/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "gfxMatrix.h" #include "gfx3DMatrix.h" #include #include using namespace std; /* Force small values to zero. We do this to avoid having sin(360deg) * evaluate to a tiny but nonzero value. */ static double FlushToZero(double aVal) { if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) return 0.0f; else return aVal; } /* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is * undefined or very large, SafeTangent returns a manageably large value * of the correct sign. */ static double SafeTangent(double aTheta) { const double kEpsilon = 0.0001; /* tan(theta) = sin(theta)/cos(theta); problems arise when * cos(theta) is too close to zero. Limit cos(theta) to the * range [-1, -epsilon] U [epsilon, 1]. */ double sinTheta = sin(aTheta); double cosTheta = cos(aTheta); if (cosTheta >= 0 && cosTheta < kEpsilon) cosTheta = kEpsilon; else if (cosTheta < 0 && cosTheta >= -kEpsilon) cosTheta = -kEpsilon; return FlushToZero(sinTheta / cosTheta); } gfx3DMatrix::gfx3DMatrix(void) { _11 = _22 = _33 = _44 = 1.0f; _12 = _13 = _14 = 0.0f; _21 = _23 = _24 = 0.0f; _31 = _32 = _34 = 0.0f; _41 = _42 = _43 = 0.0f; } gfx3DMatrix gfx3DMatrix::operator*(const gfx3DMatrix &aMatrix) const { if (Is2D() && aMatrix.Is2D()) { return Multiply2D(aMatrix); } gfx3DMatrix matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + _14 * aMatrix._41; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + _24 * aMatrix._41; matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + _34 * aMatrix._41; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + _44 * aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + _14 * aMatrix._42; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + _24 * aMatrix._42; matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + _34 * aMatrix._42; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + _44 * aMatrix._42; matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + _14 * aMatrix._43; matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + _24 * aMatrix._43; matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + _34 * aMatrix._43; matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + _44 * aMatrix._43; matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + _14 * aMatrix._44; matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + _24 * aMatrix._44; matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + _34 * aMatrix._44; matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + _44 * aMatrix._44; return matrix; } gfx3DMatrix& gfx3DMatrix::operator*=(const gfx3DMatrix &aMatrix) { return *this = *this * aMatrix; } gfx3DMatrix gfx3DMatrix::Multiply2D(const gfx3DMatrix &aMatrix) const { gfx3DMatrix matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; return matrix; } bool gfx3DMatrix::operator==(const gfx3DMatrix& o) const { // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44; } gfx3DMatrix& gfx3DMatrix::operator/=(const gfxFloat scalar) { _11 /= scalar; _12 /= scalar; _13 /= scalar; _14 /= scalar; _21 /= scalar; _22 /= scalar; _23 /= scalar; _24 /= scalar; _31 /= scalar; _32 /= scalar; _33 /= scalar; _34 /= scalar; _41 /= scalar; _42 /= scalar; _43 /= scalar; _44 /= scalar; return *this; } gfx3DMatrix gfx3DMatrix::From2D(const gfxMatrix &aMatrix) { gfx3DMatrix matrix; matrix._11 = (float)aMatrix.xx; matrix._12 = (float)aMatrix.yx; matrix._21 = (float)aMatrix.xy; matrix._22 = (float)aMatrix.yy; matrix._41 = (float)aMatrix.x0; matrix._42 = (float)aMatrix.y0; return matrix; } bool gfx3DMatrix::IsIdentity() const { return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f && _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f && _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f && _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f; } void gfx3DMatrix::Translate(const gfxPoint3D& aPoint) { _41 += aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31; _42 += aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32; _43 += aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33; _44 += aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34; } void gfx3DMatrix::TranslatePost(const gfxPoint3D& aPoint) { _11 += _14 * aPoint.x; _21 += _24 * aPoint.x; _31 += _34 * aPoint.x; _41 += _44 * aPoint.x; _12 += _14 * aPoint.y; _22 += _24 * aPoint.y; _32 += _34 * aPoint.y; _42 += _44 * aPoint.y; _13 += _14 * aPoint.z; _23 += _24 * aPoint.z; _33 += _34 * aPoint.z; _43 += _44 * aPoint.z; } void gfx3DMatrix::ScalePost(float aX, float aY, float aZ) { _11 *= aX; _21 *= aX; _31 *= aX; _41 *= aX; _12 *= aY; _22 *= aY; _32 *= aY; _42 *= aY; _13 *= aZ; _23 *= aZ; _33 *= aZ; _43 *= aZ; } void gfx3DMatrix::SkewXY(double aSkew) { (*this)[1] += (*this)[0] * aSkew; } void gfx3DMatrix::SkewXZ(double aSkew) { (*this)[2] += (*this)[0] * aSkew; } void gfx3DMatrix::SkewYZ(double aSkew) { (*this)[2] += (*this)[1] * aSkew; } void gfx3DMatrix::Scale(float aX, float aY, float aZ) { (*this)[0] *= aX; (*this)[1] *= aY; (*this)[2] *= aZ; } void gfx3DMatrix::Perspective(float aDepth) { NS_ASSERTION(aDepth > 0.0f, "Perspective must be positive!"); _31 += -1.0/aDepth * _41; _32 += -1.0/aDepth * _42; _33 += -1.0/aDepth * _43; _34 += -1.0/aDepth * _44; } void gfx3DMatrix::SkewXY(double aXSkew, double aYSkew) { float tanX = SafeTangent(aXSkew); float tanY = SafeTangent(aYSkew); float temp; temp = _11; _11 += tanY * _21; _21 += tanX * temp; temp = _12; _12 += tanY * _22; _22 += tanX * temp; temp = _13; _13 += tanY * _23; _23 += tanX * temp; temp = _14; _14 += tanY * _24; _24 += tanX * temp; } void gfx3DMatrix::RotateX(double aTheta) { double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _21; _21 = cosTheta * _21 + sinTheta * _31; _31 = -sinTheta * temp + cosTheta * _31; temp = _22; _22 = cosTheta * _22 + sinTheta * _32; _32 = -sinTheta * temp + cosTheta * _32; temp = _23; _23 = cosTheta * _23 + sinTheta * _33; _33 = -sinTheta * temp + cosTheta * _33; temp = _24; _24 = cosTheta * _24 + sinTheta * _34; _34 = -sinTheta * temp + cosTheta * _34; } void gfx3DMatrix::RotateY(double aTheta) { double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + -sinTheta * _31; _31 = sinTheta * temp + cosTheta * _31; temp = _12; _12 = cosTheta * _12 + -sinTheta * _32; _32 = sinTheta * temp + cosTheta * _32; temp = _13; _13 = cosTheta * _13 + -sinTheta * _33; _33 = sinTheta * temp + cosTheta * _33; temp = _14; _14 = cosTheta * _14 + -sinTheta * _34; _34 = sinTheta * temp + cosTheta * _34; } void gfx3DMatrix::RotateZ(double aTheta) { double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + sinTheta * _21; _21 = -sinTheta * temp + cosTheta * _21; temp = _12; _12 = cosTheta * _12 + sinTheta * _22; _22 = -sinTheta * temp + cosTheta * _22; temp = _13; _13 = cosTheta * _13 + sinTheta * _23; _23 = -sinTheta * temp + cosTheta * _23; temp = _14; _14 = cosTheta * _14 + sinTheta * _24; _24 = -sinTheta * temp + cosTheta * _24; } void gfx3DMatrix::PreMultiply(const gfx3DMatrix& aOther) { *this = aOther * (*this); } void gfx3DMatrix::PreMultiply(const gfxMatrix& aOther) { gfx3DMatrix temp; temp._11 = aOther.xx * _11 + aOther.yx * _21; temp._21 = aOther.xy * _11 + aOther.yy * _21; temp._31 = _31; temp._41 = aOther.x0 * _11 + aOther.y0 * _21 + _41; temp._12 = aOther.xx * _12 + aOther.yx * _22; temp._22 = aOther.xy * _12 + aOther.yy * _22; temp._32 = _32; temp._42 = aOther.x0 * _12 + aOther.y0 * _22 + _42; temp._13 = aOther.xx * _13 + aOther.yx * _23; temp._23 = aOther.xy * _13 + aOther.yy * _23; temp._33 = _33; temp._43 = aOther.x0 * _13 + aOther.y0 * _23 + _43; temp._14 = aOther.xx * _14 + aOther.yx * _24; temp._24 = aOther.xy * _14 + aOther.yy * _24; temp._34 = _34; temp._44 = aOther.x0 * _14 + aOther.y0 * _24 + _44; *this = temp; } gfx3DMatrix gfx3DMatrix::Translation(float aX, float aY, float aZ) { gfx3DMatrix matrix; matrix._41 = aX; matrix._42 = aY; matrix._43 = aZ; return matrix; } gfx3DMatrix gfx3DMatrix::Translation(const gfxPoint3D& aPoint) { gfx3DMatrix matrix; matrix._41 = aPoint.x; matrix._42 = aPoint.y; matrix._43 = aPoint.z; return matrix; } gfx3DMatrix gfx3DMatrix::ScalingMatrix(float aFactor) { gfx3DMatrix matrix; matrix._11 = matrix._22 = matrix._33 = aFactor; return matrix; } gfx3DMatrix gfx3DMatrix::ScalingMatrix(float aX, float aY, float aZ) { gfx3DMatrix matrix; matrix._11 = aX; matrix._22 = aY; matrix._33 = aZ; return matrix; } gfxFloat gfx3DMatrix::Determinant() const { return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 - _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 + _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 - _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 + _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 - _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 + _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 - _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 + _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 - _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 + _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 - _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44; } gfxFloat gfx3DMatrix::Determinant3x3() const { return _11 * (_22 * _33 - _23 * _32) + _12 * (_23 * _31 - _33 * _21) + _13 * (_21 * _32 - _22 * _31); } gfx3DMatrix gfx3DMatrix::Inverse3x3() const { gfxFloat det = Determinant3x3(); if (det == 0.0) { return *this; } gfxFloat detInv = 1/det; gfx3DMatrix temp; temp._11 = (_22 * _33 - _23 * _32) * detInv; temp._12 = (_13 * _32 - _12 * _33) * detInv; temp._13 = (_12 * _23 - _13 * _22) * detInv; temp._21 = (_23 * _31 - _33 * _21) * detInv; temp._22 = (_11 * _33 - _13 * _31) * detInv; temp._23 = (_13 * _21 - _11 * _23) * detInv; temp._31 = (_21 * _32 - _22 * _31) * detInv; temp._32 = (_31 * _12 - _11 * _32) * detInv; temp._33 = (_11 * _22 - _12 * _21) * detInv; return temp; } bool gfx3DMatrix::IsSingular() const { return Determinant() == 0.0; } gfx3DMatrix gfx3DMatrix::Inverse() const { if (TransposedVector(3) == gfxPointH3D(0, 0, 0, 1)) { /** * When the matrix contains no perspective, the inverse * is the same as the 3x3 inverse of the rotation components * multiplied by the inverse of the translation components. * Doing these steps separately is faster and more numerically * stable. * * Inverse of the translation matrix is just negating * the values. */ gfx3DMatrix matrix3 = Inverse3x3(); matrix3.Translate(gfxPoint3D(-_41, -_42, -_43)); return matrix3; } gfxFloat det = Determinant(); if (det == 0.0) { return *this; } gfx3DMatrix temp; temp._11 = _23*_34*_42 - _24*_33*_42 + _24*_32*_43 - _22*_34*_43 - _23*_32*_44 + _22*_33*_44; temp._12 = _14*_33*_42 - _13*_34*_42 - _14*_32*_43 + _12*_34*_43 + _13*_32*_44 - _12*_33*_44; temp._13 = _13*_24*_42 - _14*_23*_42 + _14*_22*_43 - _12*_24*_43 - _13*_22*_44 + _12*_23*_44; temp._14 = _14*_23*_32 - _13*_24*_32 - _14*_22*_33 + _12*_24*_33 + _13*_22*_34 - _12*_23*_34; temp._21 = _24*_33*_41 - _23*_34*_41 - _24*_31*_43 + _21*_34*_43 + _23*_31*_44 - _21*_33*_44; temp._22 = _13*_34*_41 - _14*_33*_41 + _14*_31*_43 - _11*_34*_43 - _13*_31*_44 + _11*_33*_44; temp._23 = _14*_23*_41 - _13*_24*_41 - _14*_21*_43 + _11*_24*_43 + _13*_21*_44 - _11*_23*_44; temp._24 = _13*_24*_31 - _14*_23*_31 + _14*_21*_33 - _11*_24*_33 - _13*_21*_34 + _11*_23*_34; temp._31 = _22*_34*_41 - _24*_32*_41 + _24*_31*_42 - _21*_34*_42 - _22*_31*_44 + _21*_32*_44; temp._32 = _14*_32*_41 - _12*_34*_41 - _14*_31*_42 + _11*_34*_42 + _12*_31*_44 - _11*_32*_44; temp._33 = _12*_24*_41 - _14*_22*_41 + _14*_21*_42 - _11*_24*_42 - _12*_21*_44 + _11*_22*_44; temp._34 = _14*_22*_31 - _12*_24*_31 - _14*_21*_32 + _11*_24*_32 + _12*_21*_34 - _11*_22*_34; temp._41 = _23*_32*_41 - _22*_33*_41 - _23*_31*_42 + _21*_33*_42 + _22*_31*_43 - _21*_32*_43; temp._42 = _12*_33*_41 - _13*_32*_41 + _13*_31*_42 - _11*_33*_42 - _12*_31*_43 + _11*_32*_43; temp._43 = _13*_22*_41 - _12*_23*_41 - _13*_21*_42 + _11*_23*_42 + _12*_21*_43 - _11*_22*_43; temp._44 = _12*_23*_31 - _13*_22*_31 + _13*_21*_32 - _11*_23*_32 - _12*_21*_33 + _11*_22*_33; temp /= det; return temp; } gfx3DMatrix& gfx3DMatrix::Normalize() { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { (*this)[i][j] /= (*this)[3][3]; } } return *this; } gfx3DMatrix& gfx3DMatrix::Transpose() { *this = Transposed(); return *this; } gfx3DMatrix gfx3DMatrix::Transposed() const { gfx3DMatrix temp; for (int i = 0; i < 4; i++) { temp[i] = TransposedVector(i); } return temp; } gfxPoint gfx3DMatrix::Transform(const gfxPoint& point) const { gfxPoint3D vec3d(point.x, point.y, 0); vec3d = Transform3D(vec3d); return gfxPoint(vec3d.x, vec3d.y); } gfxPoint3D gfx3DMatrix::Transform3D(const gfxPoint3D& point) const { gfxFloat x = point.x * _11 + point.y * _21 + point.z * _31 + _41; gfxFloat y = point.x * _12 + point.y * _22 + point.z * _32 + _42; gfxFloat z = point.x * _13 + point.y * _23 + point.z * _33 + _43; gfxFloat w = point.x * _14 + point.y * _24 + point.z * _34 + _44; x /= w; y /= w; z /= w; return gfxPoint3D(x, y, z); } gfxPointH3D gfx3DMatrix::Transform4D(const gfxPointH3D& aPoint) const { gfxFloat x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41; gfxFloat y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42; gfxFloat z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43; gfxFloat w = aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44; return gfxPointH3D(x, y, z, w); } gfxPointH3D gfx3DMatrix::TransposeTransform4D(const gfxPointH3D& aPoint) const { gfxFloat x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14; gfxFloat y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24; gfxFloat z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34; gfxFloat w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44; return gfxPointH3D(x, y, z, w); } gfxRect gfx3DMatrix::TransformBounds(const gfxRect& rect) const { gfxPoint points[4]; points[0] = Transform(rect.TopLeft()); points[1] = Transform(gfxPoint(rect.X() + rect.Width(), rect.Y())); points[2] = Transform(gfxPoint(rect.X(), rect.Y() + rect.Height())); points[3] = Transform(gfxPoint(rect.X() + rect.Width(), rect.Y() + rect.Height())); gfxFloat min_x, max_x; gfxFloat min_y, max_y; min_x = max_x = points[0].x; min_y = max_y = points[0].y; for (int i=1; i<4; i++) { min_x = min(points[i].x, min_x); max_x = max(points[i].x, max_x); min_y = min(points[i].y, min_y); max_y = max(points[i].y, max_y); } return gfxRect(min_x, min_y, max_x - min_x, max_y - min_y); } gfxQuad gfx3DMatrix::TransformRect(const gfxRect& aRect) const { gfxPoint