Bug 861727. Refactor CompositorParent a bit. r=BenWa

--HG--
rename : gfx/layers/ipc/CompositorParent.cpp => gfx/layers/composite/AsyncCompositionManager.cpp
rename : gfx/layers/ipc/CompositorParent.h => gfx/layers/composite/AsyncCompositionManager.h
This commit is contained in:
Nicholas Cameron 2013-04-28 18:46:30 +12:00
parent 9ac1bdb4de
commit 99fe577cb6
11 changed files with 858 additions and 687 deletions

View File

@ -97,6 +97,7 @@ endif
endif
CPPSRCS += \
AsyncCompositionManager.cpp \
AsyncPanZoomController.cpp \
Axis.cpp \
CanvasClient.cpp \

View File

@ -0,0 +1,593 @@
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include "base/basictypes.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "CompositorParent.h"
#include "LayerManagerComposite.h"
#include "nsStyleAnimation.h"
#include "nsDisplayList.h"
#include "AnimationCommon.h"
#include "nsAnimationManager.h"
#include "mozilla/layers/AsyncPanZoomController.h"
using namespace mozilla::dom;
namespace mozilla {
namespace layers {
void
AsyncCompositionManager::SetTransformation(float aScale,
const nsIntPoint& aScrollOffset)
{
mXScale = aScale;
mYScale = aScale;
mScrollOffset = aScrollOffset;
}
enum Op { Resolve, Detach };
static bool
IsSameDimension(ScreenOrientation o1, ScreenOrientation o2)
{
bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const nsIntRect& rect)
{
return rect.width != rect.height;
}
template<Op OP>
static void
WalkTheTree(Layer* aLayer,
Layer* aParent,
bool& aReady,
const TargetConfig& aTargetConfig)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
ScreenOrientation chromeOrientation = aTargetConfig.orientation();
ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
aReady = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
if (AsyncPanZoomController* apzc = state->mController) {
referent->SetAsyncPanZoomController(apzc);
}
} else {
ref->DetachReferentLayer(referent);
referent->SetAsyncPanZoomController(nullptr);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aLayer, aReady, aTargetConfig);
}
}
void
AsyncCompositionManager::ResolveRefLayers()
{
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
nullptr,
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::DetachRefLayers()
{
WalkTheTree<Detach>(mLayerManager->GetRoot(),
nullptr,
mReadyForCompose,
mTargetConfig);
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mLayerManager->SetWorldTransform(
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation()));
}
}
// Do a breadth-first search to find the first layer in the tree that is
// scrollable.
static void
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
{
aTransform._41 += aOffset.x;
aTransform._42 += aOffset.y;
}
void
AsyncCompositionManager::TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxSize& aScaleDiff,
const gfx::Margin& aFixedLayerMargins)
{
if (aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition()) {
// When a scale has been applied to a layer, it focuses around (0,0).
// The anchor position is used here as a scale focus point (assuming that
// aScaleDiff has already been applied) to re-focus the scale.
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
gfxPoint translation(aTranslation - (anchor - anchor / aScaleDiff));
// Offset this translation by the fixed layer margins, depending on what
// side of the viewport the layer is anchored to, reconciling the
// difference between the current fixed layer margins and the Gecko-side
// fixed layer margins.
// aFixedLayerMargins are the margins we expect to be at at the current
// time, obtained via SyncViewportInfo, and fixedMargins are the margins
// that were used during layout.
// If top/left of fixedMargins are negative, that indicates that this layer
// represents auto-positioned elements, and should not be affected by
// fixed margins at all.
const gfx::Margin& fixedMargins = aLayer->GetFixedPositionMargins();
if (fixedMargins.left >= 0) {
if (anchor.x > 0) {
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
} else {
translation.x += aFixedLayerMargins.left - fixedMargins.left;
}
}
if (fixedMargins.top >= 0) {
if (anchor.y > 0) {
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
} else {
translation.y += aFixedLayerMargins.top - fixedMargins.top;
}
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix layerTransform = aLayer->GetTransform();
Translate2D(layerTransform, translation);
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
layerTransform.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
}
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
layerComposite->SetShadowTransform(layerTransform);
const nsIntRect* clipRect = aLayer->GetClipRect();
if (clipRect) {
nsIntRect transformedClipRect(*clipRect);
transformedClipRect.MoveBy(translation.x, translation.y);
layerComposite->SetShadowClipRect(&transformedClipRect);
}
// The transform has now been applied, so there's no need to iterate over
// child layers.
return;
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
TransformFixedLayers(child, aTranslation, aScaleDiff, aFixedLayerMargins);
}
}
static void
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
nsStyleAnimation::Value& aEnd, Animatable* aValue)
{
nsStyleAnimation::Value interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in css pixels, so here we must
// adjust to dev pixels.
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
/ double(data.appUnitsPerDevPixel());
gfxPoint3D mozOrigin = data.mozOrigin();
mozOrigin.x = mozOrigin.x * cssPerDev;
mozOrigin.y = mozOrigin.y * cssPerDev;
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
mozOrigin,
perspectiveOrigin,
data.perspective());
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
gfxPoint3D scaledOrigin =
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.Translate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(transform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
for (uint32_t i = animations.Length(); i-- !=0; ) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
double numIterations = animation.numIterations() != -1 ?
animation.numIterations() : NS_IEEEPositiveInfinity();
double positionInIteration =
ElementAnimations::GetPositionInIteration(aPoint - animation.startTime(),
animation.duration(),
numIterations,
animation.direction());
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
positionInIteration <= 1.0,
"position should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < positionInIteration) {
++segment;
++segmentIndex;
}
double positionInSegment = (positionInIteration - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
activeAnimations = true;
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix.ScalePost(c->GetInheritedXScale(),
