((entry)->keyHash == 1) #define ENTRY_IS_LIVE(entry) PL_DHASH_ENTRY_IS_LIVE(entry) #define ENSURE_LIVE_KEYHASH(hash0) if (hash0 < 2) hash0 -= 2; else (void)0 /* Match an entry's keyHash against an unstored one computed from a key. */ #define MATCH_ENTRY_KEYHASH(entry,hash0) \ (((entry)->keyHash & ~COLLISION_FLAG) == (hash0)) /* Compute the address of the indexed entry in table. */ #define ADDRESS_ENTRY(table, index) \ ((PLDHashEntryHdr *)((table)->entryStore + (index) * (table)->entrySize)) void PL_DHashTableFinish(PLDHashTable* aTable) { INCREMENT_RECURSION_LEVEL(aTable); /* Call finalize before clearing entries, so it can enumerate them. */ aTable->ops->finalize(aTable); /* Clear any remaining live entries. */ char* entryAddr = aTable->entryStore; uint32_t entrySize = aTable->entrySize; char* entryLimit = entryAddr + PL_DHASH_TABLE_SIZE(aTable) * entrySize; while (entryAddr < entryLimit) { PLDHashEntryHdr* entry = (PLDHashEntryHdr*)entryAddr; if (ENTRY_IS_LIVE(entry)) { METER(aTable->stats.removeEnums++); aTable->ops->clearEntry(aTable, entry); } entryAddr += entrySize; } DECREMENT_RECURSION_LEVEL(aTable); MOZ_ASSERT(RECURSION_LEVEL_SAFE_TO_FINISH(aTable)); /* Free entry storage last. */ aTable->ops->freeTable(aTable, aTable->entryStore); } static PLDHashEntryHdr* PL_DHASH_FASTCALL SearchTable(PLDHashTable* aTable, const void* aKey, PLDHashNumber aKeyHash, PLDHashOperator aOp) { METER(aTable->stats.searches++); NS_ASSERTION(!(aKeyHash & COLLISION_FLAG), "!(aKeyHash & COLLISION_FLAG)"); /* Compute the primary hash address. */ int hashShift = aTable->hashShift; PLDHashNumber hash1 = HASH1(aKeyHash, hashShift); PLDHashEntryHdr* entry = ADDRESS_ENTRY(aTable, hash1); /* Miss: return space for a new entry. */ if (PL_DHASH_ENTRY_IS_FREE(entry)) { METER(aTable->stats.misses++); return entry; } /* Hit: return entry. */ PLDHashMatchEntry matchEntry = aTable->ops->matchEntry; if (MATCH_ENTRY_KEYHASH(entry, aKeyHash) && matchEntry(aTable, entry, aKey)) { METER(aTable->stats.hits++); return entry; } /* Collision: double hash. */ int sizeLog2 = PL_DHASH_BITS - aTable->hashShift; PLDHashNumber hash2 = HASH2(aKeyHash, sizeLog2, hashShift); uint32_t sizeMask = (1u << sizeLog2) - 1; /* Save the first removed entry pointer so PL_DHASH_ADD can recycle it. */ PLDHashEntryHdr* firstRemoved = nullptr; for (;;) { if (MOZ_UNLIKELY(ENTRY_IS_REMOVED(entry))) { if (!firstRemoved) { firstRemoved = entry; } } else { if (aOp == PL_DHASH_ADD) { entry->keyHash |= COLLISION_FLAG; } } METER(aTable->stats.steps++); hash1 -= hash2; hash1 &= sizeMask; entry = ADDRESS_ENTRY(aTable, hash1); if (PL_DHASH_ENTRY_IS_FREE(entry)) { METER(aTable->stats.misses++); return (firstRemoved && aOp == PL_DHASH_ADD) ? firstRemoved : entry; } if (MATCH_ENTRY_KEYHASH(entry, aKeyHash) && matchEntry(aTable, entry, aKey)) { METER(aTable->stats.hits++); return entry; } } /* NOTREACHED */ return nullptr; } /* * This is a copy of SearchTable, used by ChangeTable, hardcoded to * 1. assume |aOp == PL_DHASH_ADD|, * 2. assume that |aKey| will never match an existing entry, and * 3. assume that no entries have been removed from the current table * structure. * Avoiding the need for |aKey| means we can avoid needing a way to map * entries to keys, which means callers can use complex key types more * easily. */ static PLDHashEntryHdr* PL_DHASH_FASTCALL FindFreeEntry(PLDHashTable* aTable, PLDHashNumber aKeyHash) { METER(aTable->stats.searches++); NS_ASSERTION(!