Bug 872352 - Add NBody to parjs-benchmarks. (r=nmatsakis) DONTBUILD

This commit is contained in:
Shu-yu Guo 2013-05-14 19:23:20 -07:00
parent 9779044c24
commit ce7b8ecd78
2 changed files with 853 additions and 0 deletions

View File

@ -0,0 +1,554 @@
//
// NBody adapted from Intel's nbody benchmark.
//
load(libdir + "util.js");
load(libdir + "seedrandom.js");
var NBody = {
Constant: {
"deltaTime": 1, // 0.005 in their code.
"epsSqr": 50, // softening factor, when they compute, set to 50.
"initialVelocity": 8 // set to 0 to turn off
},
init: function init(mode, numBodies) {
var initPos = new Array(numBodies);
var initVel = new Array(numBodies);
// initialization of inputs
for (var i = 0; i < numBodies; i++) {
// [x,y,z]
initPos[i] = [Math.floor((Math.random()) * 40000),
Math.floor((Math.random()) * 20000),
Math.floor((Math.random() - .25) * 50000)];
// [x,y,z,x,y,z]
initVel[i] = [(Math.random() - 0.5) * NBody.Constant.initialVelocity,
(Math.random() - 0.5) * NBody.Constant.initialVelocity,
(Math.random()) * NBody.Constant.initialVelocity + 10,
(Math.random() - 0.5) * NBody.Constant.initialVelocity,
(Math.random() - 0.5) * NBody.Constant.initialVelocity,
(Math.random()) * NBody.Constant.initialVelocity];
}
NBody.private = {};
if (mode === "par") {
NBody.private.pos = new ParallelArray(initPos);
NBody.private.vel = new ParallelArray(initVel);
} else {
NBody.private.pos = initPos;
NBody.private.vel = initVel;
}
NBody.numBodies = numBodies;
NBody.time = 0;
},
// Parallel
tickPar: function tickPar() {
NBody.private.vel = new ParallelArray([NBody.numBodies], NBody.velocityPar);
NBody.private.pos = new ParallelArray([NBody.numBodies], NBody.positionPar);
NBody.time++;
},
velocityPar: function velocityPar(index) {
var pos = NBody.private.pos;
var vel = NBody.private.vel;
var deltaTime = NBody.Constant.deltaTime;
var epsSqr = NBody.Constant.epsSqr;
var time = NBody.time;
var shape = vel.shape[0];
var newVel;
var newX, newY, newZ;
var newX2, newY2, newZ2;
var cX = Math.cos(time / 22) * -4200;
var cY = Math.sin(time / 14) * 9200;
var cZ = Math.sin(time / 27) * 6000;
// pull to center
var maxDistance = 3400;
var pullStrength = .042;
var speedLimit = 8;
// zones
var zone = 400;
var repel = 100;
var align = 300;
var attract = 100;
if (time < 500) {
speedLimit = 2000;
var attractPower = 100.9;
} else {
speedLimit = .2;
attractPower = 20.9;
}
var zoneSqrd = zone * zone + zone * zone + zone * zone;
var accX = 0, accY = 0, accZ = 0;
var accX2 = 0, accY2 = 0, accZ2 = 0;
var i;
// define particle 1 center distance
var dirToCenterX = cX - pos.get(index)[0];
var dirToCenterY = cY - pos.get(index)[1];
var dirToCenterZ = cZ - pos.get(index)[2];
var distanceSquaredTo = dirToCenterX * dirToCenterX + dirToCenterY * dirToCenterY + dirToCenterZ * dirToCenterZ;
var distToCenter = Math.sqrt(distanceSquaredTo);
// orient to center
if (distToCenter > maxDistance) {
var velc = (distToCenter - maxDistance) * pullStrength;
if (time < 200)
velc = .2;
else velc = (distToCenter - maxDistance) * pullStrength;
accX += (dirToCenterX / distToCenter) * velc;
accY += (dirToCenterY / distToCenter) * velc;
accZ += (dirToCenterZ / distToCenter) * velc;
}
for (i = 0; i < shape; i = i + 1) {
var rx = pos.get(i)[0] - pos.get(index)[0];
var ry = pos.get(i)[1] - pos.get(index)[1];
