/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "gfxUtils.h" #include "gfxContext.h" #include "gfxImageSurface.h" #include "gfxPlatform.h" #include "gfxDrawable.h" #include "mozilla/gfx/2D.h" #include "mozilla/RefPtr.h" #include "nsRegion.h" #include "yuv_convert.h" #include "ycbcr_to_rgb565.h" #include "GeckoProfiler.h" #include "ImageContainer.h" #include "gfx2DGlue.h" #include "gfxPrefs.h" #ifdef XP_WIN #include "gfxWindowsPlatform.h" #endif using namespace mozilla; using namespace mozilla::layers; using namespace mozilla::gfx; #include "DeprecatedPremultiplyTables.h" static const uint8_t PremultiplyValue(uint8_t a, uint8_t v) { return gfxUtils::sPremultiplyTable[a*256+v]; } static const uint8_t UnpremultiplyValue(uint8_t a, uint8_t v) { return gfxUtils::sUnpremultiplyTable[a*256+v]; } static void PremultiplyData(const uint8_t* srcData, size_t srcStride, // row-to-row stride in bytes uint8_t* destData, size_t destStride, // row-to-row stride in bytes size_t pixelWidth, size_t rowCount) { MOZ_ASSERT(srcData && destData); for (size_t y = 0; y < rowCount; ++y) { const uint8_t* src = srcData + y * srcStride; uint8_t* dest = destData + y * destStride; for (size_t x = 0; x < pixelWidth; ++x) { #ifdef IS_LITTLE_ENDIAN uint8_t b = *src++; uint8_t g = *src++; uint8_t r = *src++; uint8_t a = *src++; *dest++ = PremultiplyValue(a, b); *dest++ = PremultiplyValue(a, g); *dest++ = PremultiplyValue(a, r); *dest++ = a; #else uint8_t a = *src++; uint8_t r = *src++; uint8_t g = *src++; uint8_t b = *src++; *dest++ = a; *dest++ = PremultiplyValue(a, r); *dest++ = PremultiplyValue(a, g); *dest++ = PremultiplyValue(a, b); #endif } } } static void UnpremultiplyData(const uint8_t* srcData, size_t srcStride, // row-to-row stride in bytes uint8_t* destData, size_t destStride, // row-to-row stride in bytes size_t pixelWidth, size_t rowCount) { MOZ_ASSERT(srcData && destData); for (size_t y = 0; y < rowCount; ++y) { const uint8_t* src = srcData + y * srcStride; uint8_t* dest = destData + y * destStride; for (size_t x = 0; x < pixelWidth; ++x) { #ifdef IS_LITTLE_ENDIAN uint8_t b = *src++; uint8_t g = *src++; uint8_t r = *src++; uint8_t a = *src++; *dest++ = UnpremultiplyValue(a, b); *dest++ = UnpremultiplyValue(a, g); *dest++ = UnpremultiplyValue(a, r); *dest++ = a; #else uint8_t a = *src++; uint8_t r = *src++; uint8_t g = *src++; uint8_t b = *src++; *dest++ = a; *dest++ = UnpremultiplyValue(a, r); *dest++ = UnpremultiplyValue(a, g); *dest++ = UnpremultiplyValue(a, b); #endif } } } static bool MapSrcDest(DataSourceSurface* srcSurf, DataSourceSurface* destSurf, DataSourceSurface::MappedSurface* out_srcMap, DataSourceSurface::MappedSurface* out_destMap) { MOZ_ASSERT(srcSurf && destSurf); MOZ_ASSERT(out_srcMap && out_destMap); if (srcSurf->GetFormat() != SurfaceFormat::B8G8R8A8 || destSurf->GetFormat() != SurfaceFormat::B8G8R8A8) { MOZ_ASSERT(false, "Only operate on BGRA8 surfs."); return false; } if (srcSurf->GetSize().width != destSurf->GetSize().width || srcSurf->GetSize().height != destSurf->GetSize().height) { MOZ_ASSERT(false, "Width and height must match."); return false; } if (srcSurf == destSurf) { DataSourceSurface::MappedSurface map; if (!srcSurf->Map(DataSourceSurface::MapType::READ_WRITE, &map)) { NS_WARNING("Couldn't Map srcSurf/destSurf."); return false; } *out_srcMap = map; *out_destMap = map; return true; } // Map src for reading. DataSourceSurface::MappedSurface srcMap; if (!srcSurf->Map(DataSourceSurface::MapType::READ, &srcMap)) { NS_WARNING("Couldn't Map srcSurf."); return false; } // Map dest for writing. DataSourceSurface::MappedSurface destMap; if (!destSurf->Map(DataSourceSurface::MapType::WRITE, &destMap)) { NS_WARNING("Couldn't Map aDest."); srcSurf->Unmap(); return false; } *out_srcMap = srcMap; *out_destMap = destMap; return true; } static void UnmapSrcDest(DataSourceSurface* srcSurf, DataSourceSurface* destSurf) { if (srcSurf == destSurf) { srcSurf->Unmap(); } else { srcSurf->Unmap(); destSurf->Unmap(); } } bool gfxUtils::PremultiplyDataSurface(DataSourceSurface* srcSurf, DataSourceSurface* destSurf) { MOZ_ASSERT(srcSurf && destSurf); DataSourceSurface::MappedSurface