/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include "Mappable.h" #include "mozilla/UniquePtr.h" #ifdef ANDROID #include #endif #include #include #include "ElfLoader.h" #include "SeekableZStream.h" #include "Logging.h" using mozilla::MakeUnique; using mozilla::UniquePtr; Mappable * MappableFile::Create(const char *path) { int fd = open(path, O_RDONLY); if (fd != -1) return new MappableFile(fd); return nullptr; } MemoryRange MappableFile::mmap(const void *addr, size_t length, int prot, int flags, off_t offset) { MOZ_ASSERT(fd != -1); MOZ_ASSERT(!(flags & MAP_SHARED)); flags |= MAP_PRIVATE; return MemoryRange::mmap(const_cast(addr), length, prot, flags, fd, offset); } void MappableFile::finalize() { /* Close file ; equivalent to close(fd.forget()) */ fd = -1; } size_t MappableFile::GetLength() const { struct stat st; return fstat(fd, &st) ? 0 : st.st_size; } Mappable * MappableExtractFile::Create(const char *name, Zip *zip, Zip::Stream *stream) { const char *cachePath = getenv("MOZ_LINKER_CACHE"); if (!cachePath || !*cachePath) { WARN("MOZ_LINKER_EXTRACT is set, but not MOZ_LINKER_CACHE; " "not extracting"); return nullptr; } UniquePtr path = MakeUnique(strlen(cachePath) + strlen(name) + 2); sprintf(path.get(), "%s/%s", cachePath, name); struct stat cacheStat; if (stat(path.get(), &cacheStat) == 0) { struct stat zipStat; stat(zip->GetName(), &zipStat); if (cacheStat.st_mtime > zipStat.st_mtime) { DEBUG_LOG("Reusing %s", static_cast(path.get())); return MappableFile::Create(path.get()); } } DEBUG_LOG("Extracting to %s", static_cast(path.get())); AutoCloseFD fd; fd = open(path.get(), O_TRUNC | O_RDWR | O_CREAT | O_NOATIME, S_IRUSR | S_IWUSR); if (fd == -1) { ERROR("Couldn't open %s to decompress library", path.get()); return nullptr; } AutoUnlinkFile file(path.release()); if (stream->GetType() == Zip::Stream::DEFLATE) { if (ftruncate(fd, stream->GetUncompressedSize()) == -1) { ERROR("Couldn't ftruncate %s to decompress library", file.get()); return nullptr; } /* Map the temporary file for use as inflate buffer */ MappedPtr buffer(MemoryRange::mmap(nullptr, stream->GetUncompressedSize(), PROT_WRITE, MAP_SHARED, fd, 0)); if (buffer == MAP_FAILED) { ERROR("Couldn't map %s to decompress library", file.get()); return nullptr; } z_stream zStream = stream->GetZStream(buffer); /* Decompress */ if (inflateInit2(&zStream, -MAX_WBITS) != Z_OK) { ERROR("inflateInit failed: %s", zStream.msg); return nullptr; } if (inflate(&zStream, Z_FINISH) != Z_STREAM_END) { ERROR("inflate failed: %s", zStream.msg); return nullptr; } if (inflateEnd(&zStream) != Z_OK) { ERROR("inflateEnd failed: %s", zStream.msg); return nullptr; } if (zStream.total_out != stream->GetUncompressedSize()) { ERROR("File not fully uncompressed! %ld / %d", zStream.total_out, static_cast(stream->GetUncompressedSize())); return nullptr; } } else if (stream->GetType() == Zip::Stream::STORE) { SeekableZStream zStream; if (!zStream.Init(stream->GetBuffer(), stream->GetSize())) { ERROR("Couldn't initialize SeekableZStream for %s", name); return nullptr; } if (ftruncate(fd, zStream.GetUncompressedSize()) == -1) { ERROR("Couldn't ftruncate %s to decompress library", file.get()); return nullptr; } MappedPtr buffer(MemoryRange::mmap(nullptr, zStream.GetUncompressedSize(), PROT_WRITE, MAP_SHARED, fd, 0)); if (buffer == MAP_FAILED) { ERROR("Couldn't map %s to decompress library", file.get()); return nullptr; } if (!zStream.Decompress(buffer, 