/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sw=4 et tw=99 ft=cpp: * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla SpiderMonkey JavaScript 1.9 code, released * June 12, 2009. * * The Initial Developer of the Original Code is * the Mozilla Corporation. * * Contributor(s): * Luke Wagner * Nicholas Nethercote * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef jsvector_h_ #define jsvector_h_ #include "jstl.h" #include "jsprvtd.h" /* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */ #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4345) #endif namespace js { /* * This template class provides a default implementation for vector operations * when the element type is not known to be a POD, as judged by IsPodType. */ template struct VectorImpl { /* Destroys constructed objects in the range [begin, end). */ static inline void destroy(T *begin, T *end) { for (T *p = begin; p != end; ++p) p->~T(); } /* Constructs objects in the uninitialized range [begin, end). */ static inline void initialize(T *begin, T *end) { for (T *p = begin; p != end; ++p) new(p) T(); } /* * Copy-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { for (const U *p = srcbeg; p != srcend; ++p, ++dst) new(dst) T(*p); } /* * Copy-constructs objects in the uninitialized range [dst, dst+n) from the * same object u. */ template static inline void copyConstructN(T *dst, size_t n, const U &u) { for (T *end = dst + n; dst != end; ++dst) new(dst) T(u); } /* * Grows the given buffer to have capacity newcap, preserving the objects * constructed in the range [begin, end) and updating v. Assumes that (1) * newcap has not overflowed, and (2) multiplying newcap by sizeof(T) will * not overflow. */ static inline bool growTo(Vector &v, size_t newcap) { JS_ASSERT(!v.usingInlineStorage()); T *newbuf = reinterpret_cast(v.malloc(newcap * sizeof(T))); if (!newbuf) return false; for (T *dst = newbuf, *src = v.beginNoCheck(); src != v.endNoCheck(); ++dst, ++src) new(dst) T(*src); VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck()); v.free(v.mBegin); v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newcap; return true; } }; /* * This partial template specialization provides a default implementation for * vector operations when the element type is known to be a POD, as judged by * IsPodType. */ template struct VectorImpl { static inline void destroy(T *, T *) {} static inline void initialize(T *begin, T *end) { /* * You would think that memset would be a big win (or even break even) * when we know T is a POD. But currently it's not. This is probably * because |append| tends to be given small ranges and memset requires * a function call that doesn't get inlined. * * memset(begin, 0, sizeof(T) * (end-begin)); */ for (T *p = begin; p != end; ++p) new(p) T(); } template static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { /* * See above memset comment. Also, notice that copyConstruct is * currently templated (T != U), so memcpy won't work without * requiring T == U. * * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg)); */ for (const U *p = srcbeg; p != srcend; ++p, ++dst) *dst = *p; } static inline void copyConstructN(T *dst, size_t n, const T &t) { for (T *p = dst, *end = dst + n; p != end; ++p) *p = t; } static inline bool growTo(Vector &v, size_t newcap) { JS_ASSERT(!v.usingInlineStorage()); size_t bytes = sizeof(T) * newcap; T *newbuf = reinterpret_cast(v.realloc(v.mBegin, bytes)); if (!newbuf) return false; v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newcap; return true; } }; /* * JS-friendly, STL-like container providing a short-lived, dynamic buffer. * Vector calls the constructors/destructors of all elements stored in * its internal buffer, so non-PODs may be safely used. Additionally, * Vector will store the first N elements in-place before resorting to * dynamic allocation. * * T requirements: * - default and copy constructible, assignable, destructible * - operations do not throw * N requirements: * - any value, however, N is clamped to min/max values * AllocPolicy: * - see "Allocation policies" in jstl.h (default ContextAllocPolicy) * * N.B: Vector is not reentrant: T member functions called during Vector member * functions must not call back into the same object. */ template class Vector : AllocPolicy { /* utilities */ static const bool sElemIsPod = tl::IsPodType::result; typedef VectorImpl Impl; friend struct VectorImpl; bool calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap); bool growStorageBy(size_t lengthInc); bool growHeapStorageBy(size_t lengthInc); bool convertToHeapStorage(size_t lengthInc); template inline bool growByImpl(size_t inc); /* magic constants */ static const int sMaxInlineBytes = 1024; /* compute constants */ static const size_t sInlineCapacity = tl::Min::result; /* Calculate inline buffer size; avoid 0-sized array. */ static const size_t sInlineBytes = tl::Max<1, sInlineCapacity * sizeof(T)>::result; /* member data */ /* * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin, * mBegin + mLength) hold valid constructed T objects. The range [mBegin + * mLength, mBegin + mCapacity) holds uninitialized memory. */ T *mBegin; size_t