/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include "nscore.h" #include "nsStringGlue.h" #include "private/pprio.h" #include "mozilla/Assertions.h" #include "mozilla/FileUtils.h" #if defined(XP_MACOSX) #include #include #include #include #include #include #include #include #elif defined(XP_UNIX) #include #include #if defined(LINUX) #include #endif #include #include #elif defined(XP_WIN) #include #endif // Functions that are not to be used in standalone glue must be implemented // within this #if block #if !defined(XPCOM_GLUE) bool mozilla::fallocate(PRFileDesc* aFD, int64_t aLength) { #if defined(HAVE_POSIX_FALLOCATE) return posix_fallocate(PR_FileDesc2NativeHandle(aFD), 0, aLength) == 0; #elif defined(XP_WIN) int64_t oldpos = PR_Seek64(aFD, 0, PR_SEEK_CUR); if (oldpos == -1) { return false; } if (PR_Seek64(aFD, aLength, PR_SEEK_SET) != aLength) { return false; } bool retval = (0 != SetEndOfFile((HANDLE)PR_FileDesc2NativeHandle(aFD))); PR_Seek64(aFD, oldpos, PR_SEEK_SET); return retval; #elif defined(XP_MACOSX) int fd = PR_FileDesc2NativeHandle(aFD); fstore_t store = {F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, aLength}; // Try to get a continous chunk of disk space int ret = fcntl(fd, F_PREALLOCATE, &store); if (ret == -1) { // OK, perhaps we are too fragmented, allocate non-continuous store.fst_flags = F_ALLOCATEALL; ret = fcntl(fd, F_PREALLOCATE, &store); if (ret == -1) { return false; } } return ftruncate(fd, aLength) == 0; #elif defined(XP_UNIX) // The following is copied from fcntlSizeHint in sqlite /* If the OS does not have posix_fallocate(), fake it. First use ** ftruncate() to set the file size, then write a single byte to ** the last byte in each block within the extended region. This ** is the same technique used by glibc to implement posix_fallocate() ** on systems that do not have a real fallocate() system call. */ int64_t oldpos = PR_Seek64(aFD, 0, PR_SEEK_CUR); if (oldpos == -1) { return false; } struct stat buf; int fd = PR_FileDesc2NativeHandle(aFD); if (fstat(fd, &buf)) { return false; } if (buf.st_size >= aLength) { return false; } const int nBlk = buf.st_blksize; if (!nBlk) { return false; } if (ftruncate(fd, aLength)) { return false; } int nWrite; // Return value from write() int64_t iWrite = ((buf.st_size + 2 * nBlk - 1) / nBlk) * nBlk - 1; // Next offset to write to while (iWrite < aLength) { nWrite = 0; if (PR_Seek64(aFD, iWrite, PR_SEEK_SET) == iWrite) { nWrite = PR_Write(aFD, "", 1); } if (nWrite != 1) { break; } iWrite += nBlk; } PR_Seek64(aFD, oldpos, PR_SEEK_SET); return nWrite == 1; #endif return false; } #ifdef ReadSysFile_PRESENT bool mozilla::ReadSysFile( const char* aFilename, char* aBuf, size_t aBufSize) { int fd = MOZ_TEMP_FAILURE_RETRY(open(aFilename, O_RDONLY)); if (fd < 0) { return false; } ScopedClose autoClose(fd); if (aBufSize == 0) { return true; } ssize_t bytesRead; size_t offset = 0; do { bytesRead = MOZ_TEMP_FAILURE_RETRY( read(fd, aBuf + offset, aBufSize - offset)); if (bytesRead == -1) { return false; } offset += bytesRead; } while (bytesRead > 0 && offset < aBufSize); MOZ_ASSERT(offset <= aBufSize); if (offset > 0 && aBuf[offset - 1] == '\n') { offset--; } if (offset == aBufSize) { MOZ_ASSERT(offset > 0); offset--; } aBuf[offset] = '\0'; return true; } bool mozilla::ReadSysFile( const char* aFilename, int* aVal) { char valBuf[32]; if (!ReadSysFile(aFilename, valBuf, sizeof(valBuf))) { return false; } return sscanf(valBuf, "%d", aVal) == 1; } bool mozilla::ReadSysFile( const char* aFilename, bool* aVal) { int v; if (!ReadSysFile(aFilename, &v)) { return false; } *aVal = (v != 0); return true; } #endif /* ReadSysFile_PRESENT */ void mozilla::ReadAheadLib(nsIFile* aFile) { #if defined(XP_WIN) nsAutoString path; if (!aFile || NS_FAILED(aFile->GetPath(path))) { return; } ReadAheadLib(path.get()); #elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX) nsAutoCString