mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
Bug 1054510 - Turned on SSE for image resizing. r=jrmuizel
This commit is contained in:
parent
94927c5089
commit
910938cba0
@ -26,18 +26,20 @@
|
||||
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
// SUCH DAMAGE.
|
||||
|
||||
#include "2D.h"
|
||||
#include "convolver.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "skia/SkTypes.h"
|
||||
|
||||
// note: SIMD_SSE2 is not enabled because of bugs, apparently
|
||||
|
||||
#if defined(SIMD_SSE2)
|
||||
#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
|
||||
#if defined(USE_SSE2)
|
||||
#include "convolverSSE2.h"
|
||||
#endif
|
||||
|
||||
using mozilla::gfx::Factory;
|
||||
|
||||
#if defined(SK_CPU_LENDIAN)
|
||||
#define R_OFFSET_IDX 0
|
||||
#define G_OFFSET_IDX 1
|
||||
@ -152,7 +154,7 @@ class CircularRowBuffer {
|
||||
};
|
||||
|
||||
// Convolves horizontally along a single row. The row data is given in
|
||||
// |src_data| and continues for the num_values() of the filter.
|
||||
// |src_data| and continues for the [begin, end) of the filter.
|
||||
template<bool has_alpha>
|
||||
// This function is miscompiled with gcc 4.5 with pgo. See bug 827946.
|
||||
#if defined(__GNUC__) && defined(MOZ_GCC_VERSION_AT_LEAST)
|
||||
@ -161,11 +163,11 @@ __attribute__((optimize("-O1")))
|
||||
#endif
|
||||
#endif
|
||||
void ConvolveHorizontally(const unsigned char* src_data,
|
||||
int begin, int end,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row) {
|
||||
// Loop over each pixel on this row in the output image.
|
||||
int num_values = filter.num_values();
|
||||
for (int out_x = 0; out_x < num_values; out_x++) {
|
||||
for (int out_x = begin; out_x < end; out_x++) {
|
||||
// Get the filter that determines the current output pixel.
|
||||
int filter_offset, filter_length;
|
||||
const ConvolutionFilter1D::Fixed* filter_values =
|
||||
@ -206,18 +208,17 @@ void ConvolveHorizontally(const unsigned char* src_data,
|
||||
// Does vertical convolution to produce one output row. The filter values and
|
||||
// length are given in the first two parameters. These are applied to each
|
||||
// of the rows pointed to in the |source_data_rows| array, with each row
|
||||
// being |pixel_width| wide.
|
||||
// being |end - begin| wide.
|
||||
//
|
||||
// The output must have room for |pixel_width * 4| bytes.
|
||||
// The output must have room for |(end - begin) * 4| bytes.
|
||||
template<bool has_alpha>
|
||||
void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
int filter_length,
|
||||
unsigned char* const* source_data_rows,
|
||||
int pixel_width,
|
||||
unsigned char* out_row) {
|
||||
int begin, int end, unsigned char* out_row) {
|
||||
// We go through each column in the output and do a vertical convolution,
|
||||
// generating one output pixel each time.
|
||||
for (int out_x = 0; out_x < pixel_width; out_x++) {
|
||||
for (int out_x = begin; out_x < end; out_x++) {
|
||||
// Compute the number of bytes over in each row that the current column
|
||||
// we're convolving starts at. The pixel will cover the next 4 bytes.
|
||||
int byte_offset = out_x * 4;
|
||||
@ -272,433 +273,6 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Convolves horizontally along a single row. The row data is given in
|
||||
// |src_data| and continues for the num_values() of the filter.
|
||||
void ConvolveHorizontally_SSE2(const unsigned char* src_data,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row) {
|
||||
#if defined(SIMD_SSE2)
|
||||
int num_values = filter.num_values();
|
||||
|
||||
int filter_offset, filter_length;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i mask[4];
|
||||
// |mask| will be used to decimate all extra filter coefficients that are
|
||||
// loaded by SIMD when |filter_length| is not divisible by 4.
|
||||
// mask[0] is not used in following algorithm.
|
||||
mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
||||
mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
||||
mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
||||
|
||||
// Output one pixel each iteration, calculating all channels (RGBA) together.
|
||||
for (int out_x = 0; out_x < num_values; out_x++) {
|
||||
const ConvolutionFilter1D::Fixed* filter_values =
|
||||
filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
||||
|
||||
__m128i accum = _mm_setzero_si128();
|
||||
|
||||
// Compute the first pixel in this row that the filter affects. It will
|
||||
// touch |filter_length| pixels (4 bytes each) after this.
|
||||
const __m128i* row_to_filter =
|
||||
reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
||||
|
||||
// We will load and accumulate with four coefficients per iteration.
|
||||
for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
||||
|
||||
// Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
||||
__m128i coeff, coeff16;
|
||||
// [16] xx xx xx xx c3 c2 c1 c0
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// [16] xx xx xx xx c1 c1 c0 c0
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
// [16] c1 c1 c1 c1 c0 c0 c0 c0
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
|
||||
// Load four pixels => unpack the first two pixels to 16 bits =>
|
||||
// multiply with coefficients => accumulate the convolution result.
