/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set sw=2 sts=2 ts=8 et tw=80 : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsBaseChannel.h" #include "nsURLHelper.h" #include "nsNetUtil.h" #include "nsMimeTypes.h" #include "nsIHttpEventSink.h" #include "nsIHttpChannel.h" #include "nsIChannelEventSink.h" #include "nsIStreamConverterService.h" #include "nsChannelClassifier.h" #include "nsAsyncRedirectVerifyHelper.h" #include "nsProxyRelease.h" #include "nsXULAppAPI.h" static PLDHashOperator CopyProperties(const nsAString &key, nsIVariant *data, void *closure) { nsIWritablePropertyBag *bag = static_cast(closure); bag->SetProperty(key, data); return PL_DHASH_NEXT; } // This class is used to suspend a request across a function scope. class ScopedRequestSuspender { public: explicit ScopedRequestSuspender(nsIRequest *request) : mRequest(request) { if (mRequest && NS_FAILED(mRequest->Suspend())) { NS_WARNING("Couldn't suspend pump"); mRequest = nullptr; } } ~ScopedRequestSuspender() { if (mRequest) mRequest->Resume(); } private: nsIRequest *mRequest; }; // Used to suspend data events from mPump within a function scope. This is // usually needed when a function makes callbacks that could process events. #define SUSPEND_PUMP_FOR_SCOPE() \ ScopedRequestSuspender pump_suspender__(mPump) //----------------------------------------------------------------------------- // nsBaseChannel nsBaseChannel::nsBaseChannel() : mLoadFlags(LOAD_NORMAL) , mQueriedProgressSink(true) , mSynthProgressEvents(false) , mAllowThreadRetargeting(true) , mWasOpened(false) , mWaitingOnAsyncRedirect(false) , mStatus(NS_OK) , mContentDispositionHint(UINT32_MAX) , mContentLength(-1) { mContentType.AssignLiteral(UNKNOWN_CONTENT_TYPE); } nsBaseChannel::~nsBaseChannel() { if (mLoadInfo) { nsCOMPtr mainThread; NS_GetMainThread(getter_AddRefs(mainThread)); nsILoadInfo *forgetableLoadInfo; mLoadInfo.forget(&forgetableLoadInfo); NS_ProxyRelease(mainThread, forgetableLoadInfo, false); } } nsresult nsBaseChannel::Redirect(nsIChannel *newChannel, uint32_t redirectFlags, bool openNewChannel) { SUSPEND_PUMP_FOR_SCOPE(); // Transfer properties newChannel->SetLoadGroup(mLoadGroup); newChannel->SetNotificationCallbacks(mCallbacks); newChannel->SetLoadFlags(mLoadFlags | LOAD_REPLACE); // Try to preserve the privacy bit if it has been overridden if (mPrivateBrowsingOverriden) { nsCOMPtr newPBChannel = do_QueryInterface(newChannel); if (newPBChannel) { newPBChannel->SetPrivate(mPrivateBrowsing); } } nsCOMPtr bag = ::do_QueryInterface(newChannel); if (bag) mPropertyHash.EnumerateRead(CopyProperties, bag.get()); // Notify consumer, giving chance to cancel redirect. For backwards compat, // we support nsIHttpEventSink if we are an HTTP channel and if this is not // an internal redirect. nsRefPtr redirectCallbackHelper = new nsAsyncRedirectVerifyHelper(); bool checkRedirectSynchronously = !openNewChannel; mRedirectChannel = newChannel; mRedirectFlags = redirectFlags; mOpenRedirectChannel = openNewChannel; nsresult rv = redirectCallbackHelper->Init(this, newChannel, redirectFlags, checkRedirectSynchronously); if (NS_FAILED(rv)) return rv; if (checkRedirectSynchronously && NS_FAILED(mStatus)) return mStatus; return NS_OK; } nsresult nsBaseChannel::ContinueRedirect() { // Backwards compat for non-internal redirects from a HTTP channel. // XXX Is our http channel implementation going to derive from nsBaseChannel? // If not, this code can be removed. if (!