0, zStream.GetUncompressedSize())) { ERROR("%s: failed to decompress", name); return nullptr; } } else { return nullptr; } return new MappableExtractFile(fd.forget(), Move(file)); } MappableExtractFile::~MappableExtractFile() { /* When destroying from a forked process, we don't want the file to be * removed, as the main process is still using the file. Although it * doesn't really matter, it helps e.g. valgrind that the file is there. * The string still needs to be delete[]d, though */ if (pid != getpid()) delete [] path.release(); } /** * _MappableBuffer is a buffer which content can be mapped at different * locations in the virtual address space. * On Linux, uses a (deleted) temporary file on a tmpfs for sharable content. * On Android, uses ashmem. */ class _MappableBuffer: public MappedPtr { public: /** * Returns a _MappableBuffer instance with the given name and the given * length. */ static _MappableBuffer *Create(const char *name, size_t length) { AutoCloseFD fd; #ifdef ANDROID /* On Android, initialize an ashmem region with the given length */ fd = open("/" ASHMEM_NAME_DEF, O_RDWR, 0600); if (fd == -1) return nullptr; char str[ASHMEM_NAME_LEN]; strlcpy(str, name, sizeof(str)); ioctl(fd, ASHMEM_SET_NAME, str); if (ioctl(fd, ASHMEM_SET_SIZE, length)) return nullptr; /* The Gecko crash reporter is confused by adjacent memory mappings of * the same file and chances are we're going to map from the same file * descriptor right away. To avoid problems with the crash reporter, * create an empty anonymous page before or after the ashmem mapping, * depending on how mappings grow in the address space. */ #if defined(__arm__) void *buf = ::mmap(nullptr, length + PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf != MAP_FAILED) { ::mmap(AlignedEndPtr(reinterpret_cast(buf) + length, PAGE_SIZE), PAGE_SIZE, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); DEBUG_LOG("Decompression buffer of size 0x%x in ashmem \"%s\", mapped @%p", length, str, buf); return new _MappableBuffer(fd.forget(), buf, length); } #elif defined(__i386__) size_t anon_mapping_length = length + PAGE_SIZE; void *buf = ::mmap(nullptr, anon_mapping_length, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (buf != MAP_FAILED) { char *first_page = reinterpret_cast(buf); char *map_page = first_page + PAGE_SIZE; void *actual_buf = ::mmap(map_page, length, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, fd, 0); if (actual_buf == MAP_FAILED) { ::munmap(buf, anon_mapping_length); DEBUG_LOG("Fixed allocation of decompression buffer at %p failed", map_page); return nullptr; } DEBUG_LOG("Decompression buffer of size 0x%x in ashmem \"%s\", mapped @%p", length, str, actual_buf); return new _MappableBuffer(fd.forget(), actual_buf, length); } #else #error need to add a case for your CPU #endif #else /* On Linux, use /dev/shm as base directory for temporary files, assuming * it's on tmpfs */ /* TODO: check that /dev/shm is tmpfs */ char path[256]; sprintf(path, "/dev/shm/%s.XXXXXX", name); fd = mkstemp(path); if (fd == -1) return nullptr; unlink(path); ftruncate(fd, length); void *buf = ::mmap(nullptr, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf != MAP_FAILED) { DEBUG_LOG("Decompression buffer of size %ld in \"%s\", mapped @%p", length, path, buf); return new _MappableBuffer(fd.forget(), buf, length); } #endif return nullptr; } void *mmap(const void *addr, size_t length, int prot, int flags, off_t offset) { MOZ_ASSERT(fd != -1); #ifdef ANDROID /* Mapping