nativePath; if (!aFile || NS_FAILED(aFile->GetNativePath(nativePath))) { return; } ReadAheadLib(nativePath.get()); #endif } void mozilla::ReadAheadFile(nsIFile* aFile, const size_t aOffset, const size_t aCount, mozilla::filedesc_t* aOutFd) { #if defined(XP_WIN) nsAutoString path; if (!aFile || NS_FAILED(aFile->GetPath(path))) { return; } ReadAheadFile(path.get(), aOffset, aCount, aOutFd); #elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX) nsAutoCString nativePath; if (!aFile || NS_FAILED(aFile->GetNativePath(nativePath))) { return; } ReadAheadFile(nativePath.get(), aOffset, aCount, aOutFd); #endif } #endif // !defined(XPCOM_GLUE) #if defined(LINUX) && !defined(ANDROID) static const unsigned int bufsize = 4096; #ifdef __LP64__ typedef Elf64_Ehdr Elf_Ehdr; typedef Elf64_Phdr Elf_Phdr; static const unsigned char ELFCLASS = ELFCLASS64; typedef Elf64_Off Elf_Off; #else typedef Elf32_Ehdr Elf_Ehdr; typedef Elf32_Phdr Elf_Phdr; static const unsigned char ELFCLASS = ELFCLASS32; typedef Elf32_Off Elf_Off; #endif #elif defined(XP_MACOSX) #if defined(__i386__) static const uint32_t CPU_TYPE = CPU_TYPE_X86; #elif defined(__x86_64__) static const uint32_t CPU_TYPE = CPU_TYPE_X86_64; #elif defined(__ppc__) static const uint32_t CPU_TYPE = CPU_TYPE_POWERPC; #elif defined(__ppc64__) static const uint32_t CPU_TYPE = CPU_TYPE_POWERPC64; #else #error Unsupported CPU type #endif #ifdef __LP64__ #undef LC_SEGMENT #define LC_SEGMENT LC_SEGMENT_64 #undef MH_MAGIC #define MH_MAGIC MH_MAGIC_64 #define cpu_mach_header mach_header_64 #define segment_command segment_command_64 #else #define cpu_mach_header mach_header #endif class ScopedMMap { public: explicit ScopedMMap(const char* aFilePath) : buf(nullptr) { fd = open(aFilePath, O_RDONLY); if (fd < 0) { return; } struct stat st; if (fstat(fd, &st) < 0) { return; } size = st.st_size; buf = (char*)mmap(nullptr, size, PROT_READ, MAP_PRIVATE, fd, 0); } ~ScopedMMap() { if (buf) { munmap(buf, size); } if (fd >= 0) { close(fd); } } operator char*() { return buf; } int getFd() { return fd; } private: int fd; char* buf; size_t size; }; #endif void mozilla::ReadAhead(mozilla::filedesc_t aFd, const size_t aOffset, const size_t aCount) { #if defined(XP_WIN) LARGE_INTEGER fpOriginal; LARGE_INTEGER fpOffset; #if defined(HAVE_LONG_LONG) fpOffset.QuadPart = 0; #else fpOffset.u.LowPart = 0; fpOffset.u.HighPart = 0; #endif // Get the current file pointer so that we can restore it. This isn't // really necessary other than to provide the same semantics regarding the // file pointer that other platforms do if (!SetFilePointerEx(aFd, fpOffset, &fpOriginal, FILE_CURRENT)) { return; } if (aOffset) { #if defined(HAVE_LONG_LONG) fpOffset.QuadPart = static_cast(aOffset); #else fpOffset.u.LowPart = aOffset; fpOffset.u.HighPart = 0; #endif if (!SetFilePointerEx(aFd, fpOffset, nullptr, FILE_BEGIN)) { return; } } char buf[64 * 1024]; size_t totalBytesRead = 0; DWORD dwBytesRead; // Do dummy reads to trigger kernel-side readhead via FILE_FLAG_SEQUENTIAL_SCAN. // Abort when underfilling because during testing the buffers are read fully // A buffer that's not keeping up would imply that readahead isn't working right while (totalBytesRead < aCount && ReadFile(aFd, buf, sizeof(buf), &dwBytesRead, nullptr) && dwBytesRead == sizeof(buf)) { totalBytesRead += dwBytesRead; } // Restore the file pointer SetFilePointerEx(aFd, fpOriginal, nullptr, FILE_BEGIN); #elif defined(LINUX) && !defined(ANDROID) readahead(aFd, aOffset, aCount); #elif defined(XP_MACOSX) struct radvisory ra; ra.ra_offset = aOffset; ra.ra_count = aCount; // The F_RDADVISE fcntl is equivalent to Linux' readahead() system call. fcntl(aFd, F_RDADVISE, &ra); #endif } void mozilla::ReadAheadLib(mozilla::pathstr_t aFilePath) { if (!aFilePath) { return; } #if defined(XP_WIN) ReadAheadFile(aFilePath); #elif