/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Utilities for hashing. */ /* * This file exports functions for hashing data down to a 32-bit value, * including: * * - HashString Hash a char* or uint16_t/wchar_t* of known or unknown * length. * * - HashBytes Hash a byte array of known length. * * - HashGeneric Hash one or more values. Currently, we support uint32_t, * types which can be implicitly cast to uint32_t, data * pointers, and function pointers. * * - AddToHash Add one or more values to the given hash. This supports the * same list of types as HashGeneric. * * * You can chain these functions together to hash complex objects. For example: * * class ComplexObject * { * char* str; * uint32_t uint1, uint2; * void (*callbackFn)(); * * public: * uint32_t hash() { * uint32_t hash = HashString(str); * hash = AddToHash(hash, uint1, uint2); * return AddToHash(hash, callbackFn); * } * }; * * If you want to hash an nsAString or nsACString, use the HashString functions * in nsHashKey.h. */ #ifndef mozilla_HashFunctions_h_ #define mozilla_HashFunctions_h_ #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/StandardInteger.h" #ifdef __cplusplus namespace mozilla { /** * The golden ratio as a 32-bit fixed-point value. */ static const uint32_t GoldenRatioU32 = 0x9E3779B9U; inline uint32_t RotateBitsLeft32(uint32_t value, uint8_t bits) { MOZ_ASSERT(bits < 32); return (value << bits) | (value >> (32 - bits)); } namespace detail { inline uint32_t AddU32ToHash(uint32_t hash, uint32_t value) { /* * This is the meat of all our hash routines. This hash function is not * particularly sophisticated, but it seems to work well for our mostly * plain-text inputs. Implementation notes follow. * * Our use of the golden ratio here is arbitrary; we could pick almost any * number which: * * * is odd (because otherwise, all our hash values will be even) * * * has a reasonably-even mix of 1's and 0's (consider the extreme case * where we multiply by 0x3 or 0xeffffff -- this will not produce good * mixing across all bits of the hash). * * The rotation length of 5 is also arbitrary, although an odd number is again * preferable so our hash explores the whole universe of possible rotations. * * Finally, we multiply by the golden ratio *after* xor'ing, not before. * Otherwise, if |hash| is 0 (as it often is for the beginning of a message), * the expression * * (GoldenRatioU32 * RotateBitsLeft(hash, 5)) |xor| value * * evaluates to |value|. * * (Number-theoretic aside: Because any odd number |m| is relatively prime to * our modulus (2^32), the list * * [x * m (mod 2^32) for 0 <= x < 2^32] * * has no duplicate elements. This means that multiplying by |m| does not * cause us to skip any possible hash values. * * It's also nice if |m| has large-ish order mod 2^32 -- that is, if the * smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely * multiply our hash value by |m| a few times without negating the * multiplicative effect. Our golden ratio constant has order 2^29, which is * more than enough for our purposes.) */ return GoldenRatioU32 * (RotateBitsLeft32(hash, 5) ^ value); } /** * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter. */ template inline uint32_t AddUintptrToHash(uint32_t hash, uintptr_t value); template<> inline uint32_t AddUintptrToHash<4>(uint32_t hash, uintptr_t value) { return AddU32ToHash(hash, static_cast(value)); } template<> inline uint32_t AddUintptrToHash<8>(uint32_t hash, uintptr_t value) { /* * The static cast to uint64_t below is necessary because this function * sometimes gets compiled on 32-bit platforms (yes, even though it's a * template and we never call this particular override in a 32-bit build). If * we do value >> 32 on a 32-bit machine, we're shifting a 32-bit uintptr_t * right 32 bits, and the compiler throws an error. */ uint32_t v1 = static_cast(value); uint32_t v2 = static_cast(static_cast(value) >> 32); return AddU32ToHash(AddU32ToHash(hash, v1), v2); } } /* namespace