/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Matrix.h" #include "Tools.h" #include #include #include #include "mozilla/FloatingPoint.h" // for UnspecifiedNaN using namespace std; namespace mozilla { namespace gfx { std::ostream& operator<<(std::ostream& aStream, const Matrix& aMatrix) { return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; " << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31 << " " << aMatrix._32 << "; ]"; } Matrix Matrix::Rotation(Float aAngle) { Matrix newMatrix; Float s = sin(aAngle); Float c = cos(aAngle); newMatrix._11 = c; newMatrix._12 = s; newMatrix._21 = -s; newMatrix._22 = c; return newMatrix; } Rect Matrix::TransformBounds(const Rect &aRect) const { int i; Point quad[4]; Float min_x, max_x; Float min_y, max_y; quad[0] = *this * aRect.TopLeft(); quad[1] = *this * aRect.TopRight(); quad[2] = *this * aRect.BottomLeft(); quad[3] = *this * aRect.BottomRight(); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (i = 1; i < 4; i++) { if (quad[i].x < min_x) min_x = quad[i].x; if (quad[i].x > max_x) max_x = quad[i].x; if (quad[i].y < min_y) min_y = quad[i].y; if (quad[i].y > max_y) max_y = quad[i].y; } return Rect(min_x, min_y, max_x - min_x, max_y - min_y); } Matrix& Matrix::NudgeToIntegers() { NudgeToInteger(&_11); NudgeToInteger(&_12); NudgeToInteger(&_21); NudgeToInteger(&_22); NudgeToInteger(&_31); NudgeToInteger(&_32); return *this; } Rect Matrix4x4::TransformBounds(const Rect& aRect) const { Point quad[4]; Float min_x, max_x; Float min_y, max_y; quad[0] = *this * aRect.TopLeft(); quad[1] = *this * aRect.TopRight(); quad[2] = *this * aRect.BottomLeft(); quad[3] = *this * aRect.BottomRight(); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (int i = 1; i < 4; i++) { if (quad[i].x < min_x) { min_x = quad[i].x; } if (quad[i].x > max_x) { max_x = quad[i].x; } if (quad[i].y < min_y) { min_y = quad[i].y; } if (quad[i].y > max_y) { max_y = quad[i].y; } } return Rect(min_x, min_y, max_x - min_x, max_y - min_y); } Point4D ComputePerspectivePlaneIntercept(const Point4D& aFirst, const Point4D& aSecond) { // FIXME: See bug 1035611 // Since we can't easily deal with points as w=0 (since we divide by w), we // approximate this by finding a point with w just greater than 0. Unfortunately // this is a tradeoff between accuracy and floating point precision. // We want to interpolate aFirst and aSecond to find a point as close to // the positive side of the w=0 plane as possible. // Since we know what we want the w component to be, we can rearrange the // interpolation equation and solve for t. float w = 0.00001f; float t = (w - aFirst.w) / (aSecond.w - aFirst.w); // Use t to find the remainder of the components return aFirst + (aSecond - aFirst) * t; } Rect Matrix4x4::ProjectRectBounds(const Rect& aRect) const { Point4D points[4]; points[0] = ProjectPoint(aRect.TopLeft()); points[1] = ProjectPoint(aRect.TopRight()); points[2] = ProjectPoint(aRect.BottomRight()); points[3] = ProjectPoint(aRect.BottomLeft()); Float min_x = std::numeric_limits::max(); Float min_y = std::numeric_limits::max(); Float max_x = -std::numeric_limits::max(); Float max_y = -std::numeric_limits::max(); bool foundPoint = false; for (int i=0; i<4; i++) { // Only use points that exist above the w=0 plane if (points[i].HasPositiveWCoord()) { foundPoint = true; Point point2d = points[i].As2DPoint(); min_x = min(point2d.x, min_x); max_x = max(point2d.x, max_x); min_y = min(point2d.y, min_y); max_y = max(point2d.y, max_y); } int next = (i == 3) ? 0 : i + 1; if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) { // If the line between two points crosses the w=0 plane, then interpolate a point // as close to the w=0 plane as possible and use that instead. Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]); Point point2d = intercept.As2DPoint(); min_x = min(point2d.x, min_x); max_x = max(point2d.x, max_x); min_y = min(point2d.y, min_y); max_y = max(point2d.y, max_y); } } if (!foundPoint) { return Rect(0, 0, 0, 0); } return Rect(min_x, min_y, max_x - min_x, max_y - min_y); } bool Matrix4x4::Invert() { Float det = Determinant(); if (!det) { return false; } Matrix4x4 result; result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44; result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44; result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44; result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34; result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44; result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44; result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44; result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34; result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44; result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44; result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34; result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43; result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43; result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43; result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33; result._11 /= det; result._12 /= det; result._13 /= det; result._14 /= det; result._21 /= det; result._22 /= det; result._23 /= det; result._24 /= det; result._31 /= det; result._32 /= det; result._33 /= det; result._34 /= det; result._41 /= det; result._42 /= det; result._43 /= det; result._44 /= det; *this = result; return true; } void Matrix4x4::SetNAN() { _11 = UnspecifiedNaN(); _21 = UnspecifiedNaN(); _31 = UnspecifiedNaN(); _41 = UnspecifiedNaN(); _12 = UnspecifiedNaN(); _22 = UnspecifiedNaN(); _32 = UnspecifiedNaN(); _42 = UnspecifiedNaN(); _13 = UnspecifiedNaN(); _23 = UnspecifiedNaN(); _33 = UnspecifiedNaN(); _43 = UnspecifiedNaN(); _14 = UnspecifiedNaN(); _24 = UnspecifiedNaN(); _34 = UnspecifiedNaN(); _44 = UnspecifiedNaN(); } } }