srcMap; DataSourceSurface::MappedSurface destMap; if (!MapSrcDest(srcSurf, destSurf, &srcMap, &destMap)) return false; PremultiplyData(srcMap.mData, srcMap.mStride, destMap.mData, destMap.mStride, srcSurf->GetSize().width, srcSurf->GetSize().height); UnmapSrcDest(srcSurf, destSurf); return true; } bool gfxUtils::UnpremultiplyDataSurface(DataSourceSurface* srcSurf, DataSourceSurface* destSurf) { MOZ_ASSERT(srcSurf && destSurf); DataSourceSurface::MappedSurface srcMap; DataSourceSurface::MappedSurface destMap; if (!MapSrcDest(srcSurf, destSurf, &srcMap, &destMap)) return false; UnpremultiplyData(srcMap.mData, srcMap.mStride, destMap.mData, destMap.mStride, srcSurf->GetSize().width, srcSurf->GetSize().height); UnmapSrcDest(srcSurf, destSurf); return true; } static bool MapSrcAndCreateMappedDest(DataSourceSurface* srcSurf, RefPtr* out_destSurf, DataSourceSurface::MappedSurface* out_srcMap, DataSourceSurface::MappedSurface* out_destMap) { MOZ_ASSERT(srcSurf); MOZ_ASSERT(out_destSurf && out_srcMap && out_destMap); if (srcSurf->GetFormat() != SurfaceFormat::B8G8R8A8) { MOZ_ASSERT(false, "Only operate on BGRA8."); return false; } // Ok, map source for reading. DataSourceSurface::MappedSurface srcMap; if (!srcSurf->Map(DataSourceSurface::MapType::READ, &srcMap)) { MOZ_ASSERT(false, "Couldn't Map srcSurf."); return false; } // Make our dest surface based on the src. RefPtr destSurf = Factory::CreateDataSourceSurfaceWithStride(srcSurf->GetSize(), srcSurf->GetFormat(), srcMap.mStride); DataSourceSurface::MappedSurface destMap; if (!destSurf->Map(DataSourceSurface::MapType::WRITE, &destMap)) { MOZ_ASSERT(false, "Couldn't Map destSurf."); srcSurf->Unmap(); return false; } *out_destSurf = destSurf; *out_srcMap = srcMap; *out_destMap = destMap; return true; } TemporaryRef gfxUtils::CreatePremultipliedDataSurface(DataSourceSurface* srcSurf) { RefPtr destSurf; DataSourceSurface::MappedSurface srcMap; DataSourceSurface::MappedSurface destMap; if (!MapSrcAndCreateMappedDest(srcSurf, &destSurf, &srcMap, &destMap)) { MOZ_ASSERT(false, "MapSrcAndCreateMappedDest failed."); return srcSurf; } PremultiplyData(srcMap.mData, srcMap.mStride, destMap.mData, destMap.mStride, srcSurf->GetSize().width, srcSurf->GetSize().height); UnmapSrcDest(srcSurf, destSurf); return destSurf; } TemporaryRef gfxUtils::CreateUnpremultipliedDataSurface(DataSourceSurface* srcSurf) { RefPtr destSurf; DataSourceSurface::MappedSurface srcMap; DataSourceSurface::MappedSurface destMap; if (!MapSrcAndCreateMappedDest(srcSurf, &destSurf, &srcMap, &destMap)) { MOZ_ASSERT(false, "MapSrcAndCreateMappedDest failed."); return srcSurf; } UnpremultiplyData(srcMap.mData, srcMap.mStride, destMap.mData, destMap.mStride, srcSurf->GetSize().width, srcSurf->GetSize().height); UnmapSrcDest(srcSurf, destSurf); return destSurf; } void gfxUtils::ConvertBGRAtoRGBA(uint8_t* aData, uint32_t aLength) { MOZ_ASSERT((aLength % 4) == 0, "Loop below will pass srcEnd!"); uint8_t *src = aData; uint8_t *srcEnd = src + aLength; uint8_t buffer[4]; for (; src != srcEnd; src += 4) { buffer[0] = src[2]; buffer[1] = src[1]; buffer[2] = src[0]; src[0] = buffer[0]; src[1] = buffer[1]; src[2] = buffer[2]; } } static bool IsSafeImageTransformComponent(gfxFloat aValue) { return aValue >= -32768 && aValue <= 32767; } #ifndef MOZ_GFX_OPTIMIZE_MOBILE /** * This returns the fastest operator to use for solid surfaces which have no * alpha channel or their alpha channel is uniformly opaque. * This differs per render mode. */ static gfxContext::GraphicsOperator OptimalFillOperator() { #ifdef XP_WIN if (gfxWindowsPlatform::GetPlatform()->GetRenderMode() == gfxWindowsPlatform::RENDER_DIRECT2D) { // D2D -really- hates operator source. return gfxContext::OPERATOR_OVER; } else { #endif return gfxContext::OPERATOR_SOURCE; #ifdef XP_WIN } #endif } // EXTEND_PAD won't help us here; we have to create a temporary surface to hold // the subimage of pixels we're allowed to sample. static already_AddRefed CreateSamplingRestrictedDrawable(gfxDrawable* aDrawable, gfxContext* aContext, const gfxMatrix& aUserSpaceToImageSpace, const gfxRect& aSourceRect, const gfxRect& aSubimage, const SurfaceFormat