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src8 = _mm_loadu_si128(row_to_filter);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0*c0 b0*c0 g0*c0 r0*c0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
// [32] a1*c1 b1*c1 g1*c1 r1*c1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
// Duplicate 3rd and 4th coefficients for all channels =>
|
||||
// unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
||||
// => accumulate the convolution results.
|
||||
// [16] xx xx xx xx c3 c3 c2 c2
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
// [16] c3 c3 c3 c3 c2 c2 c2 c2
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
// [16] a3 g3 b3 r3 a2 g2 b2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2*c2 b2*c2 g2*c2 r2*c2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
// [32] a3*c3 b3*c3 g3*c3 r3*c3
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
// Advance the pixel and coefficients pointers.
|
||||
row_to_filter += 1;
|
||||
filter_values += 4;
|
||||
}
|
||||
|
||||
// When |filter_length| is not divisible by 4, we need to decimate some of
|
||||
// the filter coefficient that was loaded incorrectly to zero; Other than
|
||||
// that the algorithm is same with above, exceot that the 4th pixel will be
|
||||
// always absent.
|
||||
int r = filter_length&3;
|
||||
if (r) {
|
||||
// Note: filter_values must be padded to align_up(filter_offset, 8).
|
||||
__m128i coeff, coeff16;
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// Mask out extra filter taps.
|
||||
coeff = _mm_and_si128(coeff, mask[r]);
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
|
||||
// Note: line buffer must be padded to align_up(filter_offset, 16).
|
||||
// We resolve this by use C-version for the last horizontal line.
|
||||
__m128i src8 = _mm_loadu_si128(row_to_filter);
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
}
|
||||
|
||||
// Shift right for fixed point implementation.
|
||||
accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
|
||||
|
||||
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
||||
accum = _mm_packs_epi32(accum, zero);
|
||||
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
||||
accum = _mm_packus_epi16(accum, zero);
|
||||
|
||||
// Store the pixel value of 32 bits.
|
||||
*(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
||||
out_row += 4;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Convolves horizontally along four rows. The row data is given in
|
||||
// |src_data| and continues for the num_values() of the filter.
|
||||
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
||||
// refer to that function for detailed comments.
|
||||
void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row[4]) {
|
||||
#if defined(SIMD_SSE2)
|
||||
int num_values = filter.num_values();
|
||||
|
||||
int filter_offset, filter_length;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i mask[4];
|
||||
// |mask| will be used to decimate all extra filter coefficients that are
|
||||
// loaded by SIMD when |filter_length| is not divisible by 4.
|
||||
// mask[0] is not used in following algorithm.
|
||||
mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
||||
mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
||||
mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
||||
|
||||
// Output one pixel each iteration, calculating all channels (RGBA) together.
|
||||
for (int out_x = 0; out_x < num_values; out_x++) {
|
||||
const ConvolutionFilter1D::Fixed* filter_values =
|
||||
filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
||||
|
||||
// four pixels in a column per iteration.
|
||||
__m128i accum0 = _mm_setzero_si128();
|
||||
__m128i accum1 = _mm_setzero_si128();
|
||||
__m128i accum2 = _mm_setzero_si128();
|
||||
__m128i accum3 = _mm_setzero_si128();
|
||||
int start = (filter_offset<<2);
|
||||
// We will load and accumulate with four coefficients per iteration.
|
||||
for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
||||
__m128i coeff, coeff16lo, coeff16hi;
|
||||
// [16] xx xx xx xx c3 c2 c1 c0
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// [16] xx xx xx xx c1 c1 c0 c0
|
||||
coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
// [16] c1 c1 c1 c1 c0 c0 c0 c0
|
||||
coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
||||
// [16] xx xx xx xx c3 c3 c2 c2
|
||||
coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
// [16] c3 c3 c3 c3 c2 c2 c2 c2
|
||||
coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
||||
|
||||
__m128i src8, src16, mul_hi, mul_lo, t;
|
||||
|
||||
#define ITERATION(src, accum) \
|
||||
src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
||||
src16 = _mm_unpacklo_epi8(src8, zero); \
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
src16 = _mm_unpackhi_epi8(src8, zero); \
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t)
|
||||
|
||||
ITERATION(src_data[0] + start, accum0);
|
||||
ITERATION(src_data[1] + start, accum1);
|
||||
ITERATION(src_data[2] + start, accum2);
|
||||
ITERATION(src_data[3] + start, accum3);
|
||||
|
||||
start += 16;
|
||||
filter_values += 4;
|
||||
}
|
||||
|
||||
int r = filter_length & 3;
|
||||
if (r) {
|
||||
// Note: filter_values must be padded to align_up(filter_offset, 8);
|
||||
__m128i coeff;
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// Mask out extra filter taps.
|
||||
coeff = _mm_and_si128(coeff, mask[r]);
|
||||
|
||||
__m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
/* c1 c1 c1 c1 c0 c0 c0 c0 */
|
||||
coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
||||
__m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
||||
|
||||
__m128i src8, src16, mul_hi, mul_lo, t;
|
||||
|
||||
ITERATION(src_data[0] + start, accum0);
|
||||
ITERATION(src_data[1] + start, accum1);
|
||||
ITERATION(src_data[2] + start, accum2);
|
||||
ITERATION(src_data[3] + start, accum3);
|
||||
}
|
||||
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum0 = _mm_packs_epi32(accum0, zero);
|
||||
accum0 = _mm_packus_epi16(accum0, zero);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_packs_epi32(accum1, zero);
|
||||
accum1 = _mm_packus_epi16(accum1, zero);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_packs_epi32(accum2, zero);
|
||||
accum2 = _mm_packus_epi16(accum2, zero);
|
||||
accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
||||
accum3 = _mm_packs_epi32(accum3, zero);
|
||||
accum3 = _mm_packus_epi16(accum3, zero);
|
||||
|
||||
*(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
||||
*(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
||||
*(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
||||
*(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
||||
|
||||
out_row[0] += 4;
|
||||
out_row[1] += 4;
|
||||
out_row[2] += 4;
|
||||
out_row[3] += 4;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Does vertical convolution to produce one output row. The filter values and
|
||||
// length are given in the first two parameters. These are applied to each
|
||||
// of the rows pointed to in the |source_data_rows| array, with each row
|
||||
// being |pixel_width| wide.
