/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_MATRIX_H_ #define MOZILLA_GFX_MATRIX_H_ #include "Types.h" #include "Rect.h" #include "Point.h" #include namespace mozilla { namespace gfx { class Matrix { public: Matrix() : _11(1.0f), _12(0) , _21(0), _22(1.0f) , _31(0), _32(0) {} Matrix(Float a11, Float a12, Float a21, Float a22, Float a31, Float a32) : _11(a11), _12(a12) , _21(a21), _22(a22) , _31(a31), _32(a32) {} Float _11, _12; Float _21, _22; Float _31, _32; Point operator *(const Point &aPoint) const { Point retPoint; retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31; retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32; return retPoint; } Size operator *(const Size &aSize) const { Size retSize; retSize.width = aSize.width * _11 + aSize.height * _21; retSize.height = aSize.width * _12 + aSize.height * _22; return retSize; } GFX2D_API Rect TransformBounds(const Rect& rect) const; // Apply a scale to this matrix. This scale will be applied -before- the // existing transformation of the matrix. Matrix &Scale(Float aX, Float aY) { _11 *= aX; _12 *= aX; _21 *= aY; _22 *= aY; return *this; } Matrix &Translate(Float aX, Float aY) { _31 += _11 * aX + _21 * aY; _32 += _12 * aX + _22 * aY; return *this; } bool Invert() { // Compute co-factors. Float A = _22; Float B = -_21; Float C = _21 * _32 - _22 * _31; Float D = -_12; Float E = _11; Float F = _31 * _12 - _11 * _32; Float det = Determinant(); if (!det) { return false; } Float inv_det = 1 / det; _11 = inv_det * A; _12 = inv_det * D; _21 = inv_det * B; _22 = inv_det * E; _31 = inv_det * C; _32 = inv_det * F; return true; } Float Determinant() const { return _11 * _22 - _12 * _21; } GFX2D_API static Matrix Rotation(Float aAngle); Matrix operator*(const Matrix &aMatrix) const { Matrix resultMatrix; resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21; resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22; resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21; resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22; resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31; resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32; return resultMatrix; } /* Returns true if the other matrix is fuzzy-equal to this matrix. * Note that this isn't a cheap comparison! */ bool operator==(const Matrix& other) const { return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) && FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) && FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32); } bool operator!=(const Matrix& other) const { return !(*this == other); } /* Returns true if the matrix is a rectilinear transformation (i.e. * grid-aligned rectangles are transformed to grid-aligned rectangles) */ bool IsRectilinear() const { if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) { return true; } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) { return true; } return false; } /* Returns true if the matrix is an identity matrix. */ bool IsIdentity() const { return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f && _31 == 0.0f && _32 == 0.0f; } private: static bool FuzzyEqual(Float aV1, Float aV2) { // XXX - Check if fabs does the smart thing and just negates the sign bit. return fabs(aV2 - aV1) < 1e-6; } }; } } #endif /* MOZILLA_GFX_MATRIX_H_ */