aFormat) { PROFILER_LABEL("gfxUtils", "CreateSamplingRestricedDrawable", js::ProfileEntry::Category::GRAPHICS); gfxRect userSpaceClipExtents = aContext->GetClipExtents(); // This isn't optimal --- if aContext has a rotation then GetClipExtents // will have to do a bounding-box computation, and TransformBounds might // too, so we could get a better result if we computed image space clip // extents in one go --- but it doesn't really matter and this is easier // to understand. gfxRect imageSpaceClipExtents = aUserSpaceToImageSpace.TransformBounds(userSpaceClipExtents); // Inflate by one pixel because bilinear filtering will sample at most // one pixel beyond the computed image pixel coordinate. imageSpaceClipExtents.Inflate(1.0); gfxRect needed = imageSpaceClipExtents.Intersect(aSourceRect); needed = needed.Intersect(aSubimage); needed.RoundOut(); // if 'needed' is empty, nothing will be drawn since aFill // must be entirely outside the clip region, so it doesn't // matter what we do here, but we should avoid trying to // create a zero-size surface. if (needed.IsEmpty()) return nullptr; nsRefPtr drawable; gfxIntSize size(int32_t(needed.Width()), int32_t(needed.Height())); nsRefPtr image = aDrawable->GetAsImageSurface(); if (image && gfxRect(0, 0, image->GetSize().width, image->GetSize().height).Contains(needed)) { nsRefPtr temp = image->GetSubimage(needed); drawable = new gfxSurfaceDrawable(temp, size, gfxMatrix().Translate(-needed.TopLeft())); } else { RefPtr target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(ToIntSize(size), aFormat); if (!target) { return nullptr; } nsRefPtr tmpCtx = new gfxContext(target); tmpCtx->SetOperator(OptimalFillOperator()); aDrawable->Draw(tmpCtx, needed - needed.TopLeft(), true, GraphicsFilter::FILTER_FAST, gfxMatrix().Translate(needed.TopLeft())); drawable = new gfxSurfaceDrawable(target, size, gfxMatrix().Translate(-needed.TopLeft())); } return drawable.forget(); } #endif // !MOZ_GFX_OPTIMIZE_MOBILE // working around cairo/pixman bug (bug 364968) // Our device-space-to-image-space transform may not be acceptable to pixman. struct MOZ_STACK_CLASS AutoCairoPixmanBugWorkaround { AutoCairoPixmanBugWorkaround(gfxContext* aContext, const gfxMatrix& aDeviceSpaceToImageSpace, const gfxRect& aFill, const gfxASurface* aSurface) : mContext(aContext), mSucceeded(true), mPushedGroup(false) { // Quartz's limits for matrix are much larger than pixman if (!aSurface || aSurface->GetType() == gfxSurfaceType::Quartz) return; if (!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._11) || !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._21) || !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._12) || !IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._22)) { NS_WARNING("Scaling up too much, bailing out"); mSucceeded = false; return; } if (IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._31) && IsSafeImageTransformComponent(aDeviceSpaceToImageSpace._32)) return; // We'll push a group, which will hopefully reduce our transform's // translation so it's in bounds. gfxMatrix currentMatrix = mContext->CurrentMatrix(); mContext->Save(); // Clip the rounded-out-to-device-pixels bounds of the // transformed fill area. This is the area for the group we // want to push. mContext->IdentityMatrix(); gfxRect bounds = currentMatrix.TransformBounds(aFill); bounds.RoundOut(); mContext->Clip(bounds); mContext->SetMatrix(currentMatrix); mContext->PushGroup(gfxContentType::COLOR_ALPHA); mContext->SetOperator(gfxContext::OPERATOR_OVER); mPushedGroup = true; } ~AutoCairoPixmanBugWorkaround() { if (mPushedGroup) { mContext->PopGroupToSource(); mContext->Paint(); mContext->Restore(); } } bool PushedGroup() { return mPushedGroup; } bool Succeeded() { return mSucceeded; } private: gfxContext* mContext; bool mSucceeded; bool mPushedGroup; }; static gfxMatrix DeviceToImageTransform(gfxContext* aContext, const gfxMatrix& aUserSpaceToImageSpace) { gfxFloat deviceX, deviceY; nsRefPtr currentTarget = aContext->CurrentSurface(&deviceX, &deviceY); gfxMatrix currentMatrix = aContext->CurrentMatrix(); gfxMatrix deviceToUser = gfxMatrix(currentMatrix).Invert(); deviceToUser.Translate(-gfxPoint(-deviceX, -deviceY)); return gfxMatrix(deviceToUser).Multiply(aUserSpaceToImageSpace); } /* These heuristics are based on Source/WebCore/platform/graphics/skia/ImageSkia.cpp:computeResamplingMode() */ #ifdef MOZ_GFX_OPTIMIZE_MOBILE static GraphicsFilter ReduceResamplingFilter(GraphicsFilter aFilter, int aImgWidth, int aImgHeight, float aSourceWidth, float aSourceHeight) { // Images smaller than this in either direction are considered "small" and // are not resampled ever (see below). const int kSmallImageSizeThreshold = 8; // The amount an image can be stretched in a single direction before we // say that it is being stretched so much that it must be a line or // background that doesn't need resampling. const float kLargeStretch = 3.0f; if (aImgWidth <= kSmallImageSizeThreshold || aImgHeight <= kSmallImageSizeThreshold) { // Never resample small images. These are often used for borders and // rules (think 1x1 images used to make lines). return GraphicsFilter::FILTER_NEAREST; } if (aImgHeight * kLargeStretch <= aSourceHeight || aImgWidth * kLargeStretch <= aSourceWidth) { // Large image tiling detected. // Don't resample if it is being tiled a lot in only one direction. // This is trying to catch cases where somebody has created a border // (which might be large) and then is stretching it to fill some part // of the page. if (fabs(aSourceWidth - aImgWidth)/aImgWidth < 0.5 || fabs(aSourceHeight - aImgHeight)/aImgHeight < 0.5) return GraphicsFilter::FILTER_NEAREST; // The image is growing a lot and in more than one direction. Resampling // is slow and doesn't give us very much when growing a lot. return aFilter; } /* Some notes on other heuristics: The Skia backend also uses nearest for backgrounds that are stretched by a large amount. I'm not sure this is common enough for us to worry about now. It also uses nearest for backgrounds/avoids high quality for images that are very slightly scaled. I'm also not sure that very slightly scaled backgrounds are common enough us to worry about. We don't currently have much support for doing high quality interpolation. The only place this currently happens is on Quartz and we don't have as much control over it as would be needed. Webkit avoids using high quality resampling during load. It also avoids high quality if the transformation is not just a scale and translation WebKit bug #40045 added code to avoid resampling different parts of an image with different methods by using a resampling hint size. It currently looks unused in WebKit but it's something to watch out for. */ return aFilter; } #else static GraphicsFilter ReduceResamplingFilter(GraphicsFilter aFilter, int aImgWidth, int aImgHeight, int aSourceWidth, int aSourceHeight) { // Just pass the filter through unchanged return aFilter; } #endif /* static */ void gfxUtils::DrawPixelSnapped(gfxContext* aContext, gfxDrawable* aDrawable, const gfxMatrix& aUserSpaceToImageSpace, const gfxRect& aSubimage, const gfxRect& aSourceRect, const gfxRect& aImageRect, const gfxRect& aFill, const SurfaceFormat aFormat, GraphicsFilter aFilter, uint32_t aImageFlags) { PROFILER_LABEL("gfxUtils", "DrawPixelSnapped", js::ProfileEntry::Category::GRAPHICS); bool doTile = !aImageRect.Contains(aSourceRect) && !(aImageFlags & imgIContainer::FLAG_CLAMP); nsRefPtr currentTarget = aContext->CurrentSurface(); gfxMatrix deviceSpaceToImageSpace = DeviceToImageTransform(aContext, aUserSpaceToImageSpace); AutoCairoPixmanBugWorkaround workaround(aContext, deviceSpaceToImageSpace, aFill, currentTarget); if (!workaround.Succeeded()) return; nsRefPtr drawable = aDrawable; aFilter = ReduceResamplingFilter(aFilter, aImageRect.Width(), aImageRect.Height(), aSourceRect.Width(), aSourceRect.Height()); gfxMatrix userSpaceToImageSpace = aUserSpaceToImageSpace; // On Mobile, we don't ever want to do this; it has the potential for // allocating very large temporary surfaces, especially since we'll // do full-page snapshots often (see bug 749426). #ifdef MOZ_GFX_OPTIMIZE_MOBILE // If the pattern translation is large we can get into trouble with pixman's // 16 bit coordinate limits. For now, we only do this on platforms where // we know we have the pixman limits. 