mLength; /* Number of elements in the Vector. */ size_t mCapacity; /* Max number of elements storable in the Vector without resizing. */ AlignedStorage storage; #ifdef DEBUG friend class ReentrancyGuard; bool entered; #endif Vector(const Vector &); Vector &operator=(const Vector &); /* private accessors */ bool usingInlineStorage() const { return mBegin == (T *)storage.addr(); } T *beginNoCheck() const { return mBegin; } T *endNoCheck() { return mBegin + mLength; } const T *endNoCheck() const { return mBegin + mLength; } public: Vector(AllocPolicy = AllocPolicy()); ~Vector(); /* accessors */ enum { InlineLength = N }; size_t length() const { return mLength; } bool empty() const { return mLength == 0; } size_t capacity() const { return mCapacity; } T *begin() const { JS_ASSERT(!entered); return mBegin; } T *end() { JS_ASSERT(!entered); return mBegin + mLength; } const T *end() const { JS_ASSERT(!entered); return mBegin + mLength; } T &operator[](size_t i) { JS_ASSERT(!entered && i < mLength); return begin()[i]; } const T &operator[](size_t i) const { JS_ASSERT(!entered && i < mLength); return begin()[i]; } T &back() { JS_ASSERT(!entered && !empty()); return *(end() - 1); } const T &back() const { JS_ASSERT(!entered && !empty()); return *(end() - 1); } /* mutators */ /* If reserve(length() + N) succeeds, the N next appends are guaranteed to succeed. */ bool reserve(size_t capacity); /* Destroy elements in the range [begin() + incr, end()). */ void shrinkBy(size_t incr); /* Grow the vector by incr elements. */ bool growBy(size_t incr); /* Call shrinkBy or growBy based on whether newSize > length(). */ bool resize(size_t newLength); /* Leave new elements as uninitialized memory. */ bool growByUninitialized(size_t incr); bool resizeUninitialized(size_t newLength); void clear(); bool append(const T &t); bool appendN(const T &t, size_t n); template bool append(const U *begin, const U *end); template bool append(const U *begin, size_t length); template bool append(const Vector &other); void popBack(); /* * Transfers ownership of the internal buffer used by Vector to the caller. * After this call, the Vector is empty. Since the returned buffer may need * to be allocated (if the elements are currently stored in-place), the * call can fail, returning NULL. * * N.B. Although a T*, only the range [0, length()) is constructed. */ T *extractRawBuffer(); /* * Transfer ownership of an array of objects into the Vector. * N.B. This call assumes that there are no uninitialized elements in the * passed array. */ void replaceRawBuffer(T *p, size_t length); /* * Places |val| at position |p|, shifting existing elements * from |p| onward one position higher. */ bool insert(T *p, const T &val); /* * Removes the element |t|, which must fall in the bounds [begin, end), * shifting existing elements from |t + 1| onward one position lower. */ void erase(T *t); }; /* Helper functions */ /* * This helper function is specialized for appending the characters of a string * literal to a vector. This could not be done generically since one must take * care not to append the terminating '\0'. */ template JS_ALWAYS_INLINE bool js_AppendLiteral(Vector &v, const char (&array)[ArrayLength]) { return v.append(array, array + ArrayLength - 1); } /* This does the re-entrancy check plus several other sanity checks. */ #define REENTRANCY_GUARD_ET_AL \ ReentrancyGuard g(*this); \ JS_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \ JS_ASSERT(mLength <= mCapacity) /* Vector Implementation */ template JS_ALWAYS_INLINE Vector::Vector(AllocPolicy ap) : AllocPolicy(ap), mBegin((T *)storage.addr()), mLength(0), mCapacity(sInlineCapacity) #ifdef DEBUG , entered(false) #endif {} template JS_ALWAYS_INLINE Vector::~Vector() { REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free(beginNoCheck()); } /* * Calculate a new capacity that is at least lengthInc greater than * curLength and check for overflow. */ template STATIC_POSTCONDITION(!return || newCap >= curLength + lengthInc) inline bool Vector::calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap) { size_t newMinCap = curLength + lengthInc; /* * Check for overflow in the above addition, below CEILING_LOG2, and later * multiplication by sizeof(T). */ if (newMinCap < curLength || newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) { this->reportAllocOverflow(); return false; } /* Round up to next power of 2. */ newCap = RoundUpPow2(newMinCap); /* * Do not allow a buffer large enough that the expression ((char *)end() - * (char *)begin()) overflows ptrdiff_t. See Bug 510319. */ if (newCap & tl::UnsafeRangeSizeMask::result) { this->reportAllocOverflow(); return false; } return true; } /* * This function will grow the current heap capacity to have capacity * (mLength + lengthInc) and fail on OOM or integer overflow. */ template JS_ALWAYS_INLINE bool Vector::growHeapStorageBy(size_t lengthInc) { JS_ASSERT(!usingInlineStorage()); size_t newCap; return calculateNewCapacity(mLength, lengthInc, newCap) && Impl::growTo(*this, newCap); } /* * This function will create a new heap buffer with capacity (mLength + * lengthInc()), move all elements in the inline