/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_AUDIONODEENGINE_H_ #define MOZILLA_AUDIONODEENGINE_H_ #include "AudioSegment.h" #include "mozilla/dom/AudioNode.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Mutex.h" namespace mozilla { namespace dom { struct ThreeDPoint; class AudioParamTimeline; class DelayNodeEngine; } class AudioNodeStream; /** * This class holds onto a set of immutable channel buffers. The storage * for the buffers must be malloced, but the buffer pointers and the malloc * pointers can be different (e.g. if the buffers are contained inside * some malloced object). */ class ThreadSharedFloatArrayBufferList : public ThreadSharedObject { public: /** * Construct with null data. */ explicit ThreadSharedFloatArrayBufferList(uint32_t aCount) { mContents.SetLength(aCount); } struct Storage { Storage() : mDataToFree(nullptr), mFree(nullptr), mSampleData(nullptr) {} ~Storage() { if (mFree) { mFree(mDataToFree); } else { MOZ_ASSERT(!mDataToFree); } } size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { // NB: mSampleData might not be owned, if it is it just points to // mDataToFree. return aMallocSizeOf(mDataToFree); } void* mDataToFree; void (*mFree)(void*); const float* mSampleData; }; /** * This can be called on any thread. */ uint32_t GetChannels() const { return mContents.Length(); } /** * This can be called on any thread. */ const float* GetData(uint32_t aIndex) const { return mContents[aIndex].mSampleData; } /** * Call this only during initialization, before the object is handed to * any other thread. */ void SetData(uint32_t aIndex, void* aDataToFree, void (*aFreeFunc)(void*), const float* aData) { Storage* s = &mContents[aIndex]; if (s->mFree) { s->mFree(s->mDataToFree); } else { MOZ_ASSERT(!s->mDataToFree); } s->mDataToFree = aDataToFree; s->mFree = aFreeFunc; s->mSampleData = aData; } /** * Put this object into an error state where there are no channels. */ void Clear() { mContents.Clear(); } virtual size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE { size_t amount = ThreadSharedObject::SizeOfExcludingThis(aMallocSizeOf); amount += mContents.SizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < mContents.Length(); i++) { amount += mContents[i].SizeOfExcludingThis(aMallocSizeOf); } return amount; } virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } private: AutoFallibleTArray mContents; }; /** * Allocates an AudioChunk with fresh buffers of WEBAUDIO_BLOCK_SIZE float samples. * AudioChunk::mChannelData's entries can be cast to float* for writing. */ void AllocateAudioBlock(uint32_t aChannelCount, AudioChunk* aChunk); /** * aChunk must have been allocated by AllocateAudioBlock. */ void WriteZeroesToAudioBlock(AudioChunk* aChunk, uint32_t aStart, uint32_t aLength); /** * Copy with scale. aScale == 1.0f should be optimized. */ void AudioBufferCopyWithScale(const float* aInput, float aScale, float* aOutput, uint32_t aSize); /** * Pointwise multiply-add operation. aScale == 1.0f should be optimized. */ void AudioBufferAddWithScale(const float* aInput, float aScale, float* aOutput, uint32_t aSize); /** * Pointwise multiply-add operation. aScale == 1.0f should be optimized. */ void AudioBlockAddChannelWithScale(const float aInput[WEBAUDIO_BLOCK_SIZE], float aScale, float aOutput[WEBAUDIO_BLOCK_SIZE]); /** * Pointwise copy-scaled operation. aScale == 1.0f should be optimized. * * Buffer size is implicitly assumed to be WEBAUDIO_BLOCK_SIZE. */ void AudioBlockCopyChannelWithScale(const float* aInput, float