var rz = pos.get(i)[2] - pos.get(index)[2];
// make sure we are not testing the particle against its own position
var areSame = 0;
if (pos.get(i)[0] == pos.get(index)[0] && pos.get(i)[1] == pos.get(index)[1] && pos.get(i)[2] == pos.get(index)[2])
areSame += 1;
var distSqrd = rx * rx + ry * ry + rz * rz;
// cant use eqals to test, only <= or >= WTF
if (distSqrd < zoneSqrd && areSame <= 0) {
var length = Math.sqrt(distSqrd);
var percent = distSqrd / zoneSqrd;
if (distSqrd < repel) {
var F = (repel / percent - 1) * .025;
var normalRx = (rx / length) * F;
var normalRy = (ry / length) * F;
var normalRz = (rz / length) * F;
accX = accX + normalRx;
accY = accY + normalRy;
accZ = accZ + normalRz;
accX2 = accX2 - normalRx;
accY2 = accY2 - normalRy;
accZ2 = accZ2 - normalRz;
} else if (distSqrd < align) { //align
var threshDelta = align - repel;
var adjustedPercent = (percent - repel) / threshDelta;
var Q = (.5 - Math.cos(adjustedPercent * 3.14159265 * 2) * .5 + .5) * 100.9;
// get velocity 2
var velX2 = vel.get(i)[4];
var velY2 = vel.get(i)[5];
var velZ2 = vel.get(i)[6];
var velLength2 = Math.sqrt(velX2 * velX2 + velY2 * velY2 + velZ2 * velZ2);
// normalize vel2 and multiply by factor
velX2 = (velX2 / velLength2) * Q;
velY2 = (velY2 / velLength2) * Q;
velZ2 = (velZ2 / velLength2) * Q;
// get own velocity
var velX = vel.get(i)[0];
var velY = vel.get(i)[1];
var velZ = vel.get(i)[2];
var velLength = Math.sqrt(velX * velX + velY * velY + velZ * velZ);
// normalize own velocity
velX = (velX / velLength) * Q;
velY = (velY / velLength) * Q;
velZ = (velZ / velLength) * Q;
accX += velX2;
accY += velY2;
accZ += velZ2;
accX2 += velX;
accY2 += velY;
accZ2 += velZ;
}
if (distSqrd > attract) { // attract
var threshDelta2 = 1 - attract;
var adjustedPercent2 = (percent - attract) / threshDelta2;
var C = (1 - (Math.cos(adjustedPercent2 * 3.14159265 * 2) * 0.5 + 0.5)) * attractPower;
// normalize the distance vector
var dx = (rx / (length)) * C;
var dy = (ry / (length)) * C;
var dz = (rz / (length)) * C;
accX += dx;
accY += dy;
accZ += dz;
accX2 -= dx;
accY2 -= dy;
accZ2 -= dz;
}
}
}
// Speed limits
if (time > 500) {
var accSquared = accX * accX + accY * accY + accZ * accZ;
if (accSquared > speedLimit) {
accX = accX * .015;
accY = accY * .015;
accZ = accZ * .015;
}
var accSquared2 = accX2 * accX2 + accY2 * accY2 + accZ2 * accZ2;
if (accSquared2 > speedLimit) {
accX2 = accX2 * .015;
accY2 = accY2 * .015;
accZ2 = accZ2 * .015;
}
}
// Caclulate new velocity
newX = (vel.get(index)[0]) + accX;
newY = (vel.get(index)[1]) + accY;
newZ = (vel.get(index)[2]) + accZ;
newX2 = (vel.get(index)[3]) + accX2;
newY2 = (vel.get(index)[4]) + accY2;
newZ2 = (vel.get(index)[5]) + accZ2;
if (time < 500) {
var acs = newX2 * newX2 + newY2 * newY2 + newZ2 * newZ2;
if (acs > speedLimit) {
newX2 = newX2 * .15;
newY2 = newY2 * .15;
newZ2 = newZ2 * .15;
}
var acs2 = newX * newX + newY * newY + newZ * newZ;
if (acs2 > speedLimit) {
newX = newX * .15;
newY = newY * .15;
newZ = newZ * .15;
}
}
return [newX, newY, newZ, newX2, newY2, newZ2];
},
positionPar: function positionPar(index) {
var vel = NBody.private.vel;
var pos = NBody.private.pos;
var x = 0;
var y = 0;
var z = 0;
var velX = vel.get(index)[0];
var velY = vel.get(index)[1];
var velZ = vel.get(index)[2];