(mRedirectFlags & nsIChannelEventSink::REDIRECT_INTERNAL)) { nsCOMPtr httpChannel = do_QueryInterface(); if (httpChannel) { nsCOMPtr httpEventSink; GetCallback(httpEventSink); if (httpEventSink) { nsresult rv = httpEventSink->OnRedirect(httpChannel, mRedirectChannel); if (NS_FAILED(rv)) { return rv; } } } } // Make sure to do this _after_ making all the OnChannelRedirect calls mRedirectChannel->SetOriginalURI(OriginalURI()); // If we fail to open the new channel, then we want to leave this channel // unaffected, so we defer tearing down our channel until we have succeeded // with the redirect. if (mOpenRedirectChannel) { nsresult rv = mRedirectChannel->AsyncOpen(mListener, mListenerContext); if (NS_FAILED(rv)) return rv; } mRedirectChannel = nullptr; // close down this channel Cancel(NS_BINDING_REDIRECTED); ChannelDone(); return NS_OK; } bool nsBaseChannel::HasContentTypeHint() const { NS_ASSERTION(!Pending(), "HasContentTypeHint called too late"); return !mContentType.EqualsLiteral(UNKNOWN_CONTENT_TYPE); } nsresult nsBaseChannel::PushStreamConverter(const char *fromType, const char *toType, bool invalidatesContentLength, nsIStreamListener **result) { NS_ASSERTION(mListener, "no listener"); nsresult rv; nsCOMPtr scs = do_GetService(NS_STREAMCONVERTERSERVICE_CONTRACTID, &rv); if (NS_FAILED(rv)) return rv; nsCOMPtr converter; rv = scs->AsyncConvertData(fromType, toType, mListener, mListenerContext, getter_AddRefs(converter)); if (NS_SUCCEEDED(rv)) { mListener = converter; if (invalidatesContentLength) mContentLength = -1; if (result) { *result = nullptr; converter.swap(*result); } } return rv; } nsresult nsBaseChannel::BeginPumpingData() { nsCOMPtr stream; nsCOMPtr channel; nsresult rv = OpenContentStream(true, getter_AddRefs(stream), getter_AddRefs(channel)); if (NS_FAILED(rv)) return rv; NS_ASSERTION(!stream || !channel, "Got both a channel and a stream?"); if (channel) { rv = NS_DispatchToCurrentThread(new RedirectRunnable(this, channel)); if (NS_SUCCEEDED(rv)) mWaitingOnAsyncRedirect = true; return rv; } // By assigning mPump, we flag this channel as pending (see Pending). It's // important that the pending flag is set when we call into the stream (the // call to AsyncRead results in the stream's AsyncWait method being called) // and especially when we call into the loadgroup. Our caller takes care to // release mPump if we return an error. rv = nsInputStreamPump::Create(getter_AddRefs(mPump), stream, -1, -1, 0, 0, true); if (NS_SUCCEEDED(rv)) rv = mPump->AsyncRead(this, nullptr); return rv; } void nsBaseChannel::HandleAsyncRedirect(nsIChannel* newChannel) { NS_ASSERTION(!mPump, "Shouldn't have gotten here"); nsresult rv = mStatus; if (NS_SUCCEEDED(mStatus)) { rv = Redirect(newChannel, nsIChannelEventSink::REDIRECT_TEMPORARY, true); if (NS_SUCCEEDED(rv)) { // OnRedirectVerifyCallback will be called asynchronously return; } } ContinueHandleAsyncRedirect(rv); } void nsBaseChannel::ContinueHandleAsyncRedirect(nsresult result) { mWaitingOnAsyncRedirect = false; if (NS_FAILED(result)) Cancel(result); if (NS_FAILED(result) && mListener) { // Notify our consumer ourselves mListener->OnStartRequest(this, mListenerContext); mListener->OnStopRequest(this, mListenerContext, mStatus); ChannelDone(); } if (mLoadGroup) mLoadGroup->RemoveRequest(this, nullptr, mStatus); // Drop notification callbacks to prevent cycles. mCallbacks = nullptr; CallbacksChanged(); } void nsBaseChannel::ClassifyURI() { // For channels created in the child process, delegate to the parent to // classify URIs. if (XRE_GetProcessType() != GeckoProcessType_Default) { return; } if (mLoadFlags & LOAD_CLASSIFY_URI) { nsRefPtr classifier = new nsChannelClassifier(); if (classifier) { classifier->Start(this, false); } else { Cancel(NS_ERROR_OUT_OF_MEMORY); } } } //----------------------------------------------------------------------------- // nsBaseChannel::nsISupports NS_IMPL_ISUPPORTS_INHERITED(nsBaseChannel, nsHashPropertyBag, nsIRequest, nsIChannel, nsIThreadRetargetableRequest, nsIInterfaceRequestor, nsITransportEventSink, nsIRequestObserver, nsIStreamListener, nsIThreadRetargetableStreamListener, nsIAsyncVerifyRedirectCallback, nsIPrivateBrowsingChannel) //----------------------------------------------------------------------------- // nsBaseChannel::nsIRequest NS_IMETHODIMP nsBaseChannel::GetName(nsACString &result) { if (!mURI) { result.Truncate(); return NS_OK; } return mURI->GetSpec(result); } NS_IMETHODIMP nsBaseChannel::IsPending(bool *result) { *result = Pending(); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetStatus(nsresult *status) { if (mPump && NS_SUCCEEDED(mStatus)) { mPump->GetStatus(status); } else { *status = mStatus; } return NS_OK; } NS_IMETHODIMP nsBaseChannel::Cancel(nsresult status) { // Ignore redundant cancelation if (NS_FAILED(mStatus)) return NS_OK; mStatus = status; if (mPump) mPump->Cancel(status); return NS_OK; } NS_IMETHODIMP nsBaseChannel::Suspend() { NS_ENSURE_TRUE(mPump, NS_ERROR_NOT_INITIALIZED); return mPump->Suspend(); } NS_IMETHODIMP nsBaseChannel::Resume() { NS_ENSURE_TRUE(mPump, NS_ERROR_NOT_INITIALIZED); return mPump->Resume(); } NS_IMETHODIMP nsBaseChannel::GetLoadFlags(nsLoadFlags *aLoadFlags) { *aLoadFlags = mLoadFlags; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetLoadFlags(nsLoadFlags aLoadFlags) { mLoadFlags = aLoadFlags; return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetLoadGroup(nsILoadGroup **aLoadGroup) { NS_IF_ADDREF(*aLoadGroup = mLoadGroup); return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetLoadGroup(nsILoadGroup *aLoadGroup) { if (!CanSetLoadGroup(aLoadGroup)) { return NS_ERROR_FAILURE; } mLoadGroup = aLoadGroup; CallbacksChanged(); return NS_OK; } //----------------------------------------------------------------------------- // nsBaseChannel::nsIChannel NS_IMETHODIMP nsBaseChannel::GetOriginalURI(nsIURI **aURI) { *aURI = OriginalURI(); NS_ADDREF(*aURI); return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetOriginalURI(nsIURI *aURI) { NS_ENSURE_ARG_POINTER(aURI); mOriginalURI = aURI; return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetURI(nsIURI **aURI) { NS_IF_ADDREF(*aURI = mURI); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetOwner(nsISupports **aOwner) { NS_IF_ADDREF(*aOwner = mOwner); return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetOwner(nsISupports *aOwner) { mOwner = aOwner; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetLoadInfo(nsILoadInfo* aLoadInfo) { mLoadInfo = aLoadInfo; return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetLoadInfo(nsILoadInfo** aLoadInfo) { NS_IF_ADDREF(*aLoadInfo = mLoadInfo); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetNotificationCallbacks(nsIInterfaceRequestor **aCallbacks) { NS_IF_ADDREF(*aCallbacks = mCallbacks); return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetNotificationCallbacks(nsIInterfaceRequestor *aCallbacks) { if (!CanSetCallbacks(aCallbacks)) { return NS_ERROR_FAILURE; } mCallbacks = aCallbacks; CallbacksChanged(); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetSecurityInfo(nsISupports **aSecurityInfo) { NS_IF_ADDREF(*aSecurityInfo = mSecurityInfo); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetContentType(nsACString &aContentType) { aContentType = mContentType; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetContentType(const nsACString &aContentType) { // mContentCharset is unchanged if not parsed bool dummy; net_ParseContentType(aContentType, mContentType, mContentCharset, &dummy); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetContentCharset(nsACString &aContentCharset) { aContentCharset = mContentCharset; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetContentCharset(const nsACString &aContentCharset) { mContentCharset = aContentCharset; return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetContentDisposition(uint32_t *aContentDisposition) { // preserve old behavior, fail unless explicitly set. if (mContentDispositionHint == UINT32_MAX) { return NS_ERROR_NOT_AVAILABLE; } *aContentDisposition = mContentDispositionHint; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetContentDisposition(uint32_t aContentDisposition) { mContentDispositionHint = aContentDisposition; return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetContentDispositionFilename(nsAString &aContentDispositionFilename) { if (!mContentDispositionFilename) { return NS_ERROR_NOT_AVAILABLE; } aContentDispositionFilename = *mContentDispositionFilename; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetContentDispositionFilename(const nsAString &aContentDispositionFilename) { mContentDispositionFilename = new nsString(aContentDispositionFilename); return NS_OK; } NS_IMETHODIMP nsBaseChannel::GetContentDispositionHeader(nsACString &aContentDispositionHeader) { return NS_ERROR_NOT_AVAILABLE; } NS_IMETHODIMP nsBaseChannel::GetContentLength(int64_t *aContentLength) { *aContentLength = mContentLength; return NS_OK; } NS_IMETHODIMP nsBaseChannel::SetContentLength(int64_t aContentLength) { mContentLength = aContentLength; return NS_OK; } NS_IMETHODIMP nsBaseChannel::Open(nsIInputStream **result) { NS_ENSURE_TRUE(mURI, NS_ERROR_NOT_INITIALIZED); NS_ENSURE_TRUE(!mPump, NS_ERROR_IN_PROGRESS); NS_ENSURE_TRUE(!mWasOpened, NS_ERROR_IN_PROGRESS); nsCOMPtr chan; nsresult rv = OpenContentStream(false, result, getter_AddRefs(chan)); NS_ASSERTION(!chan || !*result, "Got both a channel and a stream?"); if (NS_SUCCEEDED(rv) && chan) { rv = Redirect(chan, nsIChannelEventSink::REDIRECT_INTERNAL, false); if (NS_FAILED(rv)) return rv; rv = chan->Open(result); } else if (rv == NS_ERROR_NOT_IMPLEMENTED) return NS_ImplementChannelOpen(this, result); if (NS_SUCCEEDED(rv)) { mWasOpened = true; ClassifyURI(); } return rv; } NS_IMETHODIMP nsBaseChannel::AsyncOpen(nsIStreamListener *listener, nsISupports *ctxt) { NS_ENSURE_TRUE(mURI, NS_ERROR_NOT_INITIALIZED); NS_ENSURE_TRUE(!mPump, NS_ERROR_IN_PROGRESS); NS_ENSURE_TRUE(!mWasOpened, NS_ERROR_ALREADY_OPENED); NS_ENSURE_ARG(listener); // Ensure that this is an allowed port before proceeding. nsresult rv = NS_CheckPortSafety(mURI); if (NS_FAILED(rv)) { mCallbacks = nullptr; return rv; } // Store the listener and context early so that OpenContentStream and the // stream's AsyncWait method (called by AsyncRead) can have access to them // via PushStreamConverter and the StreamListener methods. However, since // this typically introduces a reference cycle between this and the listener, // we need to be sure to break the reference if this method does not succeed. mListener = listener; mListenerContext = ctxt; // This method assigns mPump as a side-effect. We need to clear mPump if // this method fails. rv = BeginPumpingData(); if (NS_FAILED(rv)) { mPump = nullptr; ChannelDone(); mCallbacks = nullptr; return rv; } // At this point, we are going to return success no matter what. mWasOpened = true; SUSPEND_PUMP_FOR_SCOPE(); if (mLoadGroup) mLoadGroup->AddRequest(this, nullptr); ClassifyURI(); return NS_OK; } //----------------------------------------------------------------------------- // nsBaseChannel::nsITransportEventSink NS_IMETHODIMP nsBaseChannel::OnTransportStatus(nsITransport *transport, nsresult status, int64_t progress, int64_t progressMax) { // In some cases, we may wish to suppress transport-layer status events. if (!mPump || NS_FAILED(mStatus)) { return NS_OK; } SUSPEND_PUMP_FOR_SCOPE(); // Lazily fetch mProgressSink if (!mProgressSink) { if (mQueriedProgressSink) { return NS_OK; } GetCallback(mProgressSink); mQueriedProgressSink = true; if (!mProgressSink) { return NS_OK; } } if (!HasLoadFlag(LOAD_BACKGROUND)) { nsAutoString statusArg; if (GetStatusArg(status, statusArg)) { mProgressSink->OnStatus(this, mListenerContext, status, statusArg.get()); } } if (progress) { mProgressSink->OnProgress(this, mListenerContext, progress, progressMax); } return NS_OK; } //----------------------------------------------------------------------------- // nsBaseChannel::nsIInterfaceRequestor NS_IMETHODIMP nsBaseChannel::GetInterface(const nsIID &iid, void **result) { NS_QueryNotificationCallbacks(mCallbacks, mLoadGroup, iid, result); return *result ? NS_OK : NS_ERROR_NO_INTERFACE; } //----------------------------------------------------------------------------- // nsBaseChannel::nsIRequestObserver static void CallTypeSniffers(void *aClosure, const uint8_t *aData, uint32_t aCount) { nsIChannel *chan = static_cast(aClosure); nsAutoCString