(aKeyHash & COLLISION_FLAG), "!(aKeyHash & COLLISION_FLAG)"); /* Compute the primary hash address. */ int hashShift = aTable->hashShift; PLDHashNumber hash1 = HASH1(aKeyHash, hashShift); PLDHashEntryHdr* entry = ADDRESS_ENTRY(aTable, hash1); /* Miss: return space for a new entry. */ if (PL_DHASH_ENTRY_IS_FREE(entry)) { METER(aTable->stats.misses++); return entry; } /* Collision: double hash. */ int sizeLog2 = PL_DHASH_BITS - aTable->hashShift; PLDHashNumber hash2 = HASH2(aKeyHash, sizeLog2, hashShift); uint32_t sizeMask = (1u << sizeLog2) - 1; for (;;) { NS_ASSERTION(!ENTRY_IS_REMOVED(entry), "!ENTRY_IS_REMOVED(entry)"); entry->keyHash |= COLLISION_FLAG; METER(aTable->stats.steps++); hash1 -= hash2; hash1 &= sizeMask; entry = ADDRESS_ENTRY(aTable, hash1); if (PL_DHASH_ENTRY_IS_FREE(entry)) { METER(aTable->stats.misses++); return entry; } } /* NOTREACHED */ return nullptr; } static bool ChangeTable(PLDHashTable* aTable, int aDeltaLog2) { /* Look, but don't touch, until we succeed in getting new entry store. */ int oldLog2 = PL_DHASH_BITS - aTable->hashShift; int newLog2 = oldLog2 + aDeltaLog2; uint32_t newCapacity = 1u << newLog2; if (newCapacity > PL_DHASH_MAX_SIZE) { return false; } uint32_t entrySize = aTable->entrySize; uint32_t nbytes; if (!SizeOfEntryStore(newCapacity, entrySize, &nbytes)) { return false; // overflowed } char* newEntryStore = (char*)aTable->ops->allocTable(aTable, nbytes); if (!newEntryStore) { return false; } /* We can't fail from here on, so update table parameters. */ #ifdef DEBUG uint32_t recursionLevel = aTable->recursionLevel; #endif aTable->hashShift = PL_DHASH_BITS - newLog2; aTable->removedCount = 0; aTable->generation++; /* Assign the new entry store to table. */ memset(newEntryStore, 0, nbytes); char* oldEntryStore; char* oldEntryAddr; oldEntryAddr = oldEntryStore = aTable->entryStore; aTable->entryStore = newEntryStore; PLDHashMoveEntry moveEntry = aTable->ops->moveEntry; #ifdef DEBUG aTable->recursionLevel = recursionLevel; #endif /* Copy only live entries, leaving removed ones behind. */ uint32_t oldCapacity = 1u << oldLog2; for (uint32_t i = 0; i < oldCapacity; ++i) { PLDHashEntryHdr* oldEntry = (PLDHashEntryHdr*)oldEntryAddr; if (ENTRY_IS_LIVE(oldEntry)) { oldEntry->keyHash &= ~COLLISION_FLAG; PLDHashEntryHdr* newEntry = FindFreeEntry(aTable, oldEntry->keyHash); NS_ASSERTION(PL_DHASH_ENTRY_IS_FREE(newEntry), "PL_DHASH_ENTRY_IS_FREE(newEntry)"); moveEntry(aTable, oldEntry, newEntry); newEntry->keyHash = oldEntry->keyHash; } oldEntryAddr += entrySize; } aTable->ops->freeTable(aTable, oldEntryStore); return true; } PLDHashEntryHdr* PL_DHASH_FASTCALL PL_DHashTableOperate(PLDHashTable* aTable, const void* aKey, PLDHashOperator aOp) { PLDHashEntryHdr* entry; MOZ_ASSERT(aOp == PL_DHASH_LOOKUP || aTable->recursionLevel == 0); INCREMENT_RECURSION_LEVEL(aTable); PLDHashNumber keyHash = aTable->ops->hashKey(aTable, aKey); keyHash *= PL_DHASH_GOLDEN_RATIO; /* Avoid 0 and 1 hash codes, they indicate free and removed entries. */ ENSURE_LIVE_KEYHASH(keyHash); keyHash &= ~COLLISION_FLAG; switch (aOp) { case PL_DHASH_LOOKUP: METER(aTable->stats.lookups++); entry = SearchTable(aTable, aKey, keyHash, aOp); break; case PL_DHASH_ADD: { /* * If alpha is >= .75, grow or compress the table. If aKey is already * in the table, we may grow once more than necessary, but only if we * are on the edge of being overloaded. */ uint32_t size = PL_DHASH_TABLE_SIZE(aTable); if (aTable->entryCount + aTable->removedCount >= MaxLoad(size)) { /* Compress if a quarter or more of all entries are removed. */ int deltaLog2; if (aTable->removedCount >= size >> 2) { METER(aTable->stats.compresses++); deltaLog2 = 0; } else { METER(aTable->stats.grows++); deltaLog2 = 1; } /* * Grow or compress aTable. If ChangeTable() fails, allow * overloading up to the secondary max. Once we hit the secondary * max, return null. */ if (!ChangeTable(aTable, deltaLog2) && aTable->entryCount + aTable->removedCount >= MaxLoadOnGrowthFailure(size)) { METER(aTable->stats.addFailures++); entry = nullptr; break; } } /* * Look for entry after possibly growing, so we don't have to add it, * then skip it while growing the table and re-add it after. */ entry = SearchTable(aTable, aKey, keyHash, aOp); if (!ENTRY_IS_LIVE(entry)) { /* Initialize the entry, indicating that it's no longer free. */ METER(aTable->stats.addMisses++); if (ENTRY_IS_REMOVED(entry)) { METER(aTable->stats.addOverRemoved++); aTable->removedCount--; keyHash |= COLLISION_FLAG; } if (aTable->ops->initEntry && !aTable->ops->initEntry(aTable, entry, aKey)) { /* We haven't claimed entry yet; fail with null return. */ memset(entry + 1, 0, aTable->entrySize - sizeof(*entry)); entry = nullptr; break; } entry->keyHash = keyHash; aTable->entryCount++; } METER(else { aTable->stats.addHits++; }); break; } case PL_DHASH_REMOVE: entry = SearchTable(aTable, aKey, keyHash, aOp); if (ENTRY_IS_LIVE(entry)) { /* Clear this entry and mark it as "removed". */ METER(aTable->stats.removeHits++); PL_DHashTableRawRemove(aTable, entry); /* Shrink if alpha is <= .25 and aTable isn't too small already. */ uint32_t size = PL_DHASH_TABLE_SIZE(aTable); if (size > PL_DHASH_MIN_SIZE && aTable->entryCount <= MinLoad(size)) { METER(aTable->stats.shrinks++); (void) ChangeTable(aTable, -1); } } METER(else { aTable->stats.removeMisses++; }); entry = nullptr; break; default: NS_NOTREACHED("0"); entry = nullptr; } DECREMENT_RECURSION_LEVEL(aTable); return entry; } void PL_DHashTableRawRemove(PLDHashTable* aTable, PLDHashEntryHdr* aEntry) { MOZ_ASSERT(aTable->recursionLevel != IMMUTABLE_RECURSION_LEVEL); NS_ASSERTION(PL_DHASH_ENTRY_IS_LIVE(aEntry), "PL_DHASH_ENTRY_IS_LIVE(aEntry)"); /* Load keyHash first in case clearEntry() goofs it. */ PLDHashNumber keyHash = aEntry->keyHash; aTable->ops->clearEntry(aTable, aEntry); if (keyHash & COLLISION_FLAG) { MARK_ENTRY_REMOVED(aEntry); aTable->removedCount++; } else { METER(aTable->stats.removeFrees++); MARK_ENTRY_FREE(aEntry); } aTable->entryCount--; } uint32_t PL_DHashTableEnumerate(PLDHashTable* aTable, PLDHashEnumerator aEtor, void* aArg) { INCREMENT_RECURSION_LEVEL(aTable); char* entryAddr = aTable->entryStore; uint32_t entrySize = aTable->entrySize; uint32_t capacity = PL_DHASH_TABLE_SIZE(aTable); uint32_t tableSize = capacity * entrySize; char* entryLimit = entryAddr + tableSize; uint32_t i = 0; bool didRemove = false; if (ChaosMode::isActive()) { // Start iterating at a