var velX2 = vel.get(index)[3];
var velY2 = vel.get(index)[4];
var velZ2 = vel.get(index)[5];
var netVelX = (velX - velX2);
var netVelY = (velY - velY2);
var netVelZ = (velZ - velZ2);
x = pos.get(index)[0] + (netVelX);
y = pos.get(index)[1] + (netVelY);
z = pos.get(index)[2] + (netVelZ);
return [x, y, z];
},
// Sequential
tickSeq: function tickSeq() {
var numBodies = NBody.numBodies;
var newVel = new Array(numBodies);
var newPos = new Array(numBodies);
for (var i = 0; i < numBodies; i++)
newVel[i] = NBody.velocitySeq(i);
for (var i = 0; i < numBodies; i++)
newPos[i] = NBody.positionSeq(i);
NBody.private.vel = newVel;
NBody.private.pos = newPos;
NBody.time++;
},
velocitySeq: function velocitySeq(index) {
var vel = NBody.private.vel;
var pos = NBody.private.pos;
var deltaTime = NBody.Constant.deltaTime;
var epsSqr = NBody.Constant.epsSqr;
var time = NBody.time;
var shape = pos.length;
var newVel;
var newX, newY, newZ;
var newX2, newY2, newZ2;
var cX = Math.cos(time / 22) * -4200;
var cY = Math.sin(time / 14) * 9200;
var cZ = Math.sin(time / 27) * 6000;
// pull to center
var maxDistance = 3400;
var pullStrength = .042;
var speedLimit = 8;
// zones
var zone = 400;
var repel = 100;
var align = 300;
var attract = 100;
if (time < 500) {
speedLimit = 2000;
var attractPower = 100.9;
} else {
speedLimit = .2;
attractPower = 20.9;
}
var zoneSqrd = zone * zone + zone * zone + zone * zone;
var accX = 0, accY = 0, accZ = 0;
var accX2 = 0, accY2 = 0, accZ2 = 0;
var i;
// define particle 1 center distance
var dirToCenterX = cX - pos[index][0];
var dirToCenterY = cY - pos[index][1];
var dirToCenterZ = cZ - pos[index][2];
var distanceSquaredTo = dirToCenterX * dirToCenterX + dirToCenterY * dirToCenterY + dirToCenterZ * dirToCenterZ;
var distToCenter = Math.sqrt(distanceSquaredTo);
// orient to center
if (distToCenter > maxDistance) {
var velc = (distToCenter - maxDistance) * pullStrength;
if (time < 200)
velc = .2;
else velc = (distToCenter - maxDistance) * pullStrength;
accX += (dirToCenterX / distToCenter) * velc;
accY += (dirToCenterY / distToCenter) * velc;
accZ += (dirToCenterZ / distToCenter) * velc;
}
for (i = 0; i < shape; i = i + 1) {
var rx = pos[i][0] - pos[index][0];
var ry = pos[i][1] - pos[index][1];
var rz = pos[i][2] - pos[index][2];
var areSame = 0;
if (pos[i][0] == pos[index][0] && pos[i][1] == pos[index][1] && pos[i][2] == pos[index][2])
areSame += 1;
var distSqrd = rx * rx + ry * ry + rz * rz;
// cant use eqals to test, only <= or >= WTF
if (distSqrd < zoneSqrd && areSame <= 0) {
var length = Math.sqrt(distSqrd);
var percent = distSqrd / zoneSqrd;
if (distSqrd < repel) {
var F = (repel / percent - 1) * .025;
var normalRx = (rx / length) * F;
var normalRy = (ry / length) * F;
var normalRz = (rz / length) * F;
accX = accX + normalRx;
accY = accY + normalRy;
accZ = accZ + normalRz;
accX2 = accX2 - normalRx;
accY2 = accY2 - normalRy;
accZ2 = accZ2 - normalRz;
} else if (distSqrd < align) { //align
var threshDelta = align - repel;
var adjustedPercent = (percent - repel) / threshDelta;
var Q = (.5 - Math.cos(adjustedPercent * 3.14159265 * 2) * .5 + .5) * 100;
// get velocity 2
var velX2 = vel[i][3];
var velY2 = vel[i][4];
var velZ2 = vel[i][5];
var velLength2 = Math.sqrt(velX2 * velX2 + velY2 * velY2 + velZ2 * velZ2);