newType; NS_SniffContent(NS_CONTENT_SNIFFER_CATEGORY, chan, aData, aCount, newType); if (!newType.IsEmpty()) { chan->SetContentType(newType); } } static void CallUnknownTypeSniffer(void *aClosure, const uint8_t *aData, uint32_t aCount) { nsIChannel *chan = static_cast(aClosure); nsCOMPtr sniffer = do_CreateInstance(NS_GENERIC_CONTENT_SNIFFER); if (!sniffer) return; nsAutoCString detected; nsresult rv = sniffer->GetMIMETypeFromContent(chan, aData, aCount, detected); if (NS_SUCCEEDED(rv)) chan->SetContentType(detected); } NS_IMETHODIMP nsBaseChannel::OnStartRequest(nsIRequest *request, nsISupports *ctxt) { MOZ_ASSERT(request == mPump); // If our content type is unknown, use the content type // sniffer. If the sniffer is not available for some reason, then we just keep // going as-is. if (NS_SUCCEEDED(mStatus) && mContentType.EqualsLiteral(UNKNOWN_CONTENT_TYPE)) { mPump->PeekStream(CallUnknownTypeSniffer, static_cast(this)); } // Now, the general type sniffers. Skip this if we have none. if (mLoadFlags & LOAD_CALL_CONTENT_SNIFFERS) mPump->PeekStream(CallTypeSniffers, static_cast(this)); SUSPEND_PUMP_FOR_SCOPE(); if (mListener) // null in case of redirect return mListener->OnStartRequest(this, mListenerContext); return NS_OK; } NS_IMETHODIMP nsBaseChannel::OnStopRequest(nsIRequest *request, nsISupports *ctxt, nsresult status) { // If both mStatus and status are failure codes, we keep mStatus as-is since // that is consistent with our GetStatus and Cancel methods. if (NS_SUCCEEDED(mStatus)) mStatus = status; // Cause Pending to return false. mPump = nullptr; if (mListener) // null in case of redirect mListener->OnStopRequest(this, mListenerContext, mStatus); ChannelDone(); // No need to suspend pump in this scope since we will not be receiving // any more events from it. if (mLoadGroup) mLoadGroup->RemoveRequest(this, nullptr, mStatus); // Drop notification callbacks to prevent cycles. mCallbacks = nullptr; CallbacksChanged(); return NS_OK; } //----------------------------------------------------------------------------- // nsBaseChannel::nsIStreamListener NS_IMETHODIMP nsBaseChannel::OnDataAvailable(nsIRequest *request, nsISupports *ctxt, nsIInputStream *stream, uint64_t offset, uint32_t count) { SUSPEND_PUMP_FOR_SCOPE(); nsresult rv = mListener->OnDataAvailable(this, mListenerContext, stream, offset, count); if (mSynthProgressEvents && NS_SUCCEEDED(rv)) { int64_t prog = offset + count; if (NS_IsMainThread()) { OnTransportStatus(nullptr, NS_NET_STATUS_READING, prog, mContentLength); } else { class OnTransportStatusAsyncEvent : public nsRunnable { nsRefPtr mChannel; int64_t mProgress; int64_t mContentLength; public: OnTransportStatusAsyncEvent(nsBaseChannel* aChannel, int64_t aProgress, int64_t aContentLength) : mChannel(aChannel), mProgress(aProgress), mContentLength(aContentLength) { } NS_IMETHOD Run() MOZ_OVERRIDE { return mChannel->OnTransportStatus(nullptr, NS_NET_STATUS_READING, mProgress, mContentLength); } }; nsCOMPtr runnable = new OnTransportStatusAsyncEvent(this, prog, mContentLength); NS_DispatchToMainThread(runnable); } } return rv; } NS_IMETHODIMP nsBaseChannel::OnRedirectVerifyCallback(nsresult result) { if (NS_SUCCEEDED(result)) result = ContinueRedirect(); if (NS_FAILED(result) && !mWaitingOnAsyncRedirect) { if (NS_SUCCEEDED(mStatus)) mStatus = result; return NS_OK; } if (mWaitingOnAsyncRedirect) ContinueHandleAsyncRedirect(result); return NS_OK; } NS_IMETHODIMP nsBaseChannel::RetargetDeliveryTo(nsIEventTarget* aEventTarget) { MOZ_ASSERT(NS_IsMainThread()); NS_ENSURE_TRUE(mPump, NS_ERROR_NOT_INITIALIZED); if (!mAllowThreadRetargeting) { return NS_ERROR_NOT_IMPLEMENTED; } return mPump->RetargetDeliveryTo(aEventTarget); } NS_IMETHODIMP nsBaseChannel::CheckListenerChain() { MOZ_ASSERT(NS_IsMainThread()); if (!mAllowThreadRetargeting) { return NS_ERROR_NOT_IMPLEMENTED; } nsCOMPtr listener = do_QueryInterface(mListener); if (!listener) { return NS_ERROR_NO_INTERFACE; } return listener->CheckListenerChain(); }