|
||||
//
|
||||
// The output must have room for |pixel_width * 4| bytes.
|
||||
template<bool has_alpha>
|
||||
void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
int filter_length,
|
||||
unsigned char* const* source_data_rows,
|
||||
int pixel_width,
|
||||
unsigned char* out_row) {
|
||||
#if defined(SIMD_SSE2)
|
||||
int width = pixel_width & ~3;
|
||||
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i accum0, accum1, accum2, accum3, coeff16;
|
||||
const __m128i* src;
|
||||
// Output four pixels per iteration (16 bytes).
|
||||
for (int out_x = 0; out_x < width; out_x += 4) {
|
||||
|
||||
// Accumulated result for each pixel. 32 bits per RGBA channel.
|
||||
accum0 = _mm_setzero_si128();
|
||||
accum1 = _mm_setzero_si128();
|
||||
accum2 = _mm_setzero_si128();
|
||||
accum3 = _mm_setzero_si128();
|
||||
|
||||
// Convolve with one filter coefficient per iteration.
|
||||
for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
||||
|
||||
// Duplicate the filter coefficient 8 times.
|
||||
// [16] cj cj cj cj cj cj cj cj
|
||||
coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
||||
|
||||
// Load four pixels (16 bytes) together.
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
src = reinterpret_cast<const __m128i*>(
|
||||
&source_data_rows[filter_y][out_x << 2]);
|
||||
__m128i src8 = _mm_loadu_si128(src);
|
||||
|
||||
// Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
||||
// multiply with current coefficient => accumulate the result.
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0 b0 g0 r0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum0 = _mm_add_epi32(accum0, t);
|
||||
// [32] a1 b1 g1 r1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum1 = _mm_add_epi32(accum1, t);
|
||||
|
||||
// Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
||||
// multiply with current coefficient => accumulate the result.
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2 b2 g2 r2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum2 = _mm_add_epi32(accum2, t);
|
||||
// [32] a3 b3 g3 r3
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum3 = _mm_add_epi32(accum3, t);
|
||||
}
|
||||
|
||||
// Shift right for fixed point implementation.
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
||||
|
||||
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packs_epi32(accum0, accum1);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
accum2 = _mm_packs_epi32(accum2, accum3);
|
||||
|
||||
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packus_epi16(accum0, accum2);
|
||||
|
||||
if (has_alpha) {
|
||||
// Compute the max(ri, gi, bi) for each pixel.
|
||||
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
||||
__m128i a = _mm_srli_epi32(accum0, 8);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
__m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
||||
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
||||
a = _mm_srli_epi32(accum0, 16);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
b = _mm_max_epu8(a, b); // Max of r and g and b.
|
||||
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
||||
b = _mm_slli_epi32(b, 24);
|
||||
|
||||
// Make sure the value of alpha channel is always larger than maximum
|
||||
// value of color channels.
|
||||
accum0 = _mm_max_epu8(b, accum0);
|
||||
} else {
|
||||
// Set value of alpha channels to 0xFF.
|
||||
__m128i mask = _mm_set1_epi32(0xff000000);
|
||||
accum0 = _mm_or_si128(accum0, mask);
|
||||
}
|
||||
|
||||
// Store the convolution result (16 bytes) and advance the pixel pointers.
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
||||
out_row += 16;
|
||||
}
|
||||
|
||||
// When the width of the output is not divisible by 4, We need to save one
|
||||
// pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
||||
if (pixel_width & 3) {
|
||||
accum0 = _mm_setzero_si128();
|
||||
accum1 = _mm_setzero_si128();
|
||||
accum2 = _mm_setzero_si128();
|
||||
for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
||||
coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
src = reinterpret_cast<const __m128i*>(
|
||||
&source_data_rows[filter_y][width<<2]);
|
||||
__m128i src8 = _mm_loadu_si128(src);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0 b0 g0 r0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum0 = _mm_add_epi32(accum0, t);
|
||||
// [32] a1 b1 g1 r1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum1 = _mm_add_epi32(accum1, t);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2 b2 g2 r2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum2 = _mm_add_epi32(accum2, t);
|
||||
}
|
||||
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packs_epi32(accum0, accum1);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
accum2 = _mm_packs_epi32(accum2, zero);
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packus_epi16(accum0, accum2);
|
||||
if (has_alpha) {
|
||||
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
||||
__m128i a = _mm_srli_epi32(accum0, 8);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
__m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
||||
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
||||
a = _mm_srli_epi32(accum0, 16);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
b = _mm_max_epu8(a, b); // Max of r and g and b.
