/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Oracle Corporation code. * * The Initial Developer of the Original Code is Oracle Corporation. * Portions created by the Initial Developer are Copyright (C) 2005 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Stuart Parmenter * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "gfxMatrix.h" #include "cairo.h" #define CAIRO_MATRIX(x) reinterpret_cast((x)) #define CONST_CAIRO_MATRIX(x) reinterpret_cast((x)) const gfxMatrix& gfxMatrix::Reset() { cairo_matrix_init_identity(CAIRO_MATRIX(this)); return *this; } const gfxMatrix& gfxMatrix::Invert() { cairo_matrix_invert(CAIRO_MATRIX(this)); return *this; } const gfxMatrix& gfxMatrix::Scale(gfxFloat x, gfxFloat y) { cairo_matrix_scale(CAIRO_MATRIX(this), x, y); return *this; } const gfxMatrix& gfxMatrix::Translate(const gfxPoint& pt) { cairo_matrix_translate(CAIRO_MATRIX(this), pt.x, pt.y); return *this; } const gfxMatrix& gfxMatrix::Rotate(gfxFloat radians) { cairo_matrix_rotate(CAIRO_MATRIX(this), radians); return *this; } const gfxMatrix& gfxMatrix::Multiply(const gfxMatrix& m) { cairo_matrix_multiply(CAIRO_MATRIX(this), CAIRO_MATRIX(this), CONST_CAIRO_MATRIX(&m)); return *this; } const gfxMatrix& gfxMatrix::PreMultiply(const gfxMatrix& m) { cairo_matrix_multiply(CAIRO_MATRIX(this), CONST_CAIRO_MATRIX(&m), CAIRO_MATRIX(this)); return *this; } gfxPoint gfxMatrix::Transform(const gfxPoint& point) const { gfxPoint ret = point; cairo_matrix_transform_point(CONST_CAIRO_MATRIX(this), &ret.x, &ret.y); return ret; } gfxSize gfxMatrix::Transform(const gfxSize& size) const { gfxSize ret = size; cairo_matrix_transform_distance(CONST_CAIRO_MATRIX(this), &ret.width, &ret.height); return ret; } gfxRect gfxMatrix::Transform(const gfxRect& rect) const { return gfxRect(Transform(rect.pos), Transform(rect.size)); } gfxRect gfxMatrix::TransformBounds(const gfxRect& rect) const { /* Code taken from cairo-matrix.c, _cairo_matrix_transform_bounding_box isn't public */ int i; double quad_x[4], quad_y[4]; double min_x, max_x; double min_y, max_y; quad_x[0] = rect.pos.x; quad_y[0] = rect.pos.y; cairo_matrix_transform_point (CONST_CAIRO_MATRIX(this), &quad_x[0], &quad_y[0]); quad_x[1] = rect.pos.x + rect.size.width; quad_y[1] = rect.pos.y; cairo_matrix_transform_point (CONST_CAIRO_MATRIX(this), &quad_x[1], &quad_y[1]); quad_x[2] = rect.pos.x; quad_y[2] = rect.pos.y + rect.size.height; cairo_matrix_transform_point (CONST_CAIRO_MATRIX(this), &quad_x[2], &quad_y[2]); quad_x[3] = rect.pos.x + rect.size.width; quad_y[3] = rect.pos.y + rect.size.height; cairo_matrix_transform_point (CONST_CAIRO_MATRIX(this), &quad_x[3], &quad_y[3]); min_x = max_x = quad_x[0]; min_y = max_y = quad_y[0]; for (i = 1; i < 4; i++) { if (quad_x[i] < min_x) min_x = quad_x[i]; if (quad_x[i] > max_x) max_x = quad_x[i]; if (quad_y[i] < min_y) min_y = quad_y[i]; if (quad_y[i] > max_y) max_y = quad_y[i]; } // we don't compute this now #if 0 if (is_tight) { /* it's tight if and only if the four corner points form an axis-aligned rectangle. And that's true if and only if we can derive corners 0 and 3 from corners 1 and 2 in one of two straightforward ways... We could use a tolerance here but for now we'll fall back to FALSE in the case of floating point error. */ *is_tight = (quad_x[1] == quad_x[0] && quad_y[1] == quad_y[3] && quad_x[2] == quad_x[3] && quad_y[2] == quad_y[0]) || (quad_x[1] == quad_x[3] && quad_y[1] == quad_y[0] && quad_x[2] == quad_x[0] && quad_y[2] == quad_y[3]); } #endif return gfxRect(min_x, min_y, max_x - min_x, max_y - min_y); }