aScale, float* aOutput); /** * Vector copy-scaled operation. */ void AudioBlockCopyChannelWithScale(const float aInput[WEBAUDIO_BLOCK_SIZE], const float aScale[WEBAUDIO_BLOCK_SIZE], float aOutput[WEBAUDIO_BLOCK_SIZE]); /** * Vector complex multiplication on arbitrary sized buffers. */ void BufferComplexMultiply(const float* aInput, const float* aScale, float* aOutput, uint32_t aSize); /** * Vector maximum element magnitude ( max(abs(aInput)) ). */ float AudioBufferPeakValue(const float* aInput, uint32_t aSize); /** * In place gain. aScale == 1.0f should be optimized. */ void AudioBlockInPlaceScale(float aBlock[WEBAUDIO_BLOCK_SIZE], float aScale); /** * In place gain. aScale == 1.0f should be optimized. */ void AudioBufferInPlaceScale(float* aBlock, float aScale, uint32_t aSize); /** * Upmix a mono input to a stereo output, scaling the two output channels by two * different gain value. * This algorithm is specified in the WebAudio spec. */ void AudioBlockPanMonoToStereo(const float aInput[WEBAUDIO_BLOCK_SIZE], float aGainL, float aGainR, float aOutputL[WEBAUDIO_BLOCK_SIZE], float aOutputR[WEBAUDIO_BLOCK_SIZE]); void AudioBlockPanMonoToStereo(const float aInput[WEBAUDIO_BLOCK_SIZE], float aGainL[WEBAUDIO_BLOCK_SIZE], float aGainR[WEBAUDIO_BLOCK_SIZE], float aOutputL[WEBAUDIO_BLOCK_SIZE], float aOutputR[WEBAUDIO_BLOCK_SIZE]); /** * Pan a stereo source according to right and left gain, and the position * (whether the listener is on the left of the source or not). * This algorithm is specified in the WebAudio spec. */ void AudioBlockPanStereoToStereo(const float aInputL[WEBAUDIO_BLOCK_SIZE], const float aInputR[WEBAUDIO_BLOCK_SIZE], float aGainL, float aGainR, bool aIsOnTheLeft, float aOutputL[WEBAUDIO_BLOCK_SIZE], float aOutputR[WEBAUDIO_BLOCK_SIZE]); void AudioBlockPanStereoToStereo(const float aInputL[WEBAUDIO_BLOCK_SIZE], const float aInputR[WEBAUDIO_BLOCK_SIZE], float aGainL[WEBAUDIO_BLOCK_SIZE], float aGainR[WEBAUDIO_BLOCK_SIZE], bool aIsOnTheLeft[WEBAUDIO_BLOCK_SIZE], float aOutputL[WEBAUDIO_BLOCK_SIZE], float aOutputR[WEBAUDIO_BLOCK_SIZE]); /** * Return the sum of squares of all of the samples in the input. */ float AudioBufferSumOfSquares(const float* aInput, uint32_t aLength); /** * All methods of this class and its subclasses are called on the * MediaStreamGraph thread. */ class AudioNodeEngine { public: // This should be compatible with AudioNodeStream::OutputChunks. typedef nsAutoTArray OutputChunks; explicit AudioNodeEngine(dom::AudioNode* aNode) : mNode(aNode) , mNodeMutex("AudioNodeEngine::mNodeMutex") , mInputCount(aNode ? aNode->NumberOfInputs() : 1) , mOutputCount(aNode ? aNode->NumberOfOutputs() : 0) { MOZ_ASSERT(NS_IsMainThread()); MOZ_COUNT_CTOR(AudioNodeEngine); } virtual ~AudioNodeEngine() { MOZ_ASSERT(!mNode, "The node reference must be already cleared"); MOZ_COUNT_DTOR(AudioNodeEngine); } virtual dom::DelayNodeEngine* AsDelayNodeEngine() { return nullptr; } virtual void SetStreamTimeParameter(uint32_t aIndex, StreamTime aParam) { NS_ERROR("Invalid SetStreamTimeParameter index"); } virtual void SetDoubleParameter(uint32_t aIndex, double aParam) { NS_ERROR("Invalid SetDoubleParameter index"); } virtual void SetInt32Parameter(uint32_t aIndex, int32_t aParam) { NS_ERROR("Invalid SetInt32Parameter index"); } virtual void SetTimelineParameter(uint32_t aIndex, const dom::AudioParamTimeline& aValue, TrackRate aSampleRate) { NS_ERROR("Invalid SetTimelineParameter index"); } virtual void SetThreeDPointParameter(uint32_t aIndex, const