|
||||
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
||||
b = _mm_slli_epi32(b, 24);
|
||||
accum0 = _mm_max_epu8(b, accum0);
|
||||
} else {
|
||||
__m128i mask = _mm_set1_epi32(0xff000000);
|
||||
accum0 = _mm_or_si128(accum0, mask);
|
||||
}
|
||||
|
||||
for (int out_x = width; out_x < pixel_width; out_x++) {
|
||||
*(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
||||
accum0 = _mm_srli_si128(accum0, 4);
|
||||
out_row += 4;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// ConvolutionFilter1D ---------------------------------------------------------
|
||||
@ -770,14 +344,16 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
||||
const ConvolutionFilter1D& filter_x,
|
||||
const ConvolutionFilter1D& filter_y,
|
||||
int output_byte_row_stride,
|
||||
unsigned char* output,
|
||||
bool use_sse2) {
|
||||
#if !defined(SIMD_SSE2)
|
||||
unsigned char* output) {
|
||||
bool use_sse2 = Factory::HasSSE2();
|
||||
|
||||
#if !defined(USE_SSE2)
|
||||
// Even we have runtime support for SSE2 instructions, since the binary
|
||||
// was not built with SSE2 support, we had to fallback to C version.
|
||||
use_sse2 = false;
|
||||
#endif
|
||||
|
||||
|
||||
int max_y_filter_size = filter_y.max_filter();
|
||||
|
||||
// The next row in the input that we will generate a horizontally
|
||||
@ -810,6 +386,7 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
||||
// convolutions to run each subsequent vertical convolution.
|
||||
SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
|
||||
int num_output_rows = filter_y.num_values();
|
||||
int pixel_width = filter_x.num_values();
|
||||
|
||||
// We need to check which is the last line to convolve before we advance 4
|
||||
// lines in one iteration.
|
||||
@ -823,47 +400,56 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
||||
|
||||
// Generate output rows until we have enough to run the current filter.
|
||||
if (use_sse2) {
|
||||
#if defined(USE_SSE2)
|
||||
// We don't want to process too much rows in batches of 4 because
|
||||
// we can go out-of-bounds at the end
|
||||
while (next_x_row < filter_offset + filter_length) {
|
||||
if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
|
||||
if (next_x_row + 3 < last_filter_offset + last_filter_length - 3) {
|
||||
const unsigned char* src[4];
|
||||
unsigned char* out_row[4];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
|
||||
out_row[i] = row_buffer.AdvanceRow();
|
||||
}
|
||||
ConvolveHorizontally4_SSE2(src, filter_x, out_row);
|
||||
ConvolveHorizontally4_SSE2(src, 0, pixel_width, filter_x, out_row);
|
||||
next_x_row += 4;
|
||||
} else {
|
||||
// For the last row, SSE2 load possibly to access data beyond the
|
||||
// image area. therefore we use C version here.
|
||||
if (next_x_row == last_filter_offset + last_filter_length - 1) {
|
||||
unsigned char* buffer = row_buffer.AdvanceRow();
|
||||
|
||||
// For last rows, SSE2 load possibly to access data beyond the
|
||||
// image area. therefore we use cobined C+SSE version here
|
||||
int simd_width = pixel_width & ~3;
|
||||
if (simd_width) {
|
||||
ConvolveHorizontally_SSE2(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
0, simd_width, filter_x, buffer);
|
||||
}
|
||||
|
||||
if (pixel_width > simd_width) {
|
||||
if (source_has_alpha) {
|
||||
ConvolveHorizontally<true>(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
filter_x, row_buffer.AdvanceRow());
|
||||
simd_width, pixel_width, filter_x, buffer);
|
||||
} else {
|
||||
ConvolveHorizontally<false>(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
filter_x, row_buffer.AdvanceRow());
|
||||
simd_width, pixel_width, filter_x, buffer);
|
||||
}
|
||||
} else {
|
||||
ConvolveHorizontally_SSE2(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
filter_x, row_buffer.AdvanceRow());
|
||||
}
|
||||
next_x_row++;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
while (next_x_row < filter_offset + filter_length) {
|
||||
if (source_has_alpha) {
|
||||
ConvolveHorizontally<true>(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
filter_x, row_buffer.AdvanceRow());
|
||||
0, pixel_width, filter_x, row_buffer.AdvanceRow());
|
||||
} else {
|
||||
ConvolveHorizontally<false>(
|
||||
&source_data[next_x_row * source_byte_row_stride],
|
||||
filter_x, row_buffer.AdvanceRow());
|
||||
0, pixel_width, filter_x, row_buffer.AdvanceRow());
|
||||
}
|
||||
next_x_row++;
|
||||
}
|
||||
@ -882,26 +468,23 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
||||
unsigned char* const* first_row_for_filter =
|
||||
&rows_to_convolve[filter_offset - first_row_in_circular_buffer];
|
||||
|
||||
int processed = 0;
|
||||
#if defined(USE_SSE2)
|
||||
int simd_width = pixel_width & ~3;
|
||||
if (use_sse2 && simd_width) {
|
||||
ConvolveVertically_SSE2(filter_values, filter_length, first_row_for_filter,
|
||||
0, simd_width, cur_output_row, source_has_alpha);
|
||||
processed = simd_width;
|
||||
}
|
||||
#endif
|
||||
if (source_has_alpha) {
|
||||
if (use_sse2) {
|
||||
ConvolveVertically_SSE2<true>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
filter_x.num_values(), cur_output_row);
|
||||
} else {
|
||||
ConvolveVertically<true>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
filter_x.num_values(), cur_output_row);
|
||||
}
|
||||
ConvolveVertically<true>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
processed, pixel_width, cur_output_row);
|
||||
} else {
|
||||
if (use_sse2) {
|
||||
ConvolveVertically_SSE2<false>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
filter_x.num_values(), cur_output_row);
|
||||
} else {
|
||||
ConvolveVertically<false>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
filter_x.num_values(), cur_output_row);
|
||||
}
|
||||
ConvolveVertically<false>(filter_values, filter_length,
|
||||
first_row_for_filter,
|
||||
processed, pixel_width, cur_output_row);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -184,8 +184,8 @@ void BGRAConvolve2D(const unsigned char* source_data,
|
||||
const ConvolutionFilter1D& xfilter,
|
||||
const ConvolutionFilter1D& yfilter,
|
||||
int output_byte_row_stride,
|
||||
unsigned char* output,
|
||||
bool use_sse2);
|
||||
unsigned char* output);
|
||||
|
||||
} // namespace skia
|
||||
|
||||
#endif // SKIA_EXT_CONVOLVER_H_
|
||||
|
476
gfx/2d/convolverSSE2.cpp
Normal file
476
gfx/2d/convolverSSE2.cpp
Normal file
@ -0,0 +1,476 @@
|
||||
// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in
|
||||
// the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google, Inc. nor the names of its contributors
|
||||
// may be used to endorse or promote products derived from this
|
||||
// software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
// SUCH DAMAGE.