ashmem MAP_PRIVATE is like mapping anonymous memory, even when * there is content in the ashmem */ if (flags & MAP_PRIVATE) { flags &= ~MAP_PRIVATE; flags |= MAP_SHARED; } #endif return ::mmap(const_cast(addr), length, prot, flags, fd, offset); } #ifdef ANDROID ~_MappableBuffer() { /* Free the additional page we allocated. See _MappableBuffer::Create */ #if defined(__arm__) ::munmap(AlignedEndPtr(*this + GetLength(), PAGE_SIZE), PAGE_SIZE); #elif defined(__i386__) ::munmap(*this - PAGE_SIZE, GetLength() + PAGE_SIZE); #else #error need to add a case for your CPU #endif } #endif private: _MappableBuffer(int fd, void *buf, size_t length) : MappedPtr(buf, length), fd(fd) { } /* File descriptor for the temporary file or ashmem */ AutoCloseFD fd; }; Mappable * MappableDeflate::Create(const char *name, Zip *zip, Zip::Stream *stream) { MOZ_ASSERT(stream->GetType() == Zip::Stream::DEFLATE); _MappableBuffer *buf = _MappableBuffer::Create(name, stream->GetUncompressedSize()); if (buf) return new MappableDeflate(buf, zip, stream); return nullptr; } MappableDeflate::MappableDeflate(_MappableBuffer *buf, Zip *zip, Zip::Stream *stream) : zip(zip), buffer(buf), zStream(stream->GetZStream(*buf)) { } MappableDeflate::~MappableDeflate() { } MemoryRange MappableDeflate::mmap(const void *addr, size_t length, int prot, int flags, off_t offset) { MOZ_ASSERT(buffer); MOZ_ASSERT(!(flags & MAP_SHARED)); flags |= MAP_PRIVATE; /* The deflate stream is uncompressed up to the required offset + length, if * it hasn't previously been uncompressed */ ssize_t missing = offset + length + zStream.avail_out - buffer->GetLength(); if (missing > 0) { uInt avail_out = zStream.avail_out; zStream.avail_out = missing; if ((*buffer == zStream.next_out) && (inflateInit2(&zStream, -MAX_WBITS) != Z_OK)) { ERROR("inflateInit failed: %s", zStream.msg); return MemoryRange(MAP_FAILED, 0); } int ret = inflate(&zStream, Z_SYNC_FLUSH); if (ret < 0) { ERROR("inflate failed: %s", zStream.msg); return MemoryRange(MAP_FAILED, 0); } if (ret == Z_NEED_DICT) { ERROR("zstream requires a dictionary. %s", zStream.msg); return MemoryRange(MAP_FAILED, 0); } zStream.avail_out = avail_out - missing + zStream.avail_out; if (ret == Z_STREAM_END) { if (inflateEnd(&zStream) != Z_OK) { ERROR("inflateEnd failed: %s", zStream.msg); return MemoryRange(MAP_FAILED, 0); } if (zStream.total_out != buffer->GetLength()) { ERROR("File not fully uncompressed! %ld / %d", zStream.total_out, static_cast(buffer->GetLength())); return MemoryRange(MAP_FAILED, 0); } } } #if defined(ANDROID) && defined(__arm__) if (prot & PROT_EXEC) { /* We just extracted data that may be executed in the future. * We thus need to ensure Instruction and Data cache coherency. */ DEBUG_LOG("cacheflush(%p, %p)", *buffer + offset, *buffer + (offset + length)); cacheflush(reinterpret_cast(*buffer + offset), reinterpret_cast(*buffer + (offset + length)), 0); } #endif return MemoryRange(buffer->mmap(addr, length, prot, flags, offset), length); } void MappableDeflate::finalize() { /* Free zlib internal buffers */ inflateEnd(&zStream); /* Free decompression buffer */ buffer = nullptr; /* Remove reference to Zip archive */ zip = nullptr; } size_t MappableDeflate::GetLength() const { return buffer->GetLength(); } Mappable * MappableSeekableZStream::Create(const char *name, Zip *zip, Zip::Stream *stream) { MOZ_ASSERT(stream->GetType() == Zip::Stream::STORE); mozilla::ScopedDeletePtr mappable; mappable = new