defined(LINUX) && !defined(ANDROID) int fd = open(aFilePath, O_RDONLY); if (fd < 0) { return; } union { char buf[bufsize]; Elf_Ehdr ehdr; } elf; // Read ELF header (ehdr) and program header table (phdr). // We check that the ELF magic is found, that the ELF class matches // our own, and that the program header table as defined in the ELF // headers fits in the buffer we read. if ((read(fd, elf.buf, bufsize) <= 0) || (memcmp(elf.buf, ELFMAG, 4)) || (elf.ehdr.e_ident[EI_CLASS] != ELFCLASS) || (elf.ehdr.e_phoff + elf.ehdr.e_phentsize * elf.ehdr.e_phnum >= bufsize)) { close(fd); return; } // The program header table contains segment definitions. One such // segment type is PT_LOAD, which describes how the dynamic loader // is going to map the file in memory. We use that information to // find the biggest offset from the library that will be mapped in // memory. Elf_Phdr* phdr = (Elf_Phdr*)&elf.buf[elf.ehdr.e_phoff]; Elf_Off end = 0; for (int phnum = elf.ehdr.e_phnum; phnum; phdr++, phnum--) { if ((phdr->p_type == PT_LOAD) && (end < phdr->p_offset + phdr->p_filesz)) { end = phdr->p_offset + phdr->p_filesz; } } // Let the kernel read ahead what the dynamic loader is going to // map in memory soon after. if (end > 0) { ReadAhead(fd, 0, end); } close(fd); #elif defined(XP_MACOSX) ScopedMMap buf(aFilePath); char* base = buf; if (!base) { return; } // An OSX binary might either be a fat (universal) binary or a // Mach-O binary. A fat binary actually embeds several Mach-O // binaries. If we have a fat binary, find the offset where the // Mach-O binary for our CPU type can be found. struct fat_header* fh = (struct fat_header*)base; if (OSSwapBigToHostInt32(fh->magic) == FAT_MAGIC) { uint32_t nfat_arch = OSSwapBigToHostInt32(fh->nfat_arch); struct fat_arch* arch = (struct fat_arch*)&buf[sizeof(struct fat_header)]; for (; nfat_arch; arch++, nfat_arch--) { if (OSSwapBigToHostInt32(arch->cputype) == CPU_TYPE) { base += OSSwapBigToHostInt32(arch->offset); break; } } if (base == buf) { return; } } // Check Mach-O magic in the Mach header struct cpu_mach_header* mh = (struct cpu_mach_header*)base; if (mh->magic != MH_MAGIC) { return; } // The Mach header is followed by a sequence of load commands. // Each command has a header containing the command type and the // command size. LD_SEGMENT commands describes how the dynamic // loader is going to map the file in memory. We use that // information to find the biggest offset from the library that // will be mapped in memory. char* cmd = &base[sizeof(struct cpu_mach_header)]; uint32_t end = 0; for (uint32_t ncmds = mh->ncmds; ncmds; ncmds--) { struct segment_command* sh = (struct segment_command*)cmd; if (sh->cmd != LC_SEGMENT) { continue; } if (end < sh->fileoff + sh->filesize) { end = sh->fileoff + sh->filesize; } cmd += sh->cmdsize; } // Let the kernel read ahead what the dynamic loader is going to // map in memory soon after. if (end > 0) { ReadAhead(buf.getFd(), base - buf, end); } #endif } void mozilla::ReadAheadFile(mozilla::pathstr_t aFilePath, const size_t aOffset, const size_t aCount, mozilla::filedesc_t* aOutFd) { #if defined(XP_WIN) if (!aFilePath) { if (aOutFd) { *aOutFd = INVALID_HANDLE_VALUE; } return; } HANDLE fd = CreateFileW(aFilePath, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, nullptr); if (aOutFd) { *aOutFd = fd; } if (fd == INVALID_HANDLE_VALUE) { return; } ReadAhead(fd, aOffset, aCount); if (!aOutFd) { CloseHandle(fd); } #elif defined(LINUX) && !defined(ANDROID) || defined(XP_MACOSX) if (!aFilePath) { if (aOutFd) { *aOutFd = -1; } return; } int fd = open(aFilePath, O_RDONLY); if (aOutFd) { *aOutFd = fd; } if (fd < 0) { return; } size_t count; if (aCount == SIZE_MAX) { struct stat st; if (fstat(fd, &st) < 0) { if (!aOutFd) { close(fd); } return; } count = st.st_size; } else { count = aCount; } ReadAhead(fd, aOffset, count); if (!aOutFd) { close(fd); } #endif }