|
||||
|
||||
#include "convolver.h"
|
||||
#include <algorithm>
|
||||
#include "skia/SkTypes.h"
|
||||
|
||||
#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
|
||||
|
||||
namespace skia {
|
||||
|
||||
// Convolves horizontally along a single row. The row data is given in
|
||||
// |src_data| and continues for the [begin, end) of the filter.
|
||||
void ConvolveHorizontally_SSE2(const unsigned char* src_data,
|
||||
int begin, int end,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row) {
|
||||
|
||||
int filter_offset, filter_length;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i mask[3];
|
||||
// |mask| will be used to decimate all extra filter coefficients that are
|
||||
// loaded by SIMD when |filter_length| is not divisible by 4.
|
||||
mask[0] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
||||
mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
||||
mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
||||
|
||||
// This buffer is used for tails
|
||||
__m128i buffer;
|
||||
|
||||
// Output one pixel each iteration, calculating all channels (RGBA) together.
|
||||
for (int out_x = begin; out_x < end; out_x++) {
|
||||
const ConvolutionFilter1D::Fixed* filter_values =
|
||||
filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
||||
|
||||
__m128i accum = _mm_setzero_si128();
|
||||
|
||||
// Compute the first pixel in this row that the filter affects. It will
|
||||
// touch |filter_length| pixels (4 bytes each) after this.
|
||||
const __m128i* row_to_filter =
|
||||
reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
||||
|
||||
// We will load and accumulate with four coefficients per iteration.
|
||||
for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
||||
|
||||
// Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
||||
__m128i coeff, coeff16;
|
||||
// [16] xx xx xx xx c3 c2 c1 c0
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// [16] xx xx xx xx c1 c1 c0 c0
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
// [16] c1 c1 c1 c1 c0 c0 c0 c0
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
|
||||
// Load four pixels => unpack the first two pixels to 16 bits =>
|
||||
// multiply with coefficients => accumulate the convolution result.
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src8 = _mm_loadu_si128(row_to_filter);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0*c0 b0*c0 g0*c0 r0*c0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
// [32] a1*c1 b1*c1 g1*c1 r1*c1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
// Duplicate 3rd and 4th coefficients for all channels =>
|
||||
// unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
||||
// => accumulate the convolution results.
|
||||
// [16] xx xx xx xx c3 c3 c2 c2
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
// [16] c3 c3 c3 c3 c2 c2 c2 c2
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
// [16] a3 g3 b3 r3 a2 g2 b2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2*c2 b2*c2 g2*c2 r2*c2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
// [32] a3*c3 b3*c3 g3*c3 r3*c3
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
// Advance the pixel and coefficients pointers.
|
||||
row_to_filter += 1;
|
||||
filter_values += 4;
|
||||
}
|
||||
|
||||
// When |filter_length| is not divisible by 4, we need to decimate some of
|
||||
// the filter coefficient that was loaded incorrectly to zero; Other than
|
||||
// that the algorithm is same with above, except that the 4th pixel will be
|
||||
// always absent.
|
||||
int r = filter_length & 3;
|
||||
if (r) {
|
||||
memcpy(&buffer, row_to_filter, r * 4);
|
||||
// Note: filter_values must be padded to align_up(filter_offset, 8).
|
||||
__m128i coeff, coeff16;
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// Mask out extra filter taps.
|
||||
coeff = _mm_and_si128(coeff, mask[r-1]);
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
|
||||
// Note: line buffer must be padded to align_up(filter_offset, 16).
|
||||
// We resolve this by temporary buffer
|
||||
__m128i src8 = _mm_loadu_si128(&buffer);
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum = _mm_add_epi32(accum, t);
|
||||
}
|
||||
|
||||
// Shift right for fixed point implementation.
|
||||
accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
|
||||
|
||||
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
||||
accum = _mm_packs_epi32(accum, zero);
|
||||
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
||||
accum = _mm_packus_epi16(accum, zero);
|
||||
|
||||
// Store the pixel value of 32 bits.
|
||||
*(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
||||
out_row += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Convolves horizontally along four rows. The row data is given in
|
||||
// |src_data| and continues for the [begin, end) of the filter.
|
||||
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
||||
// refer to that function for detailed comments.
|
||||
void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
|
||||
int begin, int end,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row[4]) {
|
||||
int filter_offset, filter_length;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i mask[3];
|
||||
// |mask| will be used to decimate all extra filter coefficients that are
|
||||
// loaded by SIMD when |filter_length| is not divisible by 4.
|
||||
mask[0] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
||||
mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
||||
mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
||||
|
||||
// Output one pixel each iteration, calculating all channels (RGBA) together.