16384.0 is a somewhat arbitrary // large number to make sure we avoid the expensive fmod when we can, but // still maintain a safe margin from the actual limit if (doTile && (userSpaceToImageSpace._32 > 16384.0 || userSpaceToImageSpace._31 > 16384.0)) { userSpaceToImageSpace._31 = fmod(userSpaceToImageSpace._31, aImageRect.width); userSpaceToImageSpace._32 = fmod(userSpaceToImageSpace._32, aImageRect.height); } #else // OK now, the hard part left is to account for the subimage sampling // restriction. If all the transforms involved are just integer // translations, then we assume no resampling will occur so there's // nothing to do. // XXX if only we had source-clipping in cairo! if (aContext->CurrentMatrix().HasNonIntegerTranslation() || aUserSpaceToImageSpace.HasNonIntegerTranslation()) { if (doTile || !aSubimage.Contains(aImageRect)) { nsRefPtr restrictedDrawable = CreateSamplingRestrictedDrawable(aDrawable, aContext, aUserSpaceToImageSpace, aSourceRect, aSubimage, aFormat); if (restrictedDrawable) { drawable.swap(restrictedDrawable); } } // We no longer need to tile: Either we never needed to, or we already // filled a surface with the tiled pattern; this surface can now be // drawn without tiling. doTile = false; } #endif drawable->Draw(aContext, aFill, doTile, aFilter, userSpaceToImageSpace); } /* static */ int gfxUtils::ImageFormatToDepth(gfxImageFormat aFormat) { switch (aFormat) { case gfxImageFormat::ARGB32: return 32; case gfxImageFormat::RGB24: return 24; case gfxImageFormat::RGB16_565: return 16; default: break; } return 0; } static void PathFromRegionInternal(gfxContext* aContext, const nsIntRegion& aRegion, bool aSnap) { aContext->NewPath(); nsIntRegionRectIterator iter(aRegion); const nsIntRect* r; while ((r = iter.Next()) != nullptr) { aContext->Rectangle(gfxRect(r->x, r->y, r->width, r->height), aSnap); } } static void ClipToRegionInternal(gfxContext* aContext, const nsIntRegion& aRegion, bool aSnap) { PathFromRegionInternal(aContext, aRegion, aSnap); aContext->Clip(); } static TemporaryRef PathFromRegionInternal(DrawTarget* aTarget, const nsIntRegion& aRegion, bool aSnap) { Matrix mat = aTarget->GetTransform(); const gfxFloat epsilon = 0.000001; #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) // We're essentially duplicating the logic in UserToDevicePixelSnapped here. bool shouldNotSnap = !aSnap || (WITHIN_E(mat._11,1.0) && WITHIN_E(mat._22,1.0) && WITHIN_E(mat._12,0.0) && WITHIN_E(mat._21,0.0)); #undef WITHIN_E RefPtr pb = aTarget->CreatePathBuilder(); nsIntRegionRectIterator iter(aRegion); const nsIntRect* r; if (shouldNotSnap) { while ((r = iter.Next()) != nullptr) { pb->MoveTo(Point(r->x, r->y)); pb->LineTo(Point(r->XMost(), r->y)); pb->LineTo(Point(r->XMost(), r->YMost())); pb->LineTo(Point(r->x, r->YMost())); pb->Close(); } } else { while ((r = iter.Next()) != nullptr) { Rect rect(r->x, r->y, r->width, r->height); rect.Round(); pb->MoveTo(rect.TopLeft()); pb->LineTo(rect.TopRight()); pb->LineTo(rect.BottomRight()); pb->LineTo(rect.BottomLeft()); pb->Close(); } } RefPtr path = pb->Finish(); return path; } static void ClipToRegionInternal(DrawTarget* aTarget, const nsIntRegion& aRegion, bool aSnap) { RefPtr path = PathFromRegionInternal(aTarget, aRegion, aSnap); aTarget->PushClip(path); } /*static*/ void gfxUtils::ClipToRegion(gfxContext* aContext, const nsIntRegion& aRegion) { ClipToRegionInternal(aContext, aRegion, false); } /*static*/ void gfxUtils::ClipToRegion(DrawTarget* aTarget, const nsIntRegion& aRegion) { ClipToRegionInternal(aTarget, aRegion, false); } /*static*/ void gfxUtils::ClipToRegionSnapped(gfxContext* aContext, const nsIntRegion& aRegion) { ClipToRegionInternal(aContext, aRegion, true); } /*static*/ void gfxUtils::ClipToRegionSnapped(DrawTarget* aTarget, const nsIntRegion& aRegion) { ClipToRegionInternal(aTarget, aRegion, true); } /*static*/ gfxFloat gfxUtils::ClampToScaleFactor(gfxFloat aVal) { // Arbitary scale factor limitation. We can increase this // for better scaling performance at the cost of worse // quality. static const gfxFloat kScaleResolution = 2; // Negative scaling is just a flip and irrelevant to // our resolution calculation. if (aVal < 0.0) { aVal = -aVal; } bool inverse = false; if (aVal < 1.0) { inverse = true; aVal = 1 / aVal; } gfxFloat power = log(aVal)/log(kScaleResolution); // If power is within 1e-6 of an integer, round to nearest to // prevent floating point errors, otherwise round up to the // next integer value. if (fabs(power - NS_round(power)) < 1e-6) { power = NS_round(power); } else if (inverse) { power = floor(power); } else { power = ceil(power); } gfxFloat scale = pow(kScaleResolution, power); if (inverse) { scale = 1 / scale; } return scale; } /*static*/ void gfxUtils::PathFromRegion(gfxContext* aContext, const nsIntRegion& aRegion) { PathFromRegionInternal(aContext, aRegion, false); } /*static*/ void gfxUtils::PathFromRegionSnapped(gfxContext* aContext, const nsIntRegion& aRegion) { PathFromRegionInternal(aContext, aRegion, true); } gfxMatrix gfxUtils::TransformRectToRect(const gfxRect& aFrom, const gfxPoint& aToTopLeft, const gfxPoint& aToTopRight, const gfxPoint& aToBottomRight) { gfxMatrix m; if (aToTopRight.y == aToTopLeft.y && aToTopRight.x == aToBottomRight.x) { // Not a rotation, so xy and yx are zero m._21 = m._12 = 0.0; m._11 = (aToBottomRight.x - aToTopLeft.x)/aFrom.width; m._22 = (aToBottomRight.y - aToTopLeft.y)/aFrom.height; m._31 = aToTopLeft.x - m._11*aFrom.x; m._32 = aToTopLeft.y - m._22*aFrom.y; } else { NS_ASSERTION(aToTopRight.y == aToBottomRight.y && aToTopRight.x == aToTopLeft.x, "Destination rectangle not axis-aligned"); m._11 = m._22 = 0.0; m._21 = (aToBottomRight.x - aToTopLeft.x)/aFrom.height; m._12 = (aToBottomRight.y - aToTopLeft.y)/aFrom.width; m._31 = aToTopLeft.x - m._21*aFrom.y; m._32 = aToTopLeft.y - m._12*aFrom.x; } return m; } Matrix gfxUtils::TransformRectToRect(const gfxRect& aFrom, const IntPoint& aToTopLeft, const IntPoint& aToTopRight, const IntPoint& aToBottomRight) { Matrix m; if (aToTopRight.y == aToTopLeft.y && aToTopRight.x == aToBottomRight.x) { // Not a rotation, so xy and yx are zero m._12 = m._21 = 0.0; m._11 = (aToBottomRight.x - aToTopLeft.x)/aFrom.width; m._22 = (aToBottomRight.y - aToTopLeft.y)/aFrom.height; m._31 = aToTopLeft.x - m._11*aFrom.x; m._32 = aToTopLeft.y - m._22*aFrom.y; } else { NS_ASSERTION(aToTopRight.y == aToBottomRight.y && aToTopRight.x == aToTopLeft.x, "Destination rectangle not axis-aligned"); m._11 = m._22 = 0.0; m._21 = (aToBottomRight.x - aToTopLeft.x)/aFrom.height; m._12 = (aToBottomRight.y - aToTopLeft.y)/aFrom.width; m._31 = aToTopLeft.x - m._21*aFrom.y; m._32 = aToTopLeft.y - m._12*aFrom.x; } return m; } /* This function is sort of shitty. We truncate doubles * to ints then convert those ints back to doubles to make sure that * they equal the doubles that we got in. */ bool gfxUtils::GfxRectToIntRect(const gfxRect& aIn, nsIntRect* aOut) { *aOut = nsIntRect(int32_t(aIn.X()), int32_t(aIn.Y()), int32_t(aIn.Width()), int32_t(aIn.Height())); return gfxRect(aOut->x, aOut->y, aOut->width, aOut->height).IsEqualEdges(aIn); } void gfxUtils::GetYCbCrToRGBDestFormatAndSize(const PlanarYCbCrData& aData, gfxImageFormat& aSuggestedFormat, gfxIntSize& aSuggestedSize) { YUVType yuvtype = TypeFromSize(aData.mYSize.width, aData.mYSize.height, aData.mCbCrSize.width, aData.mCbCrSize.height); // 'prescale' is true if the scaling is to be done as part of the // YCbCr to RGB conversion rather than on the RGB data when rendered. bool prescale = aSuggestedSize.width > 0 && aSuggestedSize.height > 0 && ToIntSize(aSuggestedSize) != aData.mPicSize; if (aSuggestedFormat == gfxImageFormat::RGB16_565) { #if defined(HAVE_YCBCR_TO_RGB565) if (prescale && !IsScaleYCbCrToRGB565Fast(aData.mPicX, aData.mPicY, aData.mPicSize.width, aData.mPicSize.height, aSuggestedSize.width, aSuggestedSize.height, yuvtype, FILTER_BILINEAR) && IsConvertYCbCrToRGB565Fast(aData.mPicX, aData.mPicY, aData.mPicSize.width, aData.mPicSize.height, yuvtype)) { prescale = false; } #else // yuv2rgb16 function not available aSuggestedFormat = gfxImageFormat::RGB24; #endif } else if (aSuggestedFormat != gfxImageFormat::RGB24) { // No other formats are currently supported. aSuggestedFormat = gfxImageFormat::RGB24; } if (aSuggestedFormat == gfxImageFormat::RGB24) { /* ScaleYCbCrToRGB32 does not support a picture offset, nor 4:4:4 data. See bugs 639415 and 640073. */ if (aData.mPicX != 0 || aData.mPicY != 0 || yuvtype == YV24) prescale = false; } if (!prescale) { ToIntSize(aSuggestedSize) = aData.mPicSize; } } void gfxUtils::ConvertYCbCrToRGB(const PlanarYCbCrData& aData, const gfxImageFormat& aDestFormat, const gfxIntSize& aDestSize, unsigned char* aDestBuffer, int32_t aStride) { // ConvertYCbCrToRGB et al. assume the chroma planes are rounded up if the // luma plane is odd sized. MOZ_ASSERT((aData.mCbCrSize.width == aData.mYSize.width || aData.mCbCrSize.width == (aData.mYSize.width + 1) >> 1) && (aData.mCbCrSize.height == aData.mYSize.height || aData.mCbCrSize.height == (aData.mYSize.height + 1) >> 1)); YUVType yuvtype = TypeFromSize(aData.mYSize.width, aData.mYSize.height, aData.mCbCrSize.width, aData.mCbCrSize.height); // Convert from YCbCr to RGB now, scaling the image if needed. if (ToIntSize(aDestSize) != aData.mPicSize) { #if defined(HAVE_YCBCR_TO_RGB565) if (aDestFormat == gfxImageFormat::RGB16_565) { ScaleYCbCrToRGB565(aData.mYChannel, aData.mCbChannel, aData.mCrChannel, aDestBuffer, aData.mPicX, aData.mPicY, aData.mPicSize.width, aData.mPicSize.height, aDestSize.width, aDestSize.height, aData.mYStride, aData.mCbCrStride, aStride, yuvtype, FILTER_BILINEAR); } else #endif ScaleYCbCrToRGB32(aData.mYChannel, aData.mCbChannel, aData.mCrChannel, aDestBuffer, aData.mPicSize.width, aData.mPicSize.height, aDestSize.width, aDestSize.height, aData.mYStride, aData.mCbCrStride, aStride, yuvtype, ROTATE_0, FILTER_BILINEAR); } else { // no prescale #if defined(HAVE_YCBCR_TO_RGB565) if (aDestFormat == gfxImageFormat::RGB16_565) { ConvertYCbCrToRGB565(aData.mYChannel, aData.mCbChannel, aData.mCrChannel, aDestBuffer, aData.mPicX, aData.mPicY, aData.mPicSize.width, aData.mPicSize.height, aData.mYStride, aData.mCbCrStride, aStride, yuvtype); } else // aDestFormat != gfxImageFormat::RGB16_565 #endif ConvertYCbCrToRGB32(aData.mYChannel, aData.mCbChannel, aData.mCrChannel, aDestBuffer, aData.mPicX, aData.mPicY, aData.mPicSize.width, aData.mPicSize.height, aData.mYStride, aData.mCbCrStride, aStride, yuvtype); } } /* static */ TemporaryRef gfxUtils::CopySurfaceToDataSourceSurfaceWithFormat(SourceSurface* aSurface, SurfaceFormat aFormat) { MOZ_ASSERT(aFormat != aSurface->GetFormat(), "Unnecessary - and very expersive - surface format conversion"); Rect bounds(0, 0, aSurface->GetSize().width, aSurface->GetSize().height); if (aSurface->GetType() != SurfaceType::DATA) { // If the surface is NOT of type DATA then its data is not mapped into main // memory. Format conversion is probably faster on the GPU, and by doing it // there we can avoid any expensive uploads/readbacks except for (possibly) // a single readback due to the unavoidable GetDataSurface() call. Using // CreateOffscreenContentDrawTarget ensures the conversion happens on the // GPU. RefPtr dt = gfxPlatform::GetPlatform()-> CreateOffscreenContentDrawTarget(aSurface->GetSize(), aFormat); // Using DrawSurface() here rather than CopySurface() because CopySurface // is optimized for memcpy and therefore isn't good for format conversion. // Using OP_OVER since in our case it's equivalent to OP_SOURCE and // generally more optimized. dt->DrawSurface(aSurface, bounds, bounds, DrawSurfaceOptions(), DrawOptions(1.0f, CompositionOp::OP_OVER)); RefPtr surface = dt->Snapshot(); return surface->GetDataSurface(); } // If the surface IS of type DATA then it may or may not be in main memory // depending on whether or not it has been mapped yet. We have no way of // knowing, so we can't be sure if it's best to create a data wrapping // DrawTarget for the conversion or an offscreen content DrawTarget. We could // guess it's not mapped and create an offscreen content DrawTarget, but if // it is then we'll end up uploading the surface data, and most likely the // caller is going to be accessing the resulting surface data, resulting in a // readback (both very expensive operations). Alternatively we could guess // the data is