c->GetInheritedYScale(),
1);
}
NS_ASSERTION(!aLayer->GetIsFixedPosition(), "Can't animate transforms on fixed-position layers");
layerComposite->SetShadowTransform(matrix);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
Layer *aLayer,
bool* aWantNextFrame)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
}
ContainerLayer* container = aLayer->AsContainerLayer();
if (!container) {
return appliedTransform;
}
if (AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController()) {
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ViewTransform treeTransform;
gfxPoint scrollOffset;
*aWantNextFrame |=
controller->SampleContentTransformForFrame(aCurrentFrame,
container,
&treeTransform,
&scrollOffset);
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
float offsetX = 0, offsetY = 0;
SyncFrameMetrics(aLayer, treeTransform, scrollOffset, fixedLayerMargins,
offsetX, offsetY, mIsFirstPaint, mLayersUpdated);
mIsFirstPaint = false;
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
gfx3DMatrix transform(gfx3DMatrix(treeTransform) * aLayer->GetTransform());
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
transform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
transform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
layerComposite->SetShadowTransform(transform);
TransformFixedLayers(
aLayer,
-treeTransform.mTranslation / treeTransform.mScale,
treeTransform.mScale,
fixedLayerMargins);
appliedTransform = true;
}
return appliedTransform;
}
void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform)
{
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ContainerLayer* container = aLayer->AsContainerLayer();
const FrameMetrics& metrics = container->GetFrameMetrics();
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
const gfx3DMatrix& currentTransform = aLayer->GetTransform();
gfx3DMatrix treeTransform;
// Translate fixed position layers so that they stay in the correct position
// when mScrollOffset and metricsScrollOffset differ.
gfxPoint offset;
gfxSize scaleDiff;
float rootScaleX = aRootTransform.GetXScale(),
rootScaleY = aRootTransform.GetYScale();
// The ratio of layers pixels to device pixels. The Java
// compositor wants to see values in units of device pixels, so we
// map our FrameMetrics values to that space. This is not exposed
// as a FrameMetrics helper because it's a deprecated conversion.
float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY;
gfxPoint scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels());
nsIntPoint scrollOffsetDevPixels(
NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX),
NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY));
if (mIsFirstPaint) {
mContentRect = metrics.mContentRect;
SetFirstPaintViewport(scrollOffsetDevPixels,
1/rootScaleX,
mContentRect,
metrics.mScrollableRect);
mIsFirstPaint = false;
} else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) {
mContentRect = metrics.mContentRect;
SetPageRect(metrics.mScrollableRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ?
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
nsIntRect displayPortDevPixels(
NS_lround(displayPortLayersPixels.x * devPixelRatioX),
NS_lround(displayPortLayersPixels.y * devPixelRatioY),
NS_lround(displayPortLayersPixels.width * devPixelRatioX),
NS_lround(displayPortLayersPixels.height * devPixelRatioY));
displayPortDevPixels.x += scrollOffsetDevPixels.x;
displayPortDevPixels.y += scrollOffsetDevPixels.y;
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
float offsetX = 0, offsetY = 0;
SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated,
mScrollOffset, mXScale, mYScale, fixedLayerMargins,
offsetX, offsetY);
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the desired zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
float tempScaleDiffX = rootScaleX * mXScale;
float tempScaleDiffY = rootScaleY * mYScale;
nsIntPoint metricsScrollOffset(0, 0);
if (metrics.IsScrollable()) {
metricsScrollOffset = scrollOffsetDevPixels;
}
nsIntPoint scrollCompensation(
(mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale,
(mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale);
treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation,
gfxSize(mXScale, mYScale)));
// If the contents can fit entirely within the widget area on a particular
// dimenson, we need to translate and scale so that the fixed layers remain
// within the page boundaries.
if (mContentRect.width * tempScaleDiffX < metrics.mCompositionBounds.width) {
offset.x = -metricsScrollOffset.x;
scaleDiff.width = std::min(1.0f, metrics.mCompositionBounds.width / (float)mContentRect.width);
} else {
offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x,
mContentRect.XMost() - metrics.mCompositionBounds.width / tempScaleDiffX) -
metricsScrollOffset.x;
scaleDiff.width = tempScaleDiffX;
}
if (mContentRect.height * tempScaleDiffY < metrics.mCompositionBounds.height) {
offset.y = -metricsScrollOffset.y;
scaleDiff.height = std::min(1.0f, metrics.mCompositionBounds.height / (float)mContentRect.height);
} else {
offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y,
mContentRect.YMost() - metrics.mCompositionBounds.height / tempScaleDiffY) -
metricsScrollOffset.y;
scaleDiff.height = tempScaleDiffY;
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix computedTransform = treeTransform * currentTransform;
computedTransform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
1.0f/container->GetPostYScale(),
1);
layerComposite->SetShadowTransform(computedTransform);
TransformFixedLayers(aLayer, offset, scaleDiff, fixedLayerMargins);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
{
bool wantNextFrame = false;
Layer* root = mLayerManager->GetRoot();
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
wantNextFrame |= SampleAnimations(root, aCurrentFrame);
const gfx3DMatrix& rootTransform = root->GetTransform();
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i], rootTransform);
}
}
}
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const nsIntPoint& aOffset,
float aZoom,
const nsIntRect& aPageRect,
const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SetPageRect(const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncViewportInfo(const nsIntRect& aDisplayPort,
float aDisplayResolution,
bool aLayersUpdated,
nsIntPoint& aScrollOffset,
float& aScaleX, float& aScaleY,
gfx::Margin& aFixedLayerMargins,
float& aOffsetX, float& aOffsetY)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
aDisplayResolution,
aLayersUpdated,
aScrollOffset,
aScaleX, aScaleY,
aFixedLayerMargins,
aOffsetX, aOffsetY);
#endif
}
} // namespace layers
} // namespace mozilla

