/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* vim:set ts=4 sw=4 sts=4 et cin: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // HttpLog.h should generally be included first #include "HttpLog.h" #include "nsHttp.h" #include "pldhash.h" #include "mozilla/Mutex.h" #include "mozilla/HashFunctions.h" #include "nsCRT.h" #if defined(PR_LOGGING) PRLogModuleInfo *gHttpLog = nullptr; #endif namespace mozilla { namespace net { // define storage for all atoms #define HTTP_ATOM(_name, _value) nsHttpAtom nsHttp::_name = { _value }; #include "nsHttpAtomList.h" #undef HTTP_ATOM // find out how many atoms we have #define HTTP_ATOM(_name, _value) Unused_ ## _name, enum { #include "nsHttpAtomList.h" NUM_HTTP_ATOMS }; #undef HTTP_ATOM // we keep a linked list of atoms allocated on the heap for easy clean up when // the atom table is destroyed. The structure and value string are allocated // as one contiguous block. struct HttpHeapAtom { struct HttpHeapAtom *next; char value[1]; }; static struct PLDHashTable sAtomTable = {0}; static struct HttpHeapAtom *sHeapAtoms = nullptr; static Mutex *sLock = nullptr; HttpHeapAtom * NewHeapAtom(const char *value) { int len = strlen(value); HttpHeapAtom *a = reinterpret_cast(malloc(sizeof(*a) + len)); if (!a) return nullptr; memcpy(a->value, value, len + 1); // add this heap atom to the list of all heap atoms a->next = sHeapAtoms; sHeapAtoms = a; return a; } // Hash string ignore case, based on PL_HashString static PLDHashNumber StringHash(PLDHashTable *table, const void *key) { PLDHashNumber h = 0; for (const char *s = reinterpret_cast(key); *s; ++s) h = AddToHash(h, nsCRT::ToLower(*s)); return h; } static bool StringCompare(PLDHashTable *table, const PLDHashEntryHdr *entry, const void *testKey) { const void *entryKey = reinterpret_cast(entry)->key; return PL_strcasecmp(reinterpret_cast(entryKey), reinterpret_cast(testKey)) == 0; } static const PLDHashTableOps ops = { PL_DHashAllocTable, PL_DHashFreeTable, StringHash, StringCompare, PL_DHashMoveEntryStub, PL_DHashClearEntryStub, PL_DHashFinalizeStub, nullptr }; // We put the atoms in a hash table for speedy lookup.. see ResolveAtom. nsresult nsHttp::CreateAtomTable() { MOZ_ASSERT(!sAtomTable.ops, "atom table already initialized"); if (!sLock) { sLock = new Mutex("nsHttp.sLock"); } // The capacity for this table is initialized to a value greater than the // number of known atoms (NUM_HTTP_ATOMS) because we expect to encounter a // few random headers right off the bat. if (!PL_DHashTableInit(&sAtomTable, &ops, nullptr, sizeof(PLDHashEntryStub), NUM_HTTP_ATOMS + 10, fallible_t())) { sAtomTable.ops = nullptr; return NS_ERROR_OUT_OF_MEMORY; } // fill the table with our known atoms const char *const atoms[] = { #define HTTP_ATOM(_name, _value) nsHttp::_name._val, #include "nsHttpAtomList.h" #undef HTTP_ATOM nullptr }; for (int i = 0; atoms[i]; ++i) { PLDHashEntryStub *stub = reinterpret_cast (PL_DHashTableOperate(&sAtomTable, atoms[i], PL_DHASH_ADD)); if (!stub) return NS_ERROR_OUT_OF_MEMORY; MOZ_ASSERT(!stub->key, "duplicate static atom"); stub->key = atoms[i]; } return NS_OK; } void nsHttp::DestroyAtomTable() { if (sAtomTable.ops) { PL_DHashTableFinish(&sAtomTable); sAtomTable.ops = nullptr; } while (sHeapAtoms) { HttpHeapAtom *next = sHeapAtoms->next; free(sHeapAtoms); sHeapAtoms = next; } if (sLock) { delete sLock; sLock = nullptr; } } Mutex * nsHttp::GetLock() { return sLock; } // this function may be called from multiple