Bug 939843: Unify FloatingPoint's code for Double and Float; r=waldo

--HG--
extra : rebase_source : 2f7956d497d534af8931939a38a29ad27695a3fc
This commit is contained in:
Benjamin Bouvier 2014-01-30 15:54:46 +01:00
parent ba0eec4925
commit 8436415dfa
3 changed files with 275 additions and 239 deletions

View File

@ -34,211 +34,272 @@ namespace mozilla {
* compiler bustage, particularly PGO-specific bustage.
*/
/*
* These implementations all assume |double| is a 64-bit double format number
* type, compatible with the IEEE-754 standard. C/C++ don't require this to be
* the case. But we required this in implementations of these algorithms that
* preceded this header, so we shouldn't break anything if we continue doing so.
*/
static_assert(sizeof(double) == sizeof(uint64_t), "double must be 64 bits");
struct FloatTypeTraits
{
typedef uint32_t Bits;
const unsigned DoubleExponentBias = 1023;
const unsigned DoubleExponentShift = 52;
static const unsigned ExponentBias = 127;
static const unsigned ExponentShift = 23;
const uint64_t DoubleSignBit = 0x8000000000000000ULL;
const uint64_t DoubleExponentBits = 0x7ff0000000000000ULL;
const uint64_t DoubleSignificandBits = 0x000fffffffffffffULL;
static const Bits SignBit = 0x80000000UL;
static const Bits ExponentBits = 0x7F800000UL;
static const Bits SignificandBits = 0x007FFFFFUL;
};
static_assert((DoubleSignBit & DoubleExponentBits) == 0,
"sign bit doesn't overlap exponent bits");
static_assert((DoubleSignBit & DoubleSignificandBits) == 0,
"sign bit doesn't overlap significand bits");
static_assert((DoubleExponentBits & DoubleSignificandBits) == 0,
"exponent bits don't overlap significand bits");
struct DoubleTypeTraits
{
typedef uint64_t Bits;
static_assert((DoubleSignBit | DoubleExponentBits | DoubleSignificandBits) ==
~uint64_t(0),
"all bits accounted for");
static const unsigned ExponentBias = 1023;
static const unsigned ExponentShift = 52;
static const Bits SignBit = 0x8000000000000000ULL;
static const Bits ExponentBits = 0x7ff0000000000000ULL;
static const Bits SignificandBits = 0x000fffffffffffffULL;
};
template<typename T> struct SelectTrait;
template<> struct SelectTrait<float> : public FloatTypeTraits {};
template<> struct SelectTrait<double> : public DoubleTypeTraits {};
/*
* Ditto for |float| that must be a 32-bit double format number type, compatible
* with the IEEE-754 standard.
* This struct contains details regarding the encoding of floating-point
* numbers that can be useful for direct bit manipulation. As of now, the
* template parameter has to be float or double.
*
* The nested typedef |Bits| is the unsigned integral type with the same size
* as T: uint32_t for float and uint64_t for double (static assertions
* double-check these assumptions).
*
* ExponentBias is the offset that is subtracted from the exponent when
* computing the value, i.e. one plus the opposite of the mininum possible
* exponent.
* ExponentShift is the shift that one needs to apply to retrieve the exponent
* component of the value.
*
* SignBit contains a bits mask. Bit-and-ing with this mask will result in
* obtaining the sign bit.
* ExponentBits contains the mask needed for obtaining the exponent bits and
* SignificandBits contains the mask needed for obtaining the significand bits.
*
* Full details of how floating point number formats are encoded are beyond the
* scope of this comment. For more information, see
* http://en.wikipedia.org/wiki/IEEE_floating_point
* http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers
*/
static_assert(sizeof(float) == sizeof(uint32_t), "float must be 32bits");
template<typename T>
struct FloatingPoint : public SelectTrait<T>
{
typedef SelectTrait<T> Base;
typedef typename Base::Bits Bits;
const unsigned FloatExponentBias = 127;
const unsigned FloatExponentShift = 23;
static_assert((Base::SignBit & Base::ExponentBits) == 0,
"sign bit shouldn't overlap exponent bits");
static_assert((Base::SignBit & Base::SignificandBits) == 0,
"sign bit shouldn't overlap significand bits");
static_assert((Base::ExponentBits & Base::SignificandBits) == 0,
"exponent bits shouldn't overlap significand bits");
const uint32_t FloatSignBit = 0x80000000UL;
const uint32_t FloatExponentBits = 0x7F800000UL;
const uint32_t FloatSignificandBits = 0x007FFFFFUL;
static_assert((Base::SignBit | Base::ExponentBits | Base::SignificandBits) ==
~Bits(0),
"all bits accounted for");
static_assert((FloatSignBit & FloatExponentBits) == 0,
"sign bit doesn't overlap exponent bits");
static_assert((FloatSignBit & FloatSignificandBits) == 0,
"sign bit doesn't overlap significand bits");
static_assert((FloatExponentBits & FloatSignificandBits) == 0,