detail */ /** * AddToHash takes a hash and some values and returns a new hash based on the * inputs. * * Currently, we support hashing uint32_t's, values which we can implicitly * convert to uint32_t, data pointers, and function pointers. */ template MOZ_WARN_UNUSED_RESULT inline uint32_t AddToHash(uint32_t hash, A a) { /* * Try to convert |A| to uint32_t implicitly. If this works, great. If not, * we'll error out. */ return detail::AddU32ToHash(hash, a); } template MOZ_WARN_UNUSED_RESULT inline uint32_t AddToHash(uint32_t hash, A* a) { /* * You might think this function should just take a void*. But then we'd only * catch data pointers and couldn't handle function pointers. */ MOZ_STATIC_ASSERT(sizeof(a) == sizeof(uintptr_t), "Strange pointer!"); return detail::AddUintptrToHash(hash, uintptr_t(a)); } template MOZ_WARN_UNUSED_RESULT uint32_t AddToHash(uint32_t hash, A a, B b) { return AddToHash(AddToHash(hash, a), b); } template MOZ_WARN_UNUSED_RESULT uint32_t AddToHash(uint32_t hash, A a, B b, C c) { return AddToHash(AddToHash(hash, a, b), c); } template MOZ_WARN_UNUSED_RESULT uint32_t AddToHash(uint32_t hash, A a, B b, C c, D d) { return AddToHash(AddToHash(hash, a, b, c), d); } template MOZ_WARN_UNUSED_RESULT uint32_t AddToHash(uint32_t hash, A a, B b, C c, D d, E e) { return AddToHash(AddToHash(hash, a, b, c, d), e); } /** * The HashGeneric class of functions let you hash one or more values. * * If you want to hash together two values x and y, calling HashGeneric(x, y) is * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes * that x has already been hashed. */ template MOZ_WARN_UNUSED_RESULT inline uint32_t HashGeneric(A a) { return AddToHash(0, a); } template MOZ_WARN_UNUSED_RESULT inline uint32_t HashGeneric(A a, B b) { return AddToHash(0, a, b); } template MOZ_WARN_UNUSED_RESULT inline uint32_t HashGeneric(A a, B b, C c) { return AddToHash(0, a, b, c); } template MOZ_WARN_UNUSED_RESULT inline uint32_t HashGeneric(A a, B b, C c, D d) { return AddToHash(0, a, b, c, d); } template MOZ_WARN_UNUSED_RESULT inline uint32_t HashGeneric(A a, B b, C c, D d, E e) { return AddToHash(0, a, b, c, d, e); } namespace detail { template uint32_t HashUntilZero(const T* str) { uint32_t hash = 0; for (T c; (c = *str); str++) hash = AddToHash(hash, c); return hash; } template uint32_t HashKnownLength(const T* str, size_t length) { uint32_t hash = 0; for (size_t i = 0; i < length; i++) hash = AddToHash(hash, str[i]); return hash; } } /* namespace detail */ /** * The HashString overloads below do just what you'd expect. * * If you have the string's length, you might as well call the overload which * includes the length. It may be marginally faster. */ MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const char* str) { return detail::HashUntilZero(str); } MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const char* str, size_t length) { return detail::HashKnownLength(str, length); } MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const uint16_t* str) { return detail::HashUntilZero(str); } MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const uint16_t* str, size_t length) { return detail::HashKnownLength(str, length); } /* * On Windows, wchar_t (PRUnichar) is not the same as uint16_t, even though it's * the same width! */ #ifdef WIN32 MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const wchar_t* str) { return detail::HashUntilZero(str); } MOZ_WARN_UNUSED_RESULT inline uint32_t HashString(const wchar_t* str, size_t length) { return detail::HashKnownLength(str, length); } #endif /** * Hash some number of bytes. * * This hash walks word-by-word, rather than byte-by-byte, so you won't get the * same result out of HashBytes as you would out of HashString. */ MOZ_WARN_UNUSED_RESULT extern MFBT_API(uint32_t) HashBytes(const void* bytes, size_t length); } /* namespace mozilla */ #endif /* __cplusplus */ #endif /* mozilla_HashFunctions_h_ */