|
||||
for (int out_x = begin; out_x < end; out_x++) {
|
||||
const ConvolutionFilter1D::Fixed* filter_values =
|
||||
filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
||||
|
||||
// four pixels in a column per iteration.
|
||||
__m128i accum0 = _mm_setzero_si128();
|
||||
__m128i accum1 = _mm_setzero_si128();
|
||||
__m128i accum2 = _mm_setzero_si128();
|
||||
__m128i accum3 = _mm_setzero_si128();
|
||||
int start = (filter_offset<<2);
|
||||
// We will load and accumulate with four coefficients per iteration.
|
||||
for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
||||
__m128i coeff, coeff16lo, coeff16hi;
|
||||
// [16] xx xx xx xx c3 c2 c1 c0
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// [16] xx xx xx xx c1 c1 c0 c0
|
||||
coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
// [16] c1 c1 c1 c1 c0 c0 c0 c0
|
||||
coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
||||
// [16] xx xx xx xx c3 c3 c2 c2
|
||||
coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
// [16] c3 c3 c3 c3 c2 c2 c2 c2
|
||||
coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
||||
|
||||
__m128i src8, src16, mul_hi, mul_lo, t;
|
||||
|
||||
#define ITERATION(src, accum) \
|
||||
src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
||||
src16 = _mm_unpacklo_epi8(src8, zero); \
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
src16 = _mm_unpackhi_epi8(src8, zero); \
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t); \
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
||||
accum = _mm_add_epi32(accum, t)
|
||||
|
||||
ITERATION(src_data[0] + start, accum0);
|
||||
ITERATION(src_data[1] + start, accum1);
|
||||
ITERATION(src_data[2] + start, accum2);
|
||||
ITERATION(src_data[3] + start, accum3);
|
||||
|
||||
start += 16;
|
||||
filter_values += 4;
|
||||
}
|
||||
|
||||
int r = filter_length & 3;
|
||||
if (r) {
|
||||
// Note: filter_values must be padded to align_up(filter_offset, 8);
|
||||
__m128i coeff;
|
||||
coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
||||
// Mask out extra filter taps.
|
||||
coeff = _mm_and_si128(coeff, mask[r-1]);
|
||||
|
||||
__m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
||||
/* c1 c1 c1 c1 c0 c0 c0 c0 */
|
||||
coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
||||
__m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
||||
|
||||
__m128i src8, src16, mul_hi, mul_lo, t;
|
||||
|
||||
ITERATION(src_data[0] + start, accum0);
|
||||
ITERATION(src_data[1] + start, accum1);
|
||||
ITERATION(src_data[2] + start, accum2);
|
||||
ITERATION(src_data[3] + start, accum3);
|
||||
}
|
||||
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum0 = _mm_packs_epi32(accum0, zero);
|
||||
accum0 = _mm_packus_epi16(accum0, zero);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_packs_epi32(accum1, zero);
|
||||
accum1 = _mm_packus_epi16(accum1, zero);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_packs_epi32(accum2, zero);
|
||||
accum2 = _mm_packus_epi16(accum2, zero);
|
||||
accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
||||
accum3 = _mm_packs_epi32(accum3, zero);
|
||||
accum3 = _mm_packus_epi16(accum3, zero);
|
||||
|
||||
*(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
||||
*(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
||||
*(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
||||
*(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
||||
|
||||
out_row[0] += 4;
|
||||
out_row[1] += 4;
|
||||
out_row[2] += 4;
|
||||
out_row[3] += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Does vertical convolution to produce one output row. The filter values and
|
||||
// length are given in the first two parameters. These are applied to each
|
||||
// of the rows pointed to in the |source_data_rows| array, with each row
|
||||
// being |end - begin| wide.
|
||||
//
|
||||
// The output must have room for |(end - begin) * 4| bytes.
|
||||
template<bool has_alpha>
|
||||
void ConvolveVertically_SSE2_impl(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
int filter_length,
|
||||
unsigned char* const* source_data_rows,
|
||||
int begin, int end,
|
||||
unsigned char* out_row) {
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i accum0, accum1, accum2, accum3, coeff16;
|
||||
const __m128i* src;
|
||||
int out_x;
|
||||
// Output four pixels per iteration (16 bytes).
|
||||
for (out_x = begin; out_x + 3 < end; out_x += 4) {
|
||||
|
||||
// Accumulated result for each pixel. 32 bits per RGBA channel.
|
||||
accum0 = _mm_setzero_si128();
|
||||
accum1 = _mm_setzero_si128();
|
||||
accum2 = _mm_setzero_si128();
|
||||
accum3 = _mm_setzero_si128();
|
||||
|
||||
// Convolve with one filter coefficient per iteration.
|
||||
for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
||||
|
||||
// Duplicate the filter coefficient 8 times.
|
||||
// [16] cj cj cj cj cj cj cj cj
|
||||
coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
||||
|
||||
// Load four pixels (16 bytes) together.
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
src = reinterpret_cast<const __m128i*>(
|
||||
&source_data_rows[filter_y][out_x << 2]);
|
||||
__m128i src8 = _mm_loadu_si128(src);
|
||||
|
||||
// Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
||||
// multiply with current coefficient => accumulate the result.
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0 b0 g0 r0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum0 = _mm_add_epi32(accum0, t);
|
||||
// [32] a1 b1 g1 r1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum1 = _mm_add_epi32(accum1, t);
|
||||
|
||||
// Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
||||
// multiply with current coefficient => accumulate the result.
