/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ConvolverNode.h" #include "mozilla/dom/ConvolverNodeBinding.h" #include "AudioNodeEngine.h" #include "AudioNodeStream.h" #include "blink/Reverb.h" #include "PlayingRefChangeHandler.h" namespace mozilla { namespace dom { NS_IMPL_CYCLE_COLLECTION_INHERITED(ConvolverNode, AudioNode, mBuffer) NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(ConvolverNode) NS_INTERFACE_MAP_END_INHERITING(AudioNode) NS_IMPL_ADDREF_INHERITED(ConvolverNode, AudioNode) NS_IMPL_RELEASE_INHERITED(ConvolverNode, AudioNode) class ConvolverNodeEngine : public AudioNodeEngine { typedef PlayingRefChangeHandler PlayingRefChanged; public: ConvolverNodeEngine(AudioNode* aNode, bool aNormalize) : AudioNodeEngine(aNode) , mBufferLength(0) , mLeftOverData(INT32_MIN) , mSampleRate(0.0f) , mUseBackgroundThreads(!aNode->Context()->IsOffline()) , mNormalize(aNormalize) { } enum Parameters { BUFFER_LENGTH, SAMPLE_RATE, NORMALIZE }; virtual void SetInt32Parameter(uint32_t aIndex, int32_t aParam) MOZ_OVERRIDE { switch (aIndex) { case BUFFER_LENGTH: // BUFFER_LENGTH is the first parameter that we set when setting a new buffer, // so we should be careful to invalidate the rest of our state here. mBuffer = nullptr; mSampleRate = 0.0f; mBufferLength = aParam; mLeftOverData = INT32_MIN; break; case SAMPLE_RATE: mSampleRate = aParam; break; case NORMALIZE: mNormalize = !!aParam; break; default: NS_ERROR("Bad ConvolverNodeEngine Int32Parameter"); } } virtual void SetDoubleParameter(uint32_t aIndex, double aParam) MOZ_OVERRIDE { switch (aIndex) { case SAMPLE_RATE: mSampleRate = aParam; AdjustReverb(); break; default: NS_ERROR("Bad ConvolverNodeEngine DoubleParameter"); } } virtual void SetBuffer(already_AddRefed aBuffer) { mBuffer = aBuffer; AdjustReverb(); } void AdjustReverb() { // Note about empirical tuning (this is copied from Blink) // The maximum FFT size affects reverb performance and accuracy. // If the reverb is single-threaded and processes entirely in the real-time audio thread, // it's important not to make this too high. In this case 8192 is a good value. // But, the Reverb object is multi-threaded, so we want this as high as possible without losing too much accuracy. // Very large FFTs will have worse phase errors. Given these constraints 32768 is a good compromise. const size_t MaxFFTSize = 32768; if (!mBuffer || !mBufferLength || !mSampleRate) { mReverb = nullptr; mLeftOverData = INT32_MIN; return; } mReverb = new WebCore::Reverb(mBuffer, mBufferLength, WEBAUDIO_BLOCK_SIZE, MaxFFTSize, 2, mUseBackgroundThreads, mNormalize, mSampleRate); } virtual void ProcessBlock(AudioNodeStream* aStream, const AudioChunk& aInput, AudioChunk* aOutput, bool* aFinished) { if (!mReverb) { *aOutput = aInput; return; } AudioChunk input = aInput; if (aInput.IsNull()) { if (mLeftOverData > 0) { mLeftOverData -= WEBAUDIO_BLOCK_SIZE; AllocateAudioBlock(1, &input); WriteZeroesToAudioBlock(&input, 0, WEBAUDIO_BLOCK_SIZE); } else { if (mLeftOverData != INT32_MIN) { mLeftOverData = INT32_MIN; nsRefPtr refchanged = new PlayingRefChanged(aStream, PlayingRefChanged::RELEASE); aStream->Graph()-> DispatchToMainThreadAfterStreamStateUpdate(refchanged.forget()); } aOutput->SetNull(WEBAUDIO_BLOCK_SIZE); return; } } else { if (aInput.mVolume != 1.0f) { // Pre-multiply the input's volume uint32_t numChannels = aInput.mChannelData.Length(); AllocateAudioBlock(numChannels, &input); for (uint32_t i = 0; i < numChannels; ++i) { const float* src = static_cast(aInput.mChannelData[i]); float* dest = static_cast(const_cast(input.mChannelData[i])); AudioBlockCopyChannelWithScale(src, aInput.mVolume, dest); } } if (mLeftOverData <= 0) { nsRefPtr refchanged = new PlayingRefChanged(aStream, PlayingRefChanged::ADDREF); aStream->Graph()-> DispatchToMainThreadAfterStreamStateUpdate(refchanged.forget()); } mLeftOverData = mBufferLength; MOZ_ASSERT(mLeftOverData > 0); } AllocateAudioBlock(2, aOutput); mReverb->process(&input, aOutput, WEBAUDIO_BLOCK_SIZE); } virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE { size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf); if (mBuffer && !mBuffer->IsShared()) { amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf); } if (mReverb) { amount += mReverb->sizeOfIncludingThis(aMallocSizeOf); } return amount; } virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } private: nsRefPtr mBuffer; nsAutoPtr mReverb; int32_t mBufferLength; int32_t mLeftOverData; float mSampleRate; bool mUseBackgroundThreads; bool mNormalize; }; ConvolverNode::ConvolverNode(AudioContext* aContext) : AudioNode(aContext, 2, ChannelCountMode::Clamped_max, ChannelInterpretation::Speakers) , mNormalize(true) { ConvolverNodeEngine* engine = new ConvolverNodeEngine(this, mNormalize); mStream = aContext->Graph()->CreateAudioNodeStream(engine, MediaStreamGraph::INTERNAL_STREAM); } ConvolverNode::~ConvolverNode() { } size_t ConvolverNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf); if (mBuffer) { // NB: mBuffer might be shared with the associated engine, by convention // the AudioNode will report. amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf); } return amount; } size_t ConvolverNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } JSObject* ConvolverNode::WrapObject(JSContext* aCx) { return ConvolverNodeBinding::Wrap(aCx, this); } void ConvolverNode::SetBuffer(JSContext* aCx, AudioBuffer* aBuffer, ErrorResult& aRv) { if (aBuffer) { switch (aBuffer->NumberOfChannels()) { case 1: case 2: case 4: // Supported number of channels break; default: aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR); return; } } mBuffer = aBuffer; // Send the buffer to the stream AudioNodeStream* ns = static_cast(mStream.get()); MOZ_ASSERT(ns, "Why don't we have a stream here?"); if (mBuffer) { uint32_t length = mBuffer->Length(); nsRefPtr data = mBuffer->GetThreadSharedChannelsForRate(aCx); if (data && length < WEBAUDIO_BLOCK_SIZE) { // For very small impulse response buffers, we need to pad the // buffer with 0 to make sure that the Reverb implementation // has enough data to compute FFTs from. length = WEBAUDIO_BLOCK_SIZE; nsRefPtr paddedBuffer = new ThreadSharedFloatArrayBufferList(data->GetChannels()); float* channelData = (float*) malloc(sizeof(float) * length * data->GetChannels()); for (uint32_t i = 0; i < data->GetChannels(); ++i) { PodCopy(channelData + length * i, data->GetData(i), mBuffer->Length()); PodZero(channelData + length * i + mBuffer->Length(), WEBAUDIO_BLOCK_SIZE - mBuffer->Length()); paddedBuffer->SetData(i, (i == 0) ? channelData : nullptr, free, channelData); } data = paddedBuffer; } SendInt32ParameterToStream(ConvolverNodeEngine::BUFFER_LENGTH, length); SendDoubleParameterToStream(ConvolverNodeEngine::SAMPLE_RATE, mBuffer->SampleRate()); ns->SetBuffer(data.forget()); } else { ns->SetBuffer(nullptr); } } void ConvolverNode::SetNormalize(bool aNormalize) { mNormalize = aNormalize; SendInt32ParameterToStream(ConvolverNodeEngine::NORMALIZE, aNormalize); } } }