MappableSeekableZStream(zip); pthread_mutexattr_t recursiveAttr; pthread_mutexattr_init(&recursiveAttr); pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); if (pthread_mutex_init(&mappable->mutex, &recursiveAttr)) return nullptr; if (!mappable->zStream.Init(stream->GetBuffer(), stream->GetSize())) return nullptr; mappable->buffer.reset(_MappableBuffer::Create(name, mappable->zStream.GetUncompressedSize())); if (!mappable->buffer) return nullptr; mappable->chunkAvail = MakeUnique(mappable->zStream.GetChunksNum()); return mappable.forget(); } MappableSeekableZStream::MappableSeekableZStream(Zip *zip) : zip(zip), chunkAvailNum(0) { } MappableSeekableZStream::~MappableSeekableZStream() { pthread_mutex_destroy(&mutex); } MemoryRange MappableSeekableZStream::mmap(const void *addr, size_t length, int prot, int flags, off_t offset) { /* Map with PROT_NONE so that accessing the mapping would segfault, and * bring us to ensure() */ void *res = buffer->mmap(addr, length, PROT_NONE, flags, offset); if (res == MAP_FAILED) return MemoryRange(MAP_FAILED, 0); /* Store the mapping, ordered by offset and length */ std::vector::reverse_iterator it; for (it = lazyMaps.rbegin(); it < lazyMaps.rend(); ++it) { if ((it->offset < offset) || ((it->offset == offset) && (it->length < length))) break; } LazyMap map = { res, length, prot, offset }; lazyMaps.insert(it.base(), map); return MemoryRange(res, length); } void MappableSeekableZStream::munmap(void *addr, size_t length) { std::vector::iterator it; for (it = lazyMaps.begin(); it < lazyMaps.end(); ++it) if ((it->addr = addr) && (it->length == length)) { lazyMaps.erase(it); ::munmap(addr, length); return; } MOZ_CRASH("munmap called with unknown mapping"); } void MappableSeekableZStream::finalize() { } class AutoLock { public: AutoLock(pthread_mutex_t *mutex): mutex(mutex) { if (pthread_mutex_lock(mutex)) MOZ_CRASH("pthread_mutex_lock failed"); } ~AutoLock() { if (pthread_mutex_unlock(mutex)) MOZ_CRASH("pthread_mutex_unlock failed"); } private: pthread_mutex_t *mutex; }; bool MappableSeekableZStream::ensure(const void *addr) { DEBUG_LOG("ensure @%p", addr); const void *addrPage = PageAlignedPtr(addr); /* Find the mapping corresponding to the given page */ std::vector::iterator map; for (map = lazyMaps.begin(); map < lazyMaps.end(); ++map) { if (map->Contains(addrPage)) break; } if (map == lazyMaps.end()) return false; /* Find corresponding chunk */ off_t mapOffset = map->offsetOf(addrPage); off_t chunk = mapOffset / zStream.GetChunkSize(); /* In the typical case, we just need to decompress the chunk entirely. But * when the current mapping ends in the middle of the chunk, we want to * stop at the end of the corresponding page. * However, if another mapping needs the last part of the chunk, we still * need to continue. As mappings are ordered by offset and length, we don't * need to scan the entire list of mappings. * It is safe to run through lazyMaps here because the linker is never * going to call mmap (which adds lazyMaps) while this function is * called. */ size_t length = zStream.GetChunkSize(chunk); off_t chunkStart = chunk * zStream.GetChunkSize(); off_t chunkEnd = chunkStart + length; std::vector::iterator it; for (it = map; it < lazyMaps.end(); ++it) { if (chunkEnd <= it->endOffset()) break; } if ((it == lazyMaps.end()) || (chunkEnd > it->endOffset())) { /* The mapping "it" points at now is past the interesting one */ --it; length = it->endOffset() - chunkStart; } length = PageAlignedSize(length); /* The following lock can be re-acquired by the thread holding it. * If this happens, it means the following code is interrupted somehow by * some signal, and ends up retriggering a chunk decompression for the * same MappableSeekableZStream. * If the chunk to decompress is different the second time, then everything * is safe as the only common data touched below is chunkAvailNum, and it is * atomically updated (leaving out any chance of an interruption while it is * updated affecting the result). If the chunk to decompress is the same, the * worst thing that can happen is chunkAvailNum being incremented one too * many times, which doesn't affect functionality. The chances of it * happening being pretty slim, and the effect being harmless, we can just * ignore the issue. Other than that, we'd just be wasting time decompressing * the same chunk twice. */ AutoLock lock(&mutex); /* The very first page is mapped and accessed separately of the rest, and * as such, only the first page of the first chunk is decompressed this way. * When we fault in the remaining pages of that chunk, we want to decompress * the complete chunk again. Short of doing that, we would end up with * no data between PageSize() and chunkSize, which would effectively corrupt * symbol resolution in the underlying library. */ if (chunkAvail[chunk] < PageNumber(length)) { if (!zStream.DecompressChunk(*buffer + chunkStart, chunk, length)) return false; #if defined(ANDROID) && defined(__arm__) if (map->prot & PROT_EXEC) { /* We just extracted data that may be executed in the future. * We thus need to ensure Instruction and Data cache coherency. */ DEBUG_LOG("cacheflush(%p, %p)", *buffer + chunkStart, *buffer + (chunkStart + length)); cacheflush(reinterpret_cast(*buffer + chunkStart), reinterpret_cast(*buffer + (chunkStart + length)), 0); } #endif /* Only count if we haven't already decompressed parts of the chunk */ if (chunkAvail[chunk] == 0) chunkAvailNum++; chunkAvail[chunk] = PageNumber(length); } /* Flip the chunk mapping protection to the recorded flags. We could * also flip the protection for other mappings of the same chunk, * but it's easier to skip that and let further segfaults call * ensure again. */ const void *chunkAddr = reinterpret_cast (reinterpret_cast(addrPage) - mapOffset % zStream.GetChunkSize()); const void *chunkEndAddr = reinterpret_cast (reinterpret_cast(chunkAddr) + length); const void *start = std::max(map->addr, chunkAddr); const void *end = std::min(map->end(), chunkEndAddr); length = reinterpret_cast(end) - reinterpret_cast(start); if (mprotect(const_cast(start), length, map->prot) == 0) { DEBUG_LOG("mprotect @%p, 0x%" PRIxSize ", 0x%x", start, length, map->prot); return true; } ERROR("mprotect @%p, 0x%" PRIxSize ", 0x%x failed with errno %d", start, length, map->prot, errno); return false; } void MappableSeekableZStream::stats(const char *when, const char *name) const { size_t nEntries = zStream.GetChunksNum(); DEBUG_LOG("%s: %s; %" PRIdSize "/%" PRIdSize " chunks decompressed", name, when, static_cast(chunkAvailNum), nEntries); size_t len = 64; UniquePtr map = MakeUnique(len + 3); map[0] = '['; for (size_t i = 0, j = 1; i < nEntries; i++, j++) { map[j] = chunkAvail[i] ? '*' : '_'; if ((j == len) || (i == nEntries - 1)) { map[j + 1] = ']'; map[j + 2] = '\0'; DEBUG_LOG("%s", static_cast(map.get())); j = 0; } } } size_t MappableSeekableZStream::GetLength() const { return buffer->GetLength(); }