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2 b2 g2 r2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum2 = _mm_add_epi32(accum2, t);
|
||||
// [32] a3 b3 g3 r3
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum3 = _mm_add_epi32(accum3, t);
|
||||
}
|
||||
|
||||
// Shift right for fixed point implementation.
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
|
||||
|
||||
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packs_epi32(accum0, accum1);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
accum2 = _mm_packs_epi32(accum2, accum3);
|
||||
|
||||
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packus_epi16(accum0, accum2);
|
||||
|
||||
if (has_alpha) {
|
||||
// Compute the max(ri, gi, bi) for each pixel.
|
||||
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
||||
__m128i a = _mm_srli_epi32(accum0, 8);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
__m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
||||
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
||||
a = _mm_srli_epi32(accum0, 16);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
b = _mm_max_epu8(a, b); // Max of r and g and b.
|
||||
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
||||
b = _mm_slli_epi32(b, 24);
|
||||
|
||||
// Make sure the value of alpha channel is always larger than maximum
|
||||
// value of color channels.
|
||||
accum0 = _mm_max_epu8(b, accum0);
|
||||
} else {
|
||||
// Set value of alpha channels to 0xFF.
|
||||
__m128i mask = _mm_set1_epi32(0xff000000);
|
||||
accum0 = _mm_or_si128(accum0, mask);
|
||||
}
|
||||
|
||||
// Store the convolution result (16 bytes) and advance the pixel pointers.
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
||||
out_row += 16;
|
||||
}
|
||||
|
||||
// When the width of the output is not divisible by 4, We need to save one
|
||||
// pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
||||
int r = end - out_x;
|
||||
if (r > 0) {
|
||||
// Since accum3 is never used here, we'll use it as a buffer
|
||||
__m128i *buffer = &accum3;
|
||||
|
||||
accum0 = _mm_setzero_si128();
|
||||
accum1 = _mm_setzero_si128();
|
||||
accum2 = _mm_setzero_si128();
|
||||
for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
||||
coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
src = reinterpret_cast<const __m128i*>(
|
||||
&source_data_rows[filter_y][out_x * 4]);
|
||||
memcpy(buffer, src, r * 4);
|
||||
__m128i src8 = _mm_loadu_si128(buffer);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
__m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
||||
__m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
__m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a0 b0 g0 r0
|
||||
__m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum0 = _mm_add_epi32(accum0, t);
|
||||
// [32] a1 b1 g1 r1
|
||||
t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
||||
accum1 = _mm_add_epi32(accum1, t);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
src16 = _mm_unpackhi_epi8(src8, zero);
|
||||
mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
||||
mul_lo = _mm_mullo_epi16(src16, coeff16);
|
||||
// [32] a2 b2 g2 r2
|
||||
t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
||||
accum2 = _mm_add_epi32(accum2, t);
|
||||
}
|
||||
|
||||
accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
|
||||
accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
|
||||
accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
|
||||
// [16] a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packs_epi32(accum0, accum1);
|
||||
// [16] a3 b3 g3 r3 a2 b2 g2 r2
|
||||
accum2 = _mm_packs_epi32(accum2, zero);
|
||||
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
||||
accum0 = _mm_packus_epi16(accum0, accum2);
|
||||
if (has_alpha) {
|
||||
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
||||
__m128i a = _mm_srli_epi32(accum0, 8);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
__m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
||||
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
||||
a = _mm_srli_epi32(accum0, 16);
|
||||
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
||||
b = _mm_max_epu8(a, b); // Max of r and g and b.
|
||||
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
||||
b = _mm_slli_epi32(b, 24);
|
||||
accum0 = _mm_max_epu8(b, accum0);
|
||||
} else {
|
||||
__m128i mask = _mm_set1_epi32(0xff000000);
|
||||
accum0 = _mm_or_si128(accum0, mask);
|
||||
}
|
||||
|
||||
for (; out_x < end; out_x++) {
|
||||
*(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
||||
accum0 = _mm_srli_si128(accum0, 4);
|
||||
out_row += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
int filter_length,
|
||||
unsigned char* const* source_data_rows,
|
||||
int begin, int end,
|
||||
unsigned char* out_row, bool has_alpha) {
|
||||
if (has_alpha) {
|
||||
ConvolveVertically_SSE2_impl<true>(filter_values, filter_length,
|
||||
source_data_rows, begin, end, out_row);
|
||||
} else {
|
||||
ConvolveVertically_SSE2_impl<false>(filter_values, filter_length,
|
||||
source_data_rows, begin, end, out_row);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace skia
|
70
gfx/2d/convolverSSE2.h
Normal file
70
gfx/2d/convolverSSE2.h
Normal file
@ -0,0 +1,70 @@
|
||||
// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in
|
||||
// the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google, Inc. nor the names of its contributors
|
||||
// may be used to endorse or promote products derived from this
|
||||
// software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
// SUCH DAMAGE.
|
||||
|
||||
#ifndef SKIA_EXT_CONVOLVER_SSE_H_
|
||||
#define SKIA_EXT_CONVOLVER_SSE_H_
|
||||
|
||||
#include "convolver.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "skia/SkTypes.h"
|
||||
|
||||
namespace skia {
|
||||
|
||||
// Convolves horizontally along a single row. The row data is given in
|
||||
// |src_data| and continues for the [begin, end) of the filter.
|
||||
void ConvolveHorizontally_SSE2(const unsigned char* src_data,
|
||||
int begin, int end,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row);
|
||||
|
||||
// Convolves horizontally along four rows. The row data is given in
|
||||
// |src_data| and continues for the [begin, end) of the filter.