View File

@ -0,0 +1,203 @@
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_ASYNCCOMPOSITIONMANAGER_H
#define GFX_ASYNCCOMPOSITIONMANAGER_H
#include "gfxPoint.h"
#include "gfx3DMatrix.h"
#include "nsAutoPtr.h"
#include "nsRect.h"
#include "mozilla/dom/ScreenOrientation.h"
#include "mozilla/gfx/Rect.h"
#include "mozilla/RefPtr.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/layers/LayerTransaction.h" // for TargetConfig
namespace mozilla {
namespace layers {
class AsyncPanZoomController;
class Layer;
class LayerManagerComposite;
class AutoResolveRefLayers;
// Represents (affine) transforms that are calculated from a content view.
struct ViewTransform {
ViewTransform(gfxPoint aTranslation = gfxPoint(),
gfxSize aScale = gfxSize(1, 1))
: mTranslation(aTranslation)
, mScale(aScale)
{}
operator gfx3DMatrix() const
{
return
gfx3DMatrix::ScalingMatrix(mScale.width, mScale.height, 1) *
gfx3DMatrix::Translation(mTranslation.x, mTranslation.y, 0);
}
gfxPoint mTranslation;
gfxSize mScale;
};
/**
* Manage async composition effects. This class is only used with OMTC and only
* lives on the compositor thread. It is a layer on top of the layer manager
* (LayerManagerComposite) which deals with elements of composition which are
* usually dealt with by dom or layout when main thread rendering, but which can
* short circuit that stuff to directly affect layers as they are composited,
* for example, off-main thread animation, async video, async pan/zoom.
*/
class AsyncCompositionManager : public RefCounted<AsyncCompositionManager>
{
friend class AutoResolveRefLayers;
public:
AsyncCompositionManager(LayerManagerComposite* aManager)
: mXScale(1.0)
, mYScale(1.0)
, mLayerManager(aManager)
, mIsFirstPaint(false)
, mLayersUpdated(false)
, mReadyForCompose(true)
{
MOZ_COUNT_CTOR(AsyncCompositionManager);
}
~AsyncCompositionManager()
{
MOZ_COUNT_DTOR(AsyncCompositionManager);
}
/**
* This forces the is-first-paint flag to true. This is intended to
* be called by the widget code when it loses its viewport information
* (or for whatever reason wants to refresh the viewport information).
* The information refresh happens because the compositor will call
* SetFirstPaintViewport on the next frame of composition.
*/
void ForceIsFirstPaint() { mIsFirstPaint = true; }
// Sample transforms for layer trees. Return true to request
// another animation frame.
bool TransformShadowTree(TimeStamp aCurrentFrame);
// Calculates the correct rotation and applies the transform to
// our layer manager
void ComputeRotation();
// Call after updating our layer tree.
void Updated(bool isFirstPaint, const TargetConfig& aTargetConfig)
{
mIsFirstPaint |= isFirstPaint;
mLayersUpdated = true;
mTargetConfig = aTargetConfig;
}
bool RequiresReorientation(mozilla::dom::ScreenOrientation aOrientation)
{
return mTargetConfig.orientation() != aOrientation;
}
// True if the underlying layer tree is ready to be composited.
bool ReadyForCompose() { return mReadyForCompose; }
// Returns true if the next composition will be the first for a
// particular document.
bool IsFirstPaint() { return mIsFirstPaint; }
void SetTransformation(float aScale, const nsIntPoint& aScrollOffset);
private:
void TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform);
// Return true if an AsyncPanZoomController content transform was
// applied for |aLayer|. *aWantNextFrame is set to true if the
// controller wants another animation frame.
bool ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, Layer* aLayer,
bool* aWantNextFrame);
void SetFirstPaintViewport(const nsIntPoint& aOffset,
float aZoom,
const nsIntRect& aPageRect,
const gfx::Rect& aCssPageRect);
void SetPageRect(const gfx::Rect& aCssPageRect);
void SyncViewportInfo(const nsIntRect& aDisplayPort,
float aDisplayResolution,
bool aLayersUpdated,
nsIntPoint& aScrollOffset,
float& aScaleX, float& aScaleY,
gfx::Margin& aFixedLayerMargins,
float& aOffsetX, float& aOffsetY);
virtual void SyncFrameMetrics(Layer* aLayer, const ViewTransform& aTreeTransform,
const gfxPoint& aScrollOffset, gfx::Margin& aFixedLayerMargins,
float& aOffsetX, float& aOffsetY,
bool aIsFirstPaint, bool aLayersUpdated)
{}
/**
* Recursively applies the given translation to all top-level fixed position
* layers that are descendants of the given layer.
* aScaleDiff is considered to be the scale transformation applied when
* displaying the layers, and is used to make sure the anchor points of
* fixed position layers remain in the same position.
*/
void TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxSize& aScaleDiff,
const gfx::Margin& aFixedLayerMargins);
/**
* DRAWING PHASE ONLY
*
* For reach RefLayer in our layer tree, look up its referent and connect it
* to the layer tree, if found.
*/
void ResolveRefLayers();
/**
* Detaches all referents resolved by ResolveRefLayers.
* Assumes that mLayerManager->GetRoot() and mTargetConfig have not changed
* since ResolveRefLayers was called.
*/
void DetachRefLayers();
TargetConfig mTargetConfig;
float mXScale;
float mYScale;
nsIntPoint mScrollOffset;
nsIntRect mContentRect;
nsRefPtr<LayerManagerComposite> mLayerManager;
// When this flag is set, the next composition will be the first for a
// particular document (i.e. the document displayed on the screen will change).
// This happens when loading a new page or switching tabs. We notify the
// front-end (e.g. Java on Android) about this so that it take the new page
// size and zoom into account when providing us with the next view transform.
bool mIsFirstPaint;
// This flag is set during a layers update, so that the first composition
// after a layers update has it set. It is cleared after that first composition.
bool mLayersUpdated;
bool mReadyForCompose;
};
class MOZ_STACK_CLASS AutoResolveRefLayers {
public:
AutoResolveRefLayers(AsyncCompositionManager* aManager) : mManager(aManager)
{ mManager->ResolveRefLayers(); }
~AutoResolveRefLayers()
{ mManager->DetachRefLayers(); }
private:
AsyncCompositionManager* mManager;
AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE;
AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE;
};
} // layers
} // mozilla
#endif