buffer to this new buffer, * and fail on OOM or integer overflow. */ template inline bool Vector::convertToHeapStorage(size_t lengthInc) { JS_ASSERT(usingInlineStorage()); size_t newCap; if (!calculateNewCapacity(mLength, lengthInc, newCap)) return false; /* Allocate buffer. */ T *newBuf = reinterpret_cast(this->malloc(newCap * sizeof(T))); if (!newBuf) return false; /* Copy inline elements into heap buffer. */ Impl::copyConstruct(newBuf, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* Switch in heap buffer. */ mBegin = newBuf; /* mLength is unchanged. */ mCapacity = newCap; return true; } template JS_ALWAYS_INLINE bool Vector::growStorageBy(size_t incr) { JS_ASSERT(mLength + incr > mCapacity); return usingInlineStorage() ? convertToHeapStorage(incr) : growHeapStorageBy(incr); } template inline bool Vector::reserve(size_t request) { REENTRANCY_GUARD_ET_AL; if (request > mCapacity) return growStorageBy(request - mLength); return true; } template inline void Vector::shrinkBy(size_t incr) { REENTRANCY_GUARD_ET_AL; JS_ASSERT(incr <= mLength); Impl::destroy(endNoCheck() - incr, endNoCheck()); mLength -= incr; } template template JS_ALWAYS_INLINE bool Vector::growByImpl(size_t incr) { REENTRANCY_GUARD_ET_AL; if (incr > mCapacity - mLength && !growStorageBy(incr)) return false; JS_ASSERT(mLength + incr <= mCapacity); T *newend = endNoCheck() + incr; if (InitNewElems) Impl::initialize(endNoCheck(), newend); mLength += incr; return true; } template JS_ALWAYS_INLINE bool Vector::growBy(size_t incr) { return growByImpl(incr); } template JS_ALWAYS_INLINE bool Vector::growByUninitialized(size_t incr) { return growByImpl(incr); } template STATIC_POSTCONDITION(!return || ubound(this->begin()) >= newLength) inline bool Vector::resize(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growBy(newLength - curLength); shrinkBy(curLength - newLength); return true; } template JS_ALWAYS_INLINE bool Vector::resizeUninitialized(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growByUninitialized(newLength - curLength); shrinkBy(curLength - newLength); return true; } template inline void Vector::clear() { REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); mLength = 0; } template JS_ALWAYS_INLINE bool Vector::append(const T &t) { REENTRANCY_GUARD_ET_AL; if (mLength == mCapacity && !growStorageBy(1)) return false; JS_ASSERT(mLength < mCapacity); new(endNoCheck()) T(t); ++mLength; return true; } template JS_ALWAYS_INLINE bool Vector::appendN(const T &t, size_t needed) { REENTRANCY_GUARD_ET_AL; if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; JS_ASSERT(mLength + needed <= mCapacity); Impl::copyConstructN(endNoCheck(), needed, t); mLength += needed; return true; } template inline bool Vector::insert(T *p, const T &val) { JS_ASSERT(begin() <= p && p <= end()); size_t pos = p - begin(); JS_ASSERT(pos <= mLength); size_t oldLength = mLength; if (pos == oldLength) return append(val); { T oldBack = back(); if (!append(oldBack)) /* Dup the last element. */ return false; } for (size_t i = oldLength; i > pos; --i) (*this)[i] = (*this)[i - 1]; (*this)[pos] = val; return true; } template inline void Vector::erase(T *it) { JS_ASSERT(begin() <= it && it < end()); while (it + 1 != end()) { *it = *(it + 1); ++it; } popBack(); } template template JS_ALWAYS_INLINE bool Vector::append(const U *insBegin, const U *insEnd) { REENTRANCY_GUARD_ET_AL; size_t needed = PointerRangeSize(insBegin, insEnd); if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; JS_ASSERT(mLength + needed <= mCapacity); Impl::copyConstruct(endNoCheck(), insBegin, insEnd); mLength += needed; return true; } template template inline bool Vector::append(const Vector &other) { return append(other.begin(), other.end()); } template template JS_ALWAYS_INLINE bool Vector::append(const U *insBegin, size_t length) { return this->append(insBegin, insBegin + length); } template JS_ALWAYS_INLINE void Vector::popBack() { REENTRANCY_GUARD_ET_AL; JS_ASSERT(!empty()); --mLength; endNoCheck()->~T(); } template inline T * Vector::extractRawBuffer() { T *ret; if (usingInlineStorage()) { ret = reinterpret_cast(this->malloc(mLength * sizeof(T))); if (!ret) return NULL; Impl::copyConstruct(ret, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* mBegin, mCapacity are unchanged. */ mLength = 0; } else { ret = mBegin; mBegin = (T *)storage.addr(); mLength = 0; mCapacity = sInlineCapacity; } return ret; } template inline void Vector::replaceRawBuffer(T *p, size_t length) { REENTRANCY_GUARD_ET_AL; /* Destroy what we have. */ Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free(beginNoCheck()); /* Take in the new buffer. */ if (length <= sInlineCapacity) { /* * We convert to inline storage if possible, even though p might * otherwise be acceptable. Maybe this behaviour should be * specifiable with an argument to this function. */ mBegin = (T *)storage.addr(); mLength = length; mCapacity = sInlineCapacity; Impl::copyConstruct(mBegin, p, p + length); Impl::destroy(p, p + length); this->free(p); } else { mBegin = p; mLength = length; mCapacity = length; } } } /* namespace js */ #ifdef _MSC_VER #pragma warning(pop) #endif #endif /* jsvector_h_ */