// normalize vel2 and multiply by factor
velX2 = (velX2 / velLength2) * Q;
velY2 = (velY2 / velLength2) * Q;
velZ2 = (velZ2 / velLength2) * Q;
// get own velocity
var velX = vel[i][0];
var velY = vel[i][1];
var velZ = vel[i][2];
var velLength = Math.sqrt(velX * velX + velY * velY + velZ * velZ);
// normalize own velocity
velX = (velX / velLength) * Q;
velY = (velY / velLength) * Q;
velZ = (velZ / velLength) * Q;
accX += velX2;
accY += velY2;
accZ += velZ2;
accX2 += velX;
accY2 += velY;
accZ2 += velZ;
}
if (distSqrd > attract) { //attract
var threshDelta2 = 1 - align;
var adjustedPercent2 = (percent - align) / threshDelta2;
var C = (1 - (Math.cos(adjustedPercent2 * 3.14159265 * 2) * 0.5 + 0.5)) * attractPower;
// normalize the distance vector
var dx = (rx / (length)) * C;
var dy = (ry / (length)) * C;
var dz = (rz / (length)) * C;
debug = 1.1;
accX += dx;
accY += dy;
accZ += dz;
accX2 -= dx;
accY2 -= dy;
accZ2 -= dz;
}
}
}
// enforce speed limits
if (time > 500) {
var accSquared = accX * accX + accY * accY + accZ * accZ;
if (accSquared > speedLimit) {
accX = accX * .015;
accY = accY * .015;
accZ = accZ * .015;
}
var accSquared2 = accX2 * accX2 + accY2 * accY2 + accZ2 * accZ2;
if (accSquared2 > speedLimit) {
accX2 = accX2 * .015;
accY2 = accY2 * .015;
accZ2 = accZ2 * .015;
}
}
// Caclulate new velocity
newX = vel[index][0] + accX;
newY = vel[index][1] + accY;
newZ = vel[index][2] + accZ;
newX2 = vel[index][3] + accX2;
newY2 = vel[index][4] + accY2;
newZ2 = vel[index][5] + accZ2;
if (time < 500) {
var acs = newX2 * newX2 + newY2 * newY2 + newZ2 * newZ2;
if (acs > speedLimit) {
newX2 = newX2 * .15;
newY2 = newY2 * .15;
newZ2 = newZ2 * .15;
}
var acs2 = newX * newX + newY * newY + newZ * newZ;
if (acs2 > speedLimit) {
newX = newX * .15;
newY = newY * .15;
newZ = newZ * .15;
}
}
return [newX, newY, newZ, newX2, newY2, newZ2];
},
positionSeq: function positionSeq(index) {
var vel = NBody.private.vel;
var pos = NBody.private.pos;
var x = 0;
var y = 0;
var z = 0;
var velX = vel[index][0];
var velY = vel[index][1];
var velZ = vel[index][2];
var velX2 = vel[index][3];
var velY2 = vel[index][4];
var velZ2 = vel[index][5];
var netX = (velX - velX2);
var netY = (velY - velY2);
var netZ = (velZ - velZ2);
x = pos[index][0] + netX;
y = pos[index][1] + netY;
z = pos[index][2] + netZ;
return [x, y, z];
}
};
function emulateNBody(mode, numBodies, ticks) {
NBody.init(mode, numBodies);
for (var i = 0; i < ticks; i++) {
var start = Date.now();
if (mode === "par")
NBody.tickPar();
else
NBody.tickSeq();
//print(NBody.private.pos);
print(mode + " bodies=" + numBodies + " tick=" + (i+1) + "/" + ticks + ": " + (Date.now() - start) + " ms");
}
}
// Using 4000 bodies going off Rick's comment as 4000 being a typical workload.
const NUMBODIES = 4000;
const TICKS = 10;
Math.seedrandom("seed");
benchmark("NBODY", 1, DEFAULT_MEASURE,
function () { emulateNBody("seq", NUMBODIES, TICKS); },
function () { emulateNBody("par", NUMBODIES, TICKS); });

View File

@ -0,0 +1,299 @@
// seedrandom.js version 2.1.
// Author: David Bau
// Date: 2013 Mar 16
//
// Defines a method Math.seedrandom() that, when called, substitutes
// an explicitly seeded RC4-based algorithm for Math.random(). Also
// supports automatic seeding from local or network sources of entropy.