View File

@ -4,6 +4,7 @@
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h" // for ViewTransform
#include "CompositorParent.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/ClearOnShutdown.h"
@ -19,6 +20,7 @@
#include "Layers.h"
#include "AnimationCommon.h"
#include <algorithm>
#include "mozilla/layers/LayerManagerComposite.h"
using namespace mozilla::css;

View File

@ -8,39 +8,22 @@
#include "mozilla/DebugOnly.h"
#include "base/basictypes.h"
#include <algorithm>
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "AsyncPanZoomController.h"
#include "AutoOpenSurface.h"
#include "BasicLayers.h"
#include "CompositorParent.h"
#include "mozilla/layers/CompositorOGL.h"
#include "nsGkAtoms.h"
#include "nsIWidget.h"
#include "RenderTrace.h"
#include "LayerTransactionParent.h"
#include "BasicLayers.h"
#include "nsIWidget.h"
#include "nsGkAtoms.h"
#include "RenderTrace.h"
#include "nsStyleAnimation.h"
#include "nsDisplayList.h"
#include "AnimationCommon.h"
#include "nsAnimationManager.h"
#include "gfxPlatform.h"
#include "mozilla/dom/ScreenOrientation.h"
#include "mozilla/AutoRestore.h"
#include "mozilla/layers/AsyncCompositionManager.h"
#include "mozilla/layers/LayerManagerComposite.h"
using namespace base;
using namespace mozilla;
using namespace mozilla::ipc;
using namespace mozilla::dom;
using namespace std;
namespace mozilla {
@ -61,19 +44,6 @@ static MessageLoop* sMainLoop = nullptr;
static PlatformThreadId sCompositorThreadID = 0;
static MessageLoop* sCompositorLoop = nullptr;
struct LayerTreeState {
nsRefPtr<Layer> mRoot;
nsRefPtr<AsyncPanZoomController> mController;
TargetConfig mTargetConfig;
};
/**
* Lookup the indirect shadow tree for |aId| and return it if it
* exists. Otherwise null is returned. This must only be called on
* the compositor thread.
*/
static const LayerTreeState* GetIndirectShadowTree(uint64_t aId);
static void DeferredDeleteCompositorParent(CompositorParent* aNowReadyToDie)
{
aNowReadyToDie->Release();
@ -161,10 +131,6 @@ CompositorParent::CompositorParent(nsIWidget* aWidget,
: mWidget(aWidget)
, mCurrentCompositeTask(NULL)
, mPaused(false)
, mXScale(1.0)
, mYScale(1.0)
, mIsFirstPaint(false)
, mLayersUpdated(false)
, mRenderToEGLSurface(aRenderToEGLSurface)
, mEGLSurfaceSize(aSurfaceWidth, aSurfaceHeight)
, mPauseCompositionMonitor("PauseCompositionMonitor")
@ -211,7 +177,14 @@ CompositorParent::Destroy()
"CompositorParent destroyed before managed PLayerTransactionParent");
// Ensure that the layer manager is destructed on the compositor thread.
mLayerManager = NULL;
mLayerManager = nullptr;
mCompositionManager = nullptr;
}
void
CompositorParent::ForceIsFirstPaint()
{
mCompositionManager->ForceIsFirstPaint();
}
bool
@ -223,6 +196,8 @@ CompositorParent::RecvWillStop()
// Ensure that the layer manager is destroyed before CompositorChild.
if (mLayerManager) {
mLayerManager->Destroy();
mLayerManager = nullptr;
mCompositionManager = nullptr;
}
return true;
@ -277,6 +252,8 @@ CompositorParent::ActorDestroy(ActorDestroyReason why)
if (mLayerManager) {
mLayerManager->Destroy();
mLayerManager = nullptr;
mCompositionManager = nullptr;
}
}
@ -444,87 +421,9 @@ CompositorParent::ScheduleComposition()
void
CompositorParent::SetTransformation(float aScale, nsIntPoint aScrollOffset)
{
mXScale = aScale;
mYScale = aScale;
mScrollOffset = aScrollOffset;
mCompositionManager->SetTransformation(aScale, aScrollOffset);
}
/**
* DRAWING PHASE ONLY
*
* For reach RefLayer in |aRoot|, look up its referent and connect it
* to the layer tree, if found. On exiting scope, detaches all
* resolved referents.
*/
class MOZ_STACK_CLASS AutoResolveRefLayers {
public:
/**
* |aRoot| must remain valid in the scope of this, which should be
* guaranteed by this helper only being used during the drawing
* phase.
*/
AutoResolveRefLayers(Layer* aRoot, const TargetConfig& aConfig) : mRoot(aRoot), mTargetConfig(aConfig), mReadyForCompose(true)
{ WalkTheTree<Resolve>(mRoot, nullptr); }
~AutoResolveRefLayers()
{ WalkTheTree<Detach>(mRoot, nullptr); }
bool IsReadyForCompose()
{ return mReadyForCompose; }
private:
enum Op { Resolve, Detach };
template<Op OP>
void WalkTheTree(Layer* aLayer, Layer* aParent)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const LayerTreeState* state = GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
ScreenOrientation chromeOrientation = mTargetConfig.orientation();
ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(mTargetConfig.clientBounds())) {
mReadyForCompose = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
if (AsyncPanZoomController* apzc = state->mController) {
referent->SetAsyncPanZoomController(apzc);
}
} else {
ref->DetachReferentLayer(referent);
referent->SetAsyncPanZoomController(nullptr);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aLayer);
}
}
bool IsSameDimension(ScreenOrientation o1, ScreenOrientation o2) {
bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
bool ContentMightReflowOnOrientationChange(nsIntRect& rect) {
return rect.width != rect.height;
}
Layer* mRoot;
TargetConfig mTargetConfig;
bool mReadyForCompose;
AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE;
AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE;
};
void
CompositorParent::Composite()
{
@ -538,29 +437,25 @@ CompositorParent::Composite()
return;
}
Layer* layer = mLayerManager->GetRoot();
AutoResolveRefLayers resolve(layer, mTargetConfig);
AutoResolveRefLayers resolve(mCompositionManager);
if (mForceCompositionTask && !mOverrideComposeReadiness) {
if (!resolve.IsReadyForCompose()) {
return;
} else {
if (mCompositionManager->ReadyForCompose()) {
mForceCompositionTask->Cancel();
mForceCompositionTask = nullptr;
} else {
return;
}
}
bool requestNextFrame = TransformShadowTree(mLastCompose);
bool requestNextFrame = mCompositionManager->TransformShadowTree(mLastCompose);
if (requestNextFrame) {
ScheduleComposition();
}
RenderTraceLayers(layer, "0000");
RenderTraceLayers(mLayerManager->GetRoot(), "0000");
mCompositionManager->ComputeRotation();
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mLayerManager->SetWorldTransform(
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation()));
}
#ifdef MOZ_DUMP_PAINTING
static bool gDumpCompositorTree = false;
if (gDumpCompositorTree) {
@ -599,90 +494,6 @@ CompositorParent::CanComposite()
return !(mPaused || !mLayerManager || !mLayerManager->GetRoot());
}
// Do a breadth-first search to find the first layer in the tree that is
// scrollable.
static void
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
{
aTransform._41 += aOffset.x;
aTransform._42 += aOffset.y;
}
void
CompositorParent::TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxSize& aScaleDiff,
const gfx::Margin& aFixedLayerMargins)
{
if (aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition()) {
// When a scale has been applied to a layer, it focuses around (0,0).
// The anchor position is used here as a scale focus point (assuming that
// aScaleDiff has already been applied) to re-focus the scale.
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
gfxPoint translation(aTranslation - (anchor - anchor / aScaleDiff));
// Offset this translation by the fixed layer margins, depending on what
// side of the viewport the layer is anchored to, reconciling the
// difference between the current fixed layer margins and the Gecko-side
// fixed layer margins.
// aFixedLayerMargins are the margins we expect to be at at the current
// time, obtained via SyncViewportInfo, and fixedMargins are the margins
// that were used during layout.
// If top/left of fixedMargins are negative, that indicates that this layer
// represents auto-positioned elements, and should not be affected by
// fixed margins at all.
const gfx::Margin& fixedMargins = aLayer->GetFixedPositionMargins();
if (fixedMargins.left >= 0) {
if (anchor.x > 0) {
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
} else {
translation.x += aFixedLayerMargins.left - fixedMargins.left;
}
}
if (fixedMargins.top >= 0) {
if (anchor.y > 0) {
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
} else {
translation.y += aFixedLayerMargins.top - fixedMargins.top;
}
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix layerTransform = aLayer->GetTransform();
Translate2D(layerTransform, translation);
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
layerTransform.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
}
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
layerComposite->SetShadowTransform(layerTransform);
const nsIntRect* clipRect = aLayer->GetClipRect();
if (clipRect) {
nsIntRect transformedClipRect(*clipRect);
transformedClipRect.MoveBy(translation.x, translation.y);
layerComposite->SetShadowClipRect(&transformedClipRect);
}
// The transform has now been applied, so there's no need to iterate over
// child layers.
return;
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
TransformFixedLayers(child, aTranslation, aScaleDiff, aFixedLayerMargins);
}
}
// Go down the composite layer tree, setting properties to match their
// content-side counterparts.
static void
@ -702,362 +513,14 @@ SetShadowProperties(Layer* aLayer)
}
}
static void
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
nsStyleAnimation::Value& aEnd, Animatable* aValue)
{
nsStyleAnimation::Value interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in css pixels, so here we must
// adjust to dev pixels.
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
/ double(data.appUnitsPerDevPixel());
gfxPoint3D mozOrigin = data.mozOrigin();
mozOrigin.x = mozOrigin.x * cssPerDev;
mozOrigin.y = mozOrigin.y * cssPerDev;
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
mozOrigin,
perspectiveOrigin,
data.perspective());
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
gfxPoint3D scaledOrigin =
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.Translate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(transform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
for (uint32_t i = animations.Length(); i-- !=0; ) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
double numIterations = animation.numIterations() != -1 ?
animation.numIterations() : NS_IEEEPositiveInfinity();
double positionInIteration =
ElementAnimations::GetPositionInIteration(aPoint - animation.startTime(),