points[4]; points[0] = Transform(aRect.TopLeft()); points[1] = Transform(gfxPoint(aRect.X() + aRect.Width(), aRect.Y())); points[2] = Transform(gfxPoint(aRect.X() + aRect.Width(), aRect.Y() + aRect.Height())); points[3] = Transform(gfxPoint(aRect.X(), aRect.Y() + aRect.Height())); // Could this ever result in lines that intersect? I don't think so. return gfxQuad(points[0], points[1], points[2], points[3]); } bool gfx3DMatrix::Is2D() const { if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f || _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f || _43 != 0.0f || _44 != 1.0f) { return false; } return true; } bool gfx3DMatrix::Is2D(gfxMatrix* aMatrix) const { if (!Is2D()) { return false; } if (aMatrix) { aMatrix->xx = _11; aMatrix->yx = _12; aMatrix->xy = _21; aMatrix->yy = _22; aMatrix->x0 = _41; aMatrix->y0 = _42; } return true; } bool gfx3DMatrix::CanDraw2D(gfxMatrix* aMatrix) const { if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) { return false; } if (aMatrix) { aMatrix->xx = _11; aMatrix->yx = _12; aMatrix->xy = _21; aMatrix->yy = _22; aMatrix->x0 = _41; aMatrix->y0 = _42; } return true; } gfx3DMatrix& gfx3DMatrix::ProjectTo2D() { _31 = 0.0f; _32 = 0.0f; _13 = 0.0f; _23 = 0.0f; _33 = 1.0f; _43 = 0.0f; _34 = 0.0f; return *this; } gfxPoint gfx3DMatrix::ProjectPoint(const gfxPoint& aPoint) const { // Define a ray of the form P + Ut where t is a real number // w is assumed to always be 1 when transforming 3d points with our // 4x4 matrix. // p is our click point, q is another point on the same ray. // // Note: since the transformation is a general projective transformation and is not // necessarily affine, we can't just take a unit vector u, back-transform it, and use // it as unit vector on the back-transformed ray. Instead, we really must take two points // on the ray and back-transform them. gfxPoint3D p(aPoint.x, aPoint.y, 0); gfxPoint3D q(aPoint.x, aPoint.y, 1); // Back transform the vectors (using w = 1) and normalize // back into 3d vectors by dividing by the w component. gfxPoint3D pback = Transform3D(p); gfxPoint3D qback = Transform3D(q); gfxPoint3D uback = qback - pback; // Find the point where the back transformed line intersects z=0 // and find t. float t = -pback.z / uback.z; gfxPoint result(pback.x + t*uback.x, pback.y + t*uback.y); return result; } gfxRect gfx3DMatrix::ProjectRectBounds(const gfxRect& aRect) const { gfxPoint points[4]; points[0] = ProjectPoint(aRect.TopLeft()); points[1] = ProjectPoint(gfxPoint(aRect.X() + aRect.Width(), aRect.Y())); points[2] = ProjectPoint(gfxPoint(aRect.X(), aRect.Y() + aRect.Height())); points[3] = ProjectPoint(gfxPoint(aRect.X() + aRect.Width(), aRect.Y() + aRect.Height())); gfxFloat min_x, max_x; gfxFloat min_y, max_y; min_x = max_x = points[0].x; min_y = max_y = points[0].y; for (int i=1; i<4; i++) { min_x = min(points[i].x, min_x); max_x = max(points[i].x, max_x); min_y = min(points[i].y, min_y); max_y = max(points[i].y, max_y); } return gfxRect(min_x, min_y, max_x - min_x, max_y - min_y); } gfxPoint3D gfx3DMatrix::GetNormalVector() const { // Define a plane in transformed space as the transformations // of 3 points on the z=0 screen plane. gfxPoint3D a = Transform3D(gfxPoint3D(0, 0, 0)); gfxPoint3D b = Transform3D(gfxPoint3D(0, 1, 0)); gfxPoint3D c = Transform3D(gfxPoint3D(1, 0, 0)); // Convert to two vectors on the surface of the plane. gfxPoint3D ab = b - a; gfxPoint3D ac = c - a; return ac.CrossProduct(ab); } bool gfx3DMatrix::IsBackfaceVisible() const { // Inverse()._33 < 0; gfxFloat det = Determinant(); float _33 = _12*_24*_41 - _14*_22*_41 + _14*_21*_42 - _11*_24*_42 - _12*_21*_44 + _11*_22*_44; return (_33 * det) < 0; }