random point in the hashtable. It would be // even more chaotic to iterate in fully random order, but that's a lot // more work. entryAddr += ChaosMode::randomUint32LessThan(capacity) * entrySize; if (entryAddr >= entryLimit) { entryAddr -= tableSize; } } for (uint32_t e = 0; e < capacity; ++e) { PLDHashEntryHdr* entry = (PLDHashEntryHdr*)entryAddr; if (ENTRY_IS_LIVE(entry)) { PLDHashOperator op = aEtor(aTable, entry, i++, aArg); if (op & PL_DHASH_REMOVE) { METER(aTable->stats.removeEnums++); PL_DHashTableRawRemove(aTable, entry); didRemove = true; } if (op & PL_DHASH_STOP) { break; } } entryAddr += entrySize; if (entryAddr >= entryLimit) { entryAddr -= tableSize; } } MOZ_ASSERT(!didRemove || aTable->recursionLevel == 1); /* * Shrink or compress if a quarter or more of all entries are removed, or * if the table is underloaded according to the minimum alpha, and is not * minimal-size already. Do this only if we removed above, so non-removing * enumerations can count on stable aTable->entryStore until the next * non-lookup-Operate or removing-Enumerate. */ if (didRemove && (aTable->removedCount >= capacity >> 2 || (capacity > PL_DHASH_MIN_SIZE && aTable->entryCount <= MinLoad(capacity)))) { METER(aTable->stats.enumShrinks++); capacity = aTable->entryCount; capacity += capacity >> 1; if (capacity < PL_DHASH_MIN_SIZE) { capacity = PL_DHASH_MIN_SIZE; } uint32_t ceiling = CeilingLog2(capacity); ceiling -= PL_DHASH_BITS - aTable->hashShift; (void) ChangeTable(aTable, ceiling); } DECREMENT_RECURSION_LEVEL(aTable); return i; } struct SizeOfEntryExcludingThisArg { size_t total; PLDHashSizeOfEntryExcludingThisFun sizeOfEntryExcludingThis; MallocSizeOf mallocSizeOf; void* arg; // the arg passed by the user }; static PLDHashOperator SizeOfEntryExcludingThisEnumerator(PLDHashTable* aTable, PLDHashEntryHdr* aHdr, uint32_t aNumber, void* aArg) { SizeOfEntryExcludingThisArg* e = (SizeOfEntryExcludingThisArg*)aArg; e->total += e->sizeOfEntryExcludingThis(aHdr, e->mallocSizeOf, e->arg); return PL_DHASH_NEXT; } size_t PL_DHashTableSizeOfExcludingThis( const PLDHashTable* aTable, PLDHashSizeOfEntryExcludingThisFun aSizeOfEntryExcludingThis, MallocSizeOf aMallocSizeOf, void* aArg /* = nullptr */) { size_t n = 0; n += aMallocSizeOf(aTable->entryStore); if (aSizeOfEntryExcludingThis) { SizeOfEntryExcludingThisArg arg2 = { 0, aSizeOfEntryExcludingThis, aMallocSizeOf, aArg }; PL_DHashTableEnumerate(const_cast(aTable), SizeOfEntryExcludingThisEnumerator, &arg2); n += arg2.total; } return n; } size_t PL_DHashTableSizeOfIncludingThis( const PLDHashTable* aTable, PLDHashSizeOfEntryExcludingThisFun aSizeOfEntryExcludingThis, MallocSizeOf aMallocSizeOf, void* aArg /* = nullptr */) { return aMallocSizeOf(aTable) + PL_DHashTableSizeOfExcludingThis(aTable, aSizeOfEntryExcludingThis, aMallocSizeOf, aArg); } #ifdef DEBUG void PL_DHashMarkTableImmutable(PLDHashTable* aTable) { aTable->recursionLevel = IMMUTABLE_RECURSION_LEVEL; } #endif #ifdef PL_DHASHMETER #include void PL_DHashTableDumpMeter(PLDHashTable* aTable, PLDHashEnumerator aDump, FILE* aFp) { PLDHashNumber hash1, hash2, maxChainHash1, maxChainHash2; double sqsum, mean, variance, sigma; PLDHashEntryHdr* entry; char* entryAddr = aTable->entryStore; uint32_t entrySize = aTable->entrySize; int hashShift = aTable->hashShift; int