//
// http://davidbau.com/encode/seedrandom.js
// http://davidbau.com/encode/seedrandom-min.js
//
// Usage:
//
// <script src=http://davidbau.com/encode/seedrandom-min.js></script>
//
// Math.seedrandom('yay.'); Sets Math.random to a function that is
// initialized using the given explicit seed.
//
// Math.seedrandom(); Sets Math.random to a function that is
// seeded using the current time, dom state,
// and other accumulated local entropy.
// The generated seed string is returned.
//
// Math.seedrandom('yowza.', true);
// Seeds using the given explicit seed mixed
// together with accumulated entropy.
//
// <script src="https://jsonlib.appspot.com/urandom?callback=Math.seedrandom">
// </script> Seeds using urandom bits from a server.
//
// More advanced examples:
//
// Math.seedrandom("hello."); // Use "hello." as the seed.
// document.write(Math.random()); // Always 0.9282578795792454
// document.write(Math.random()); // Always 0.3752569768646784
// var rng1 = Math.random; // Remember the current prng.
//
// var autoseed = Math.seedrandom(); // New prng with an automatic seed.
// document.write(Math.random()); // Pretty much unpredictable x.
//
// Math.random = rng1; // Continue "hello." prng sequence.
// document.write(Math.random()); // Always 0.7316977468919549
//
// Math.seedrandom(autoseed); // Restart at the previous seed.
// document.write(Math.random()); // Repeat the 'unpredictable' x.
//
// function reseed(event, count) { // Define a custom entropy collector.
// var t = [];
// function w(e) {
// t.push([e.pageX, e.pageY, +new Date]);
// if (t.length < count) { return; }
// document.removeEventListener(event, w);
// Math.seedrandom(t, true); // Mix in any previous entropy.
// }
// document.addEventListener(event, w);
// }
// reseed('mousemove', 100); // Reseed after 100 mouse moves.
//
// Version notes:
//
// The random number sequence is the same as version 1.0 for string seeds.
// Version 2.0 changed the sequence for non-string seeds.
// Version 2.1 speeds seeding and uses window.crypto to autoseed if present.
//
// The standard ARC4 key scheduler cycles short keys, which means that
// seedrandom('ab') is equivalent to seedrandom('abab') and 'ababab'.
// Therefore it is a good idea to add a terminator to avoid trivial
// equivalences on short string seeds, e.g., Math.seedrandom(str + '\0').
// Starting with version 2.0, a terminator is added automatically for
// non-string seeds, so seeding with the number 111 is the same as seeding
// with '111\0'.
//
// When seedrandom() is called with zero args, it uses a seed
// drawn from the browser crypto object if present. If there is no
// crypto support, seedrandom() uses the current time, the native rng,
// and a walk of several DOM objects to collect a few bits of entropy.
//
// Each time the one- or two-argument forms of seedrandom are called,
// entropy from the passed seed is accumulated in a pool to help generate
// future seeds for the zero- and two-argument forms of seedrandom.
//
// On speed - This javascript implementation of Math.random() is about
// 3-10x slower than the built-in Math.random() because it is not native
// code, but that is typically fast enough. Some details (timings on
// Chrome 25 on a 2010 vintage macbook):
//
// seeded Math.random() - avg less than 0.0002 milliseconds per call
// seedrandom('explicit.') - avg less than 0.2 milliseconds per call
// seedrandom('explicit.', true) - avg less than 0.2 milliseconds per call
// seedrandom() with crypto - avg less than 0.2 milliseconds per call
// seedrandom() without crypto - avg about 12 milliseconds per call
//
// On a 2012 windows 7 1.5ghz i5 laptop, Chrome, Firefox 19, IE 10, and
// Opera have similarly fast timings. Slowest numbers are on Opera, with
// about 0.0005 milliseconds per seeded Math.random() and 15 milliseconds
// for autoseeding.
//
// LICENSE (BSD):
//
// Copyright 2013 David Bau, all rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of this module nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
/**
* All code is in an anonymous closure to keep the global namespace clean.
*/
(function (
global, pool, math, width, chunks, digits) {
//
// The following constants are related to IEEE 754 limits.