|
||||
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
||||
// refer to that function for detailed comments.
|
||||
void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
|
||||
int begin, int end,
|
||||
const ConvolutionFilter1D& filter,
|
||||
unsigned char* out_row[4]);
|
||||
|
||||
// Does vertical convolution to produce one output row. The filter values and
|
||||
// length are given in the first two parameters. These are applied to each
|
||||
// of the rows pointed to in the |source_data_rows| array, with each row
|
||||
// being |pixel_width| wide.
|
||||
//
|
||||
// The output must have room for |pixel_width * 4| bytes.
|
||||
void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
|
||||
int filter_length,
|
||||
unsigned char* const* source_data_rows,
|
||||
int begin, int end,
|
||||
unsigned char* out_row, bool has_alpha);
|
||||
|
||||
} // namespace skia
|
||||
|
||||
#endif // SKIA_EXT_CONVOLVER_SSE_H_
|
@ -160,8 +160,7 @@ class ResizeFilter {
|
||||
// for the transform is also specified.
|
||||
void ComputeFilters(int src_size,
|
||||
int dest_subset_lo, int dest_subset_size,
|
||||
float scale, float src_support,
|
||||
ConvolutionFilter1D* output);
|
||||
float scale, ConvolutionFilter1D* output);
|
||||
|
||||
// Computes the filter value given the coordinate in filter space.
|
||||
inline float ComputeFilter(float pos) {
|
||||
@ -181,11 +180,6 @@ class ResizeFilter {
|
||||
|
||||
ImageOperations::ResizeMethod method_;
|
||||
|
||||
// Size of the filter support on one side only in the destination space.
|
||||
// See GetFilterSupport.
|
||||
float x_filter_support_;
|
||||
float y_filter_support_;
|
||||
|
||||
// Subset of scaled destination bitmap to compute.
|
||||
SkIRect out_bounds_;
|
||||
|
||||
@ -210,17 +204,10 @@ ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
|
||||
float scale_y = static_cast<float>(dest_height) /
|
||||
static_cast<float>(src_full_height);
|
||||
|
||||
x_filter_support_ = GetFilterSupport(scale_x);
|
||||
y_filter_support_ = GetFilterSupport(scale_y);
|
||||
|
||||
// Support of the filter in source space.
|
||||
float src_x_support = x_filter_support_ / scale_x;
|
||||
float src_y_support = y_filter_support_ / scale_y;
|
||||
|
||||
ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
|
||||
scale_x, src_x_support, &x_filter_);
|
||||
scale_x, &x_filter_);
|
||||
ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
|
||||
scale_y, src_y_support, &y_filter_);
|
||||
scale_y, &y_filter_);
|
||||
}
|
||||
|
||||
// TODO(egouriou): Take advantage of periods in the convolution.
|
||||
@ -236,8 +223,7 @@ ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
|
||||
// loading the factors only once outside the borders.
|
||||
void ResizeFilter::ComputeFilters(int src_size,
|
||||
int dest_subset_lo, int dest_subset_size,
|
||||
float scale, float src_support,
|
||||
ConvolutionFilter1D* output) {
|
||||
float scale, ConvolutionFilter1D* output) {
|
||||
int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi)
|
||||
|
||||
// When we're doing a magnification, the scale will be larger than one. This
|
||||
@ -247,6 +233,8 @@ void ResizeFilter::ComputeFilters(int src_size,
|
||||
// some computations.
|
||||
float clamped_scale = std::min(1.0f, scale);
|
||||
|
||||
float src_support = GetFilterSupport(clamped_scale) / clamped_scale;
|
||||
|
||||
// Speed up the divisions below by turning them into multiplies.
|
||||
float inv_scale = 1.0f / scale;
|
||||
|
||||
@ -536,8 +524,7 @@ SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
|
||||
BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
|
||||
!source.isOpaque(), filter.x_filter(), filter.y_filter(),
|
||||
static_cast<int>(result.rowBytes()),
|
||||
static_cast<unsigned char*>(result.getPixels()),
|
||||
/* sse = */ false);
|
||||
static_cast<unsigned char*>(result.getPixels()));
|
||||
|
||||
// Preserve the "opaque" flag for use as an optimization later.
|
||||
result.setAlphaType(source.alphaType());
|
||||
|
@ -88,6 +88,7 @@ if CONFIG['INTEL_ARCHITECTURE']:
|
||||
if CONFIG['_MSC_VER'] != '1400':
|
||||
SOURCES += [
|
||||
'BlurSSE2.cpp',
|
||||
'convolverSSE2.cpp',
|
||||
'FilterProcessingSSE2.cpp',
|
||||
'ImageScalingSSE2.cpp',
|
||||
]
|
||||
@ -97,6 +98,7 @@ if CONFIG['INTEL_ARCHITECTURE']:
|
||||
SOURCES['BlurSSE2.cpp'].flags += CONFIG['SSE2_FLAGS']
|
||||
SOURCES['FilterProcessingSSE2.cpp'].flags += CONFIG['SSE2_FLAGS']
|
||||
SOURCES['ImageScalingSSE2.cpp'].flags += CONFIG['SSE2_FLAGS']
|
||||
SOURCES['convolverSSE2.cpp'].flags += CONFIG['SSE2_FLAGS']
|
||||
|
||||
UNIFIED_SOURCES += [
|
||||
'Blur.cpp',
|
||||
|
Loading…
Reference in New Issue
Block a user