threads nsHttpAtom nsHttp::ResolveAtom(const char *str) { nsHttpAtom atom = { nullptr }; if (!str || !sAtomTable.ops) return atom; MutexAutoLock lock(*sLock); PLDHashEntryStub *stub = reinterpret_cast (PL_DHashTableOperate(&sAtomTable, str, PL_DHASH_ADD)); if (!stub) return atom; // out of memory if (stub->key) { atom._val = reinterpret_cast(stub->key); return atom; } // if the atom could not be found in the atom table, then we'll go // and allocate a new atom on the heap. HttpHeapAtom *heapAtom = NewHeapAtom(str); if (!heapAtom) return atom; // out of memory stub->key = atom._val = heapAtom->value; return atom; } // // From section 2.2 of RFC 2616, a token is defined as: // // token = 1* // CHAR = // separators = "(" | ")" | "<" | ">" | "@" // | "," | ";" | ":" | "\" | <"> // | "/" | "[" | "]" | "?" | "=" // | "{" | "}" | SP | HT // CTL = // SP = // HT = // static const char kValidTokenMap[128] = { 0, 0, 0, 0, 0, 0, 0, 0, // 0 0, 0, 0, 0, 0, 0, 0, 0, // 8 0, 0, 0, 0, 0, 0, 0, 0, // 16 0, 0, 0, 0, 0, 0, 0, 0, // 24 0, 1, 0, 1, 1, 1, 1, 1, // 32 0, 0, 1, 1, 0, 1, 1, 0, // 40 1, 1, 1, 1, 1, 1, 1, 1, // 48 1, 1, 0, 0, 0, 0, 0, 0, // 56 0, 1, 1, 1, 1, 1, 1, 1, // 64 1, 1, 1, 1, 1, 1, 1, 1, // 72 1, 1, 1, 1, 1, 1, 1, 1, // 80 1, 1, 1, 0, 0, 0, 1, 1, // 88 1, 1, 1, 1, 1, 1, 1, 1, // 96 1, 1, 1, 1, 1, 1, 1, 1, // 104 1, 1, 1, 1, 1, 1, 1, 1, // 112 1, 1, 1, 0, 1, 0, 1, 0 // 120 }; bool nsHttp::IsValidToken(const char *start, const char *end) { if (start == end) return false; for (; start != end; ++start) { const unsigned char idx = *start; if (idx > 127 || !kValidTokenMap[idx]) return false; } return true; } const char * nsHttp::FindToken(const char *input, const char *token, const char *seps) { if (!input) return nullptr; int inputLen = strlen(input); int tokenLen = strlen(token); if (inputLen < tokenLen) return nullptr; const char *inputTop = input; const char *inputEnd = input + inputLen - tokenLen; for (; input <= inputEnd; ++input) { if (PL_strncasecmp(input, token, tokenLen) == 0) { if (input > inputTop && !strchr(seps, *(input - 1))) continue; if (input < inputEnd && !strchr(seps, *(input + tokenLen))) continue; return input; } } return nullptr; } bool nsHttp::ParseInt64(const char *input, const char **next, int64_t *r) { const char *start = input; *r = 0; while (*input >= '0' && *input <= '9') { int64_t next = 10 * (*r) + (*input - '0'); if (next < *r) // overflow? return false; *r = next; ++input; } if (input == start) // nothing parsed? return false; if (next) *next = input; return true; } bool nsHttp::IsPermanentRedirect(uint32_t httpStatus) { return httpStatus == 301 || httpStatus == 308; } template void localEnsureBuffer(nsAutoArrayPtr &buf, uint32_t newSize, uint32_t preserve, uint32_t &objSize) { if (objSize >= newSize) return; // Leave a little slop on the new allocation - add 2KB to // what we need and then round the result up to a 4KB (page) // boundary. objSize = (newSize + 2048 + 4095) & ~4095; static_assert(sizeof(T) == 1, "sizeof(T) must be 1"); nsAutoArrayPtr tmp(new T[objSize]); if (preserve) { memcpy(tmp, buf, preserve); } buf = tmp; } void EnsureBuffer(nsAutoArrayPtr &buf, uint32_t newSize, uint32_t preserve, uint32_t &objSize) { localEnsureBuffer (buf, newSize, preserve, objSize); } void EnsureBuffer(nsAutoArrayPtr &buf, uint32_t newSize, uint32_t preserve, uint32_t &objSize) { localEnsureBuffer (buf, newSize, preserve, objSize); } } // namespace mozilla::net } // namespace mozilla