animation.duration(),
numIterations,
animation.direction());
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
positionInIteration <= 1.0,
"position should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < positionInIteration) {
++segment;
++segmentIndex;
}
double positionInSegment = (positionInIteration - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
activeAnimations = true;
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix.ScalePost(c->GetInheritedXScale(),
c->GetInheritedYScale(),
1);
}
NS_ASSERTION(!aLayer->GetIsFixedPosition(), "Can't animate transforms on fixed-position layers");
layerComposite->SetShadowTransform(matrix);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
bool
CompositorParent::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
Layer *aLayer,
bool* aWantNextFrame)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
}
ContainerLayer* container = aLayer->AsContainerLayer();
if (!container) {
return appliedTransform;
}
if (AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController()) {
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ViewTransform treeTransform;
gfxPoint scrollOffset;
*aWantNextFrame |=
controller->SampleContentTransformForFrame(aCurrentFrame,
container,
&treeTransform,
&scrollOffset);
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
float offsetX = 0, offsetY = 0;
SyncFrameMetrics(aLayer, treeTransform, scrollOffset, fixedLayerMargins,
offsetX, offsetY, mIsFirstPaint, mLayersUpdated);
mIsFirstPaint = false;
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
gfx3DMatrix transform(gfx3DMatrix(treeTransform) * aLayer->GetTransform());
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
transform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
transform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
layerComposite->SetShadowTransform(transform);
TransformFixedLayers(
aLayer,
-treeTransform.mTranslation / treeTransform.mScale,
treeTransform.mScale,
fixedLayerMargins);
appliedTransform = true;
}
return appliedTransform;
}
void
CompositorParent::TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform)
{
LayerComposite* layerComposite = aLayer->AsLayerComposite();
ContainerLayer* container = aLayer->AsContainerLayer();
const FrameMetrics& metrics = container->GetFrameMetrics();
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
const gfx3DMatrix& currentTransform = aLayer->GetTransform();
gfx3DMatrix treeTransform;
// Translate fixed position layers so that they stay in the correct position
// when mScrollOffset and metricsScrollOffset differ.
gfxPoint offset;
gfxSize scaleDiff;
float rootScaleX = aRootTransform.GetXScale(),
rootScaleY = aRootTransform.GetYScale();
// The ratio of layers pixels to device pixels. The Java
// compositor wants to see values in units of device pixels, so we
// map our FrameMetrics values to that space. This is not exposed
// as a FrameMetrics helper because it's a deprecated conversion.
float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY;
gfxPoint scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels());
nsIntPoint scrollOffsetDevPixels(
NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX),
NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY));
if (mIsFirstPaint) {
mContentRect = metrics.mContentRect;
SetFirstPaintViewport(scrollOffsetDevPixels,
1/rootScaleX,
mContentRect,
metrics.mScrollableRect);
mIsFirstPaint = false;
} else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) {
mContentRect = metrics.mContentRect;
SetPageRect(metrics.mScrollableRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ?
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
nsIntRect displayPortDevPixels(
NS_lround(displayPortLayersPixels.x * devPixelRatioX),
NS_lround(displayPortLayersPixels.y * devPixelRatioY),
NS_lround(displayPortLayersPixels.width * devPixelRatioX),
NS_lround(displayPortLayersPixels.height * devPixelRatioY));
displayPortDevPixels.x += scrollOffsetDevPixels.x;
displayPortDevPixels.y += scrollOffsetDevPixels.y;
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
float offsetX = 0, offsetY = 0;
SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated,
mScrollOffset, mXScale, mYScale, fixedLayerMargins,
offsetX, offsetY);
mLayersUpdated = false;
// Apply the render offset
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the desired zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
float tempScaleDiffX = rootScaleX * mXScale;
float tempScaleDiffY = rootScaleY * mYScale;
nsIntPoint metricsScrollOffset(0, 0);
if (metrics.IsScrollable()) {
metricsScrollOffset = scrollOffsetDevPixels;
}
nsIntPoint scrollCompensation(
(mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale,
(mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale);
treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation,
gfxSize(mXScale, mYScale)));
// If the contents can fit entirely within the widget area on a particular
// dimenson, we need to translate and scale so that the fixed layers remain
// within the page boundaries.
if (mContentRect.width * tempScaleDiffX < metrics.mCompositionBounds.width) {