dom::ThreeDPoint& aValue) { NS_ERROR("Invalid SetThreeDPointParameter index"); } virtual void SetBuffer(already_AddRefed aBuffer) { NS_ERROR("SetBuffer called on engine that doesn't support it"); } // This consumes the contents of aData. aData will be emptied after this returns. virtual void SetRawArrayData(nsTArray& aData) { NS_ERROR("SetRawArrayData called on an engine that doesn't support it"); } /** * Produce the next block of audio samples, given input samples aInput * (the mixed data for input 0). * aInput is guaranteed to have float sample format (if it has samples at all) * and to have been resampled to the sampling rate for the stream, and to have * exactly WEBAUDIO_BLOCK_SIZE samples. * *aFinished is set to false by the caller. If the callee sets it to true, * we'll finish the stream and not call this again. */ virtual void ProcessBlock(AudioNodeStream* aStream, const AudioChunk& aInput, AudioChunk* aOutput, bool* aFinished) { MOZ_ASSERT(mInputCount <= 1 && mOutputCount <= 1); *aOutput = aInput; } /** * Produce the next block of audio samples, before input is provided. * ProcessBlock() will be called later, and it then should not change * aOutput. This is used only for DelayNodeEngine in a feedback loop. */ virtual void ProduceBlockBeforeInput(AudioChunk* aOutput) { NS_NOTREACHED("ProduceBlockBeforeInput called on wrong engine\n"); } /** * Produce the next block of audio samples, given input samples in the aInput * array. There is one input sample per active port in aInput, in order. * This is the multi-input/output version of ProcessBlock. Only one kind * of ProcessBlock is called on each node, depending on whether the * number of inputs and outputs are both 1 or not. * * aInput is always guaranteed to not contain more input AudioChunks than the * maximum number of inputs for the node. It is the responsibility of the * overrides of this function to make sure they will only add a maximum number * of AudioChunks to aOutput as advertized by the AudioNode implementation. * An engine may choose to produce fewer inputs than advertizes by the * corresponding AudioNode, in which case it will be interpreted as a channel * of silence. */ virtual void ProcessBlocksOnPorts(AudioNodeStream* aStream, const OutputChunks& aInput, OutputChunks& aOutput, bool* aFinished) { MOZ_ASSERT(mInputCount > 1 || mOutputCount > 1); // Only produce one output port, and drop all other input ports. aOutput[0] = aInput[0]; } Mutex& NodeMutex() { return mNodeMutex;} bool HasNode() const { return !!mNode; } dom::AudioNode* Node() const { mNodeMutex.AssertCurrentThreadOwns(); return mNode; } dom::AudioNode* NodeMainThread() const { MOZ_ASSERT(NS_IsMainThread()); return mNode; } void ClearNode() { MOZ_ASSERT(NS_IsMainThread()); MOZ_ASSERT(mNode != nullptr); mNodeMutex.AssertCurrentThreadOwns(); mNode = nullptr; } uint16_t InputCount() const { return mInputCount; } uint16_t OutputCount() const { return mOutputCount; } virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { // NB: |mNode| is tracked separately so it is excluded here. return 0; } virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } void SizeOfIncludingThis(MallocSizeOf aMallocSizeOf, AudioNodeSizes& aUsage) const { aUsage.mEngine = SizeOfIncludingThis(aMallocSizeOf); if (HasNode()) { aUsage.mDomNode = mNode->SizeOfIncludingThis(aMallocSizeOf); aUsage.mNodeType = mNode->NodeType(); } } private: dom::AudioNode* mNode; Mutex mNodeMutex; const uint16_t mInputCount; const uint16_t mOutputCount; }; } #endif /* MOZILLA_AUDIONODEENGINE_H_ */