sizeLog2 = PL_DHASH_BITS - hashShift; uint32_t tableSize = PL_DHASH_TABLE_SIZE(aTable); uint32_t sizeMask = (1u << sizeLog2) - 1; uint32_t chainCount = 0, maxChainLen = 0; hash2 = 0; sqsum = 0; for (uint32_t i = 0; i < tableSize; i++) { entry = (PLDHashEntryHdr*)entryAddr; entryAddr += entrySize; if (!ENTRY_IS_LIVE(entry)) { continue; } hash1 = HASH1(entry->keyHash & ~COLLISION_FLAG, hashShift); PLDHashNumber saveHash1 = hash1; PLDHashEntryHdr* probe = ADDRESS_ENTRY(aTable, hash1); uint32_t chainLen = 1; if (probe == entry) { /* Start of a (possibly unit-length) chain. */ chainCount++; } else { hash2 = HASH2(entry->keyHash & ~COLLISION_FLAG, sizeLog2, hashShift); do { chainLen++; hash1 -= hash2; hash1 &= sizeMask; probe = ADDRESS_ENTRY(aTable, hash1); } while (probe != entry); } sqsum += chainLen * chainLen; if (chainLen > maxChainLen) { maxChainLen = chainLen; maxChainHash1 = saveHash1; maxChainHash2 = hash2; } } uint32_t entryCount = aTable->entryCount; if (entryCount && chainCount) { mean = (double)entryCount / chainCount; variance = chainCount * sqsum - entryCount * entryCount; if (variance < 0 || chainCount == 1) { variance = 0; } else { variance /= chainCount * (chainCount - 1); } sigma = sqrt(variance); } else { mean = sigma = 0; } fprintf(aFp, "Double hashing statistics:\n"); fprintf(aFp, " table size (in entries): %u\n", tableSize); fprintf(aFp, " number of entries: %u\n", aTable->entryCount); fprintf(aFp, " number of removed entries: %u\n", aTable->removedCount); fprintf(aFp, " number of searches: %u\n", aTable->stats.searches); fprintf(aFp, " number of hits: %u\n", aTable->stats.hits); fprintf(aFp, " number of misses: %u\n", aTable->stats.misses); fprintf(aFp, " mean steps per search: %g\n", aTable->stats.searches ? (double)aTable->stats.steps / aTable->stats.searches : 0.); fprintf(aFp, " mean hash chain length: %g\n", mean); fprintf(aFp, " standard deviation: %g\n", sigma); fprintf(aFp, " maximum hash chain length: %u\n", maxChainLen); fprintf(aFp, " number of lookups: %u\n", aTable->stats.lookups); fprintf(aFp, " adds that made a new entry: %u\n", aTable->stats.addMisses); fprintf(aFp, "adds that recycled removeds: %u\n", aTable->stats.addOverRemoved); fprintf(aFp, " adds that found an entry: %u\n", aTable->stats.addHits); fprintf(aFp, " add failures: %u\n", aTable->stats.addFailures); fprintf(aFp, " useful removes: %u\n", aTable->stats.removeHits); fprintf(aFp, " useless removes: %u\n", aTable->stats.removeMisses); fprintf(aFp, "removes that freed an entry: %u\n", aTable->stats.removeFrees); fprintf(aFp, " removes while enumerating: %u\n", aTable->stats.removeEnums); fprintf(aFp, " number of grows: %u\n", aTable->stats.grows); fprintf(aFp, " number of shrinks: %u\n", aTable->stats.shrinks); fprintf(aFp, " number of compresses: %u\n", aTable->stats.compresses); fprintf(aFp, "number of enumerate shrinks: %u\n", aTable->stats.enumShrinks); if (aDump && maxChainLen && hash2) { fputs("Maximum hash chain:\n", aFp); hash1 = maxChainHash1; hash2 = maxChainHash2; entry = ADDRESS_ENTRY(aTable, hash1); uint32_t i = 0; do { if (aDump(aTable, entry, i++, aFp) != PL_DHASH_NEXT) { break; } hash1 -= hash2; hash1 &= sizeMask; entry = ADDRESS_ENTRY(aTable, hash1); } while (PL_DHASH_ENTRY_IS_BUSY(entry)); } } #endif /* PL_DHASHMETER */