offset.x = -metricsScrollOffset.x;
scaleDiff.width = std::min(1.0f, metrics.mCompositionBounds.width / (float)mContentRect.width);
} else {
offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x,
mContentRect.XMost() - metrics.mCompositionBounds.width / tempScaleDiffX) -
metricsScrollOffset.x;
scaleDiff.width = tempScaleDiffX;
}
if (mContentRect.height * tempScaleDiffY < metrics.mCompositionBounds.height) {
offset.y = -metricsScrollOffset.y;
scaleDiff.height = std::min(1.0f, metrics.mCompositionBounds.height / (float)mContentRect.height);
} else {
offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y,
mContentRect.YMost() - metrics.mCompositionBounds.height / tempScaleDiffY) -
metricsScrollOffset.y;
scaleDiff.height = tempScaleDiffY;
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix computedTransform = treeTransform * currentTransform;
computedTransform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
1.0f/container->GetPostYScale(),
1);
layerComposite->SetShadowTransform(computedTransform);
TransformFixedLayers(aLayer, offset, scaleDiff, fixedLayerMargins);
}
bool
CompositorParent::TransformShadowTree(TimeStamp aCurrentFrame)
{
bool wantNextFrame = false;
Layer* root = mLayerManager->GetRoot();
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
wantNextFrame |= SampleAnimations(root, aCurrentFrame);
const gfx3DMatrix& rootTransform = root->GetTransform();
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i], rootTransform);
}
}
}
return wantNextFrame;
}
void
CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
const TargetConfig& aTargetConfig,
bool isFirstPaint)
{
if (!isFirstPaint && !mIsFirstPaint && mTargetConfig.orientation() != aTargetConfig.orientation()) {
if (!isFirstPaint &&
!mCompositionManager->IsFirstPaint() &&
mCompositionManager->RequiresReorientation(aTargetConfig.orientation())) {
if (mForceCompositionTask != NULL) {
mForceCompositionTask->Cancel();
}
@ -1070,9 +533,7 @@ CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
// race condition.
mLayerManager->UpdateRenderBounds(aTargetConfig.clientBounds());
mTargetConfig = aTargetConfig;
mIsFirstPaint = mIsFirstPaint || isFirstPaint;
mLayersUpdated = true;
mCompositionManager->Updated(isFirstPaint, aTargetConfig);
Layer* root = aLayerTree->GetRoot();
mLayerManager->SetRoot(root);
if (root) {
@ -1085,38 +546,6 @@ CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
}
}
void
CompositorParent::SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom,
const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect);
#endif
}
void
CompositorParent::SetPageRect(const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
CompositorParent::SyncViewportInfo(const nsIntRect& aDisplayPort,
float aDisplayResolution, bool aLayersUpdated,
nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY,
gfx::Margin& aFixedLayerMargins, float& aOffsetX,
float& aOffsetY)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, aDisplayResolution, aLayersUpdated,
aScrollOffset, aScaleX, aScaleY, aFixedLayerMargins,
aOffsetX, aOffsetY);
#endif
}
PLayerTransactionParent*
CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
const uint64_t& aId,
@ -1125,7 +554,7 @@ CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
MOZ_ASSERT(aId == 0);
// mWidget doesn't belong to the compositor thread, so it should be set to
// NULL before returning from this method, to avoid accessing it elsewhere.
// nullptr before returning from this method, to avoid accessing it elsewhere.
nsIntRect rect;
mWidget->GetClientBounds(rect);
@ -1140,25 +569,16 @@ CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
if (!mLayerManager->Initialize()) {
NS_ERROR("Failed to init Compositor");
return NULL;
return nullptr;
}
mCompositionManager = new AsyncCompositionManager(mLayerManager);
*aTextureFactoryIdentifier = mLayerManager->GetTextureFactoryIdentifier();
return new LayerTransactionParent(mLayerManager, this, 0);
// Basic layers compositor not yet implemented
/*} else if (aBackendHint == mozilla::layers::LAYERS_BASIC) {
nsRefPtr<LayerManager> layerManager = new BasicShadowLayerManager(mWidget);
mWidget = NULL;
mLayerManager = layerManager;
LayerManagerComposite* slm = layerManager->AsLayerManagerComposite();
if (!slm) {
return NULL;
}
*aTextureFactoryIdentifier = layerManager->GetTextureFactoryIdentifier();
return new LayerTransactionParent(slm, this, 0); */
} else {
NS_ERROR("Unsupported backend selected for Async Compositor");
return NULL;
return nullptr;
}
}
@ -1216,7 +636,7 @@ CompositorParent* CompositorParent::RemoveCompositor(uint64_t id)
return retval;
}
typedef map<uint64_t, LayerTreeState> LayerTreeMap;
typedef map<uint64_t, CompositorParent::LayerTreeState> LayerTreeMap;
static LayerTreeMap sIndirectLayerTrees;
/*static*/ uint64_t
@ -1360,8 +780,8 @@ UpdateIndirectTree(uint64_t aId, Layer* aRoot, const TargetConfig& aTargetConfig
}
}
static const LayerTreeState*
GetIndirectShadowTree(uint64_t aId)
/* static */ const CompositorParent::LayerTreeState*
CompositorParent::GetIndirectShadowTree(uint64_t aId)
{
LayerTreeMap::const_iterator cit = sIndirectLayerTrees.find(aId);
if (sIndirectLayerTrees.end() == cit) {