mapped and create a data wrapping DrawTarget and, if the // surface is not in main memory, then we will incure a readback. The latter // of these two "wrong choices" is the least costly (a readback, vs an // upload and a readback), and more than likely the DATA surface that we've // been passed actually IS in main memory anyway. For these reasons it's most // likely best to create a data wrapping DrawTarget here to do the format // conversion. RefPtr dataSurface = Factory::CreateDataSourceSurface(aSurface->GetSize(), aFormat); DataSourceSurface::MappedSurface map; if (!dataSurface || !dataSurface->Map(DataSourceSurface::MapType::READ_WRITE, &map)) { return nullptr; } RefPtr dt = Factory::CreateDrawTargetForData(BackendType::CAIRO, map.mData, dataSurface->GetSize(), map.mStride, aFormat); if (!dt) { dataSurface->Unmap(); return nullptr; } // Using DrawSurface() here rather than CopySurface() because CopySurface // is optimized for memcpy and therefore isn't good for format conversion. // Using OP_OVER since in our case it's equivalent to OP_SOURCE and // generally more optimized. dt->DrawSurface(aSurface, bounds, bounds, DrawSurfaceOptions(), DrawOptions(1.0f, CompositionOp::OP_OVER)); dataSurface->Unmap(); return dataSurface.forget(); } const uint32_t gfxUtils::sNumFrameColors = 8; /* static */ const gfx::Color& gfxUtils::GetColorForFrameNumber(uint64_t aFrameNumber) { static bool initialized = false; static gfx::Color colors[sNumFrameColors]; if (!initialized) { uint32_t i = 0; colors[i++] = gfx::Color::FromABGR(0xffff0000); colors[i++] = gfx::Color::FromABGR(0xffcc00ff); colors[i++] = gfx::Color::FromABGR(0xff0066cc); colors[i++] = gfx::Color::FromABGR(0xff00ff00); colors[i++] = gfx::Color::FromABGR(0xff33ffff); colors[i++] = gfx::Color::FromABGR(0xffff0099); colors[i++] = gfx::Color::FromABGR(0xff0000ff); colors[i++] = gfx::Color::FromABGR(0xff999999); MOZ_ASSERT(i == sNumFrameColors); initialized = true; } return colors[aFrameNumber % sNumFrameColors]; } #ifdef MOZ_DUMP_PAINTING /* static */ void gfxUtils::WriteAsPNG(DrawTarget* aDT, const char* aFile) { aDT->Flush(); nsRefPtr surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT); if (surf) { surf->WriteAsPNG(aFile); } else { NS_WARNING("Failed to get Thebes surface!"); } } /* static */ void gfxUtils::DumpAsDataURL(DrawTarget* aDT) { aDT->Flush(); nsRefPtr surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT); if (surf) { surf->DumpAsDataURL(); } else { NS_WARNING("Failed to get Thebes surface!"); } } /* static */ void gfxUtils::CopyAsDataURL(DrawTarget* aDT) { aDT->Flush(); nsRefPtr surf = gfxPlatform::GetPlatform()->GetThebesSurfaceForDrawTarget(aDT); if (surf) { surf->CopyAsDataURL(); } else { NS_WARNING("Failed to get Thebes surface!"); } } /* static */ void gfxUtils::WriteAsPNG(gfx::SourceSurface* aSourceSurface, const char* aFile) { RefPtr dataSurface = aSourceSurface->GetDataSurface(); RefPtr dt = gfxPlatform::GetPlatform() ->CreateDrawTargetForData(dataSurface->GetData(), dataSurface->GetSize(), dataSurface->Stride(), aSourceSurface->GetFormat()); gfxUtils::WriteAsPNG(dt.get(), aFile); } /* static */ void gfxUtils::DumpAsDataURL(gfx::SourceSurface* aSourceSurface) { RefPtr dataSurface = aSourceSurface->GetDataSurface(); RefPtr dt = gfxPlatform::GetPlatform() ->CreateDrawTargetForData(dataSurface->GetData(), dataSurface->GetSize(), dataSurface->Stride(), aSourceSurface->GetFormat()); gfxUtils::DumpAsDataURL(dt.get()); } /* static */ void gfxUtils::CopyAsDataURL(gfx::SourceSurface* aSourceSurface) { RefPtr dataSurface = aSourceSurface->GetDataSurface(); RefPtr dt = gfxPlatform::GetPlatform() ->CreateDrawTargetForData(dataSurface->GetData(), dataSurface->GetSize(), dataSurface->Stride(), aSourceSurface->GetFormat()); gfxUtils::CopyAsDataURL(dt.get()); } static bool sDumpPaintList = getenv("MOZ_DUMP_PAINT_LIST") != 0; /* static */ bool gfxUtils::DumpPaintList() { return sDumpPaintList || gfxPrefs::LayoutDumpDisplayList(); } bool gfxUtils::sDumpPainting = getenv("MOZ_DUMP_PAINT") != 0; bool gfxUtils::sDumpPaintingToFile = getenv("MOZ_DUMP_PAINT_TO_FILE") != 0; FILE *gfxUtils::sDumpPaintFile = nullptr; #endif