//
var startdenom = math.pow(width, chunks),
significance = math.pow(2, digits),
overflow = significance * 2,
mask = width - 1;
//
// seedrandom()
// This is the seedrandom function described above.
//
math['seedrandom'] = function(seed, use_entropy) {
var key = [];
// Flatten the seed string or build one from local entropy if needed.
var shortseed = mixkey(flatten(
use_entropy ? [seed, tostring(pool)] :
0 in arguments ? seed : autoseed(), 3), key);
// Use the seed to initialize an ARC4 generator.
var arc4 = new ARC4(key);
// Mix the randomness into accumulated entropy.
mixkey(tostring(arc4.S), pool);
// Override Math.random
// This function returns a random double in [0, 1) that contains
// randomness in every bit of the mantissa of the IEEE 754 value.
math['random'] = function() { // Closure to return a random double:
var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48
d = startdenom, // and denominator d = 2 ^ 48.
x = 0; // and no 'extra last byte'.
while (n < significance) { // Fill up all significant digits by
n = (n + x) * width; // shifting numerator and
d *= width; // denominator and generating a
x = arc4.g(1); // new least-significant-byte.
}
while (n >= overflow) { // To avoid rounding up, before adding
n /= 2; // last byte, shift everything
d /= 2; // right using integer math until
x >>>= 1; // we have exactly the desired bits.
}
return (n + x) / d; // Form the number within [0, 1).
};
// Return the seed that was used
return shortseed;
};
//
// ARC4
//
// An ARC4 implementation. The constructor takes a key in the form of
// an array of at most (width) integers that should be 0 <= x < (width).
//
// The g(count) method returns a pseudorandom integer that concatenates
// the next (count) outputs from ARC4. Its return value is a number x
// that is in the range 0 <= x < (width ^ count).
//
/** @constructor */
function ARC4(key) {
var t, keylen = key.length,
me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];
// The empty key [] is treated as [0].
if (!keylen) { key = [keylen++]; }
// Set up S using the standard key scheduling algorithm.
while (i < width) {
s[i] = i++;
}
for (i = 0; i < width; i++) {
s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];
s[j] = t;
}
// The "g" method returns the next (count) outputs as one number.
(me.g = function(count) {
// Using instance members instead of closure state nearly doubles speed.
var t, r = 0,
i = me.i, j = me.j, s = me.S;
while (count--) {
t = s[i = mask & (i + 1)];
r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];
}
me.i = i; me.j = j;
return r;
// For robust unpredictability discard an initial batch of values.
// See http://www.rsa.com/rsalabs/node.asp?id=2009
})(width);
}
//
// flatten()
// Converts an object tree to nested arrays of strings.
//
function flatten(obj, depth) {
var result = [], typ = (typeof obj)[0], prop;
if (depth && typ == 'o') {
for (prop in obj) {
if (obj.hasOwnProperty(prop)) {
try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
}
}
}
return (result.length ? result : typ == 's' ? obj : obj + '\0');
}
//
// mixkey()
// Mixes a string seed into a key that is an array of integers, and
// returns a shortened string seed that is equivalent to the result key.
//
function mixkey(seed, key) {
var stringseed = seed + '', smear, j = 0;
while (j < stringseed.length) {
key[mask & j] =
mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));
}
return tostring(key);
}
//
// autoseed()
// Returns an object for autoseeding, using window.crypto if available.
//
/** @param {Uint8Array=} seed */
function autoseed(seed) {
try {
global.crypto.getRandomValues(seed = new Uint8Array(width));
return tostring(seed);
} catch (e) {
return [+new Date, global.document, global.history,
global.navigator, global.screen, tostring(pool)];
}
}
//
// tostring()
// Converts an array of charcodes to a string
//
function tostring(a) {
return String.fromCharCode.apply(0, a);
}
//
// When seedrandom.js is loaded, we immediately mix a few bits
// from the built-in RNG into the entropy pool. Because we do
// not want to intefere with determinstic PRNG state later,
// seedrandom will not call math.random on its own again after
// initialization.
//
mixkey(math.random(), pool);
// End anonymous scope, and pass initial values.
})(
this, // global window object
[], // pool: entropy pool starts empty
Math, // math: package containing random, pow, and seedrandom
256, // width: each RC4 output is 0 <= x < 256
6, // chunks: at least six RC4 outputs for each double
52 // digits: there are 52 significant digits in a double
);