View File

@ -21,7 +21,7 @@
#include "mozilla/Monitor.h"
#include "mozilla/TimeStamp.h"
#include "ShadowLayersManager.h"
#include "mozilla/layers/LayerManagerComposite.h"
class nsIWidget;
namespace base {
@ -33,28 +33,10 @@ namespace layers {
class AsyncPanZoomController;
class Layer;
class LayerManager;
class LayerManagerComposite;
class AsyncCompositionManager;
struct TextureFactoryIdentifier;
// Represents (affine) transforms that are calculated from a content view.
struct ViewTransform {
ViewTransform(gfxPoint aTranslation = gfxPoint(),
gfxSize aScale = gfxSize(1, 1))
: mTranslation(aTranslation)
, mScale(aScale)
{}
operator gfx3DMatrix() const
{
return
gfx3DMatrix::ScalingMatrix(mScale.width, mScale.height, 1) *
gfx3DMatrix::Translation(mTranslation.x, mTranslation.y, 0);
}
gfxPoint mTranslation;
gfxSize mScale;
};
class CompositorParent : public PCompositorParent,
public ShadowLayersManager
{
@ -86,12 +68,13 @@ public:
* The information refresh happens because the compositor will call
* SetFirstPaintViewport on the next frame of composition.
*/
void ForceIsFirstPaint() { mIsFirstPaint = true; }
void ForceIsFirstPaint();
void Destroy();
LayerManagerComposite* GetLayerManager() { return mLayerManager; }
void SetTransformation(float aScale, nsIntPoint aScrollOffset);
void AsyncRender();
// Can be called from any thread
@ -167,6 +150,19 @@ public:
static void StartUpWithExistingThread(MessageLoop* aMsgLoop,
PlatformThreadId aThreadID);
struct LayerTreeState {
nsRefPtr<Layer> mRoot;
nsRefPtr<AsyncPanZoomController> mController;
TargetConfig mTargetConfig;
};
/**
* Lookup the indirect shadow tree for |aId| and return it if it
* exists. Otherwise null is returned. This must only be called on
* the compositor thread.
*/
static const LayerTreeState* GetIndirectShadowTree(uint64_t aId);
protected:
virtual PLayerTransactionParent*
AllocPLayerTransaction(const LayersBackend& aBackendHint,
@ -176,16 +172,6 @@ protected:
virtual void ScheduleTask(CancelableTask*, int);
virtual void Composite();
virtual void ComposeToTarget(gfxContext* aTarget);
virtual void SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom, const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect);
virtual void SetPageRect(const gfx::Rect& aCssPageRect);
virtual void SyncViewportInfo(const nsIntRect& aDisplayPort, float aDisplayResolution, bool aLayersUpdated,
nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY,
gfx::Margin& aFixedLayerMargins, float& aOffsetX, float& aOffsetY);
virtual void SyncFrameMetrics(Layer* aLayer, const ViewTransform& aTreeTransform,
const gfxPoint& aScrollOffset, gfx::Margin& aFixedLayerMargins,
float& aOffsetX, float& aOffsetY,
bool aIsFirstPaint, bool aLayersUpdated) {
}
void SetEGLSurfaceSize(int width, int height);
@ -195,16 +181,6 @@ private:
void ResumeCompositionAndResize(int width, int height);
void ForceComposition();
// Sample transforms for layer trees. Return true to request
// another animation frame.
bool TransformShadowTree(TimeStamp aCurrentFrame);
void TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform);
// Return true if an AsyncPanZoomController content transform was
// applied for |aLayer|. *aWantNextFrame is set to true if the
// controller wants another animation frame.
bool ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, Layer* aLayer,
bool* aWantNextFrame);
inline PlatformThreadId CompositorThreadID();
/**
@ -252,22 +228,9 @@ private:
*/
bool CanComposite();
// Platform specific functions
/**
* Recursively applies the given translation to all top-level fixed position
* layers that are descendants of the given layer.
* aScaleDiff is considered to be the scale transformation applied when
* displaying the layers, and is used to make sure the anchor points of
* fixed position layers remain in the same position.
*/
void TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxSize& aScaleDiff,
const gfx::Margin& aFixedLayerMargins);
nsRefPtr<LayerManagerComposite> mLayerManager;
RefPtr<AsyncCompositionManager> mCompositionManager;
nsIWidget* mWidget;
TargetConfig mTargetConfig;
CancelableTask *mCurrentCompositeTask;
TimeStamp mLastCompose;
#ifdef COMPOSITOR_PERFORMANCE_WARNING
@ -275,21 +238,6 @@ private:
#endif
bool mPaused;
float mXScale;
float mYScale;
nsIntPoint mScrollOffset;
nsIntRect mContentRect;
// When this flag is set, the next composition will be the first for a
// particular document (i.e. the document displayed on the screen will change).
// This happens when loading a new page or switching tabs. We notify the
// front-end (e.g. Java on Android) about this so that it take the new page
// size and zoom into account when providing us with the next view transform.
bool mIsFirstPaint;
// This flag is set during a layers update, so that the first composition
// after a layers update has it set. It is cleared after that first composition.
bool mLayersUpdated;
bool mRenderToEGLSurface;
nsIntSize mEGLSurfaceSize;

View File

@ -17,7 +17,7 @@
#include "mozilla/layers/ImageClient.h"
#include "mozilla/layers/LayersTypes.h"
#include "ShadowLayers.h"
using namespace base;
using namespace mozilla::ipc;

View File

@ -10,6 +10,7 @@
#include "CompositableHost.h"
#include "nsTArray.h"
#include "nsXULAppAPI.h"
#include "mozilla/layers/LayerManagerComposite.h"
using namespace base;
using namespace mozilla::ipc;

View File

@ -58,6 +58,7 @@ EXPORTS.gfxipc += [
]
EXPORTS.mozilla.layers += [
'AsyncCompositionManager.h',
'AsyncPanZoomController.h',
'Axis.h',
'CanvasClient.h',

View File

@ -24,6 +24,7 @@
#include "nsSubDocumentFrame.h"
#include "nsViewportFrame.h"
#include "RenderFrameParent.h"
#include "mozilla/layers/LayerManagerComposite.h"
typedef nsContentView::ViewConfig ViewConfig;
using namespace mozilla::dom;

View File

@ -40,6 +40,7 @@ using mozilla::unused;
#include "BasicLayers.h"
#include "LayerManagerOGL.h"
#include "mozilla/layers/LayerManagerComposite.h"
#include "mozilla/layers/AsyncCompositionManager.h"
#include "GLContext.h"
#include "GLContextProvider.h"