"exponent bits don't overlap significand bits");
static_assert((FloatSignBit | FloatExponentBits | FloatSignificandBits) ==
~uint32_t(0),
"all bits accounted for");
/*
* These implementations assume float/double are 32/64-bit single/double format
* number types compatible with the IEEE-754 standard. C++ don't require this
* to be the case. But we required this in implementations of these algorithms
* that preceded this header, so we shouldn't break anything if we keep doing so.
*/
static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T");
};
/** Determines whether a double is NaN. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsNaN(double d)
IsNaN(T t)
{
/*
* A double is NaN if all exponent bits are 1 and the significand contains at
* A float/double is NaN if all exponent bits are 1 and the significand contains at
* least one non-zero bit.
*/
uint64_t bits = BitwiseCast<uint64_t>(d);
return (bits & DoubleExponentBits) == DoubleExponentBits &&
(bits & DoubleSignificandBits) != 0;
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return (bits & Traits::ExponentBits) == Traits::ExponentBits &&
(bits & Traits::SignificandBits) != 0;
}
/** Determines whether a double is +Infinity or -Infinity. */
/** Determines whether a float/double is +Infinity or -Infinity. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsInfinite(double d)
IsInfinite(T t)
{
/* Infinities have all exponent bits set to 1 and an all-0 significand. */
uint64_t bits = BitwiseCast<uint64_t>(d);
return (bits & ~DoubleSignBit) == DoubleExponentBits;
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return (bits & ~Traits::SignBit) == Traits::ExponentBits;
}
/** Determines whether a double is not NaN or infinite. */
/** Determines whether a float/double is not NaN or infinite. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsFinite(double d)
IsFinite(T t)
{
/*
* NaN and Infinities are the only non-finite doubles, and both have all
* NaN and Infinities are the only non-finite floats/doubles, and both have all
* exponent bits set to 1.
*/
uint64_t bits = BitwiseCast<uint64_t>(d);
return (bits & DoubleExponentBits) != DoubleExponentBits;
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return (bits & Traits::ExponentBits) != Traits::ExponentBits;
}
/**
* Determines whether a double is negative. It is an error to call this method
* on a double which is NaN.
* Determines whether a float/double is negative. It is an error to call this method
* on a float/double which is NaN.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsNegative(double d)
IsNegative(T t)
{
MOZ_ASSERT(!IsNaN(d), "NaN does not have a sign");
MOZ_ASSERT(!IsNaN(t), "NaN does not have a sign");
/* The sign bit is set if the double is negative. */
uint64_t bits = BitwiseCast<uint64_t>(d);
return (bits & DoubleSignBit) != 0;
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return (bits & Traits::SignBit) != 0;
}
/** Determines whether a double represents -0. */
/** Determines whether a float/double represents -0. */
template<typename T>
static MOZ_ALWAYS_INLINE bool
IsNegativeZero(double d)
IsNegativeZero(T t)
{
/* Only the sign bit is set if the double is -0. */
uint64_t bits = BitwiseCast<uint64_t>(d);
return bits == DoubleSignBit;
/* Only the sign bit is set if the value is -0. */
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return bits == Traits::SignBit;
}
/**
* Returns the exponent portion of the double.
* Returns the exponent portion of the float/double.
*
* Zero is not special-cased, so ExponentComponent(0.0) is
* -int_fast16_t(DoubleExponentBias).
* -int_fast16_t(Traits::ExponentBias).
*/
template<typename T>
static MOZ_ALWAYS_INLINE int_fast16_t
ExponentComponent(double d)
ExponentComponent(T t)
{
/*
* The exponent component of a double is an unsigned number, biased from its
* The exponent component of a float/double is an unsigned number, biased from its
* actual value. Subtract the bias to retrieve the actual exponent.
*/
uint64_t bits = BitwiseCast<uint64_t>(d);
return int_fast16_t((bits & DoubleExponentBits) >> DoubleExponentShift) -
int_fast16_t(DoubleExponentBias);
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
Bits bits = BitwiseCast<Bits>(t);
return int_fast16_t((bits & Traits::ExponentBits) >> Traits::ExponentShift) -
int_fast16_t(Traits::ExponentBias);
}
/** Returns +Infinity. */
static MOZ_ALWAYS_INLINE double
template<typename T>
static MOZ_ALWAYS_INLINE T
PositiveInfinity()
{
/*
* Positive infinity has all exponent bits set, sign bit set to 0, and no
* significand.
*/
return BitwiseCast<double>(DoubleExponentBits);
typedef FloatingPoint<T> Traits;
return BitwiseCast<T>(Traits::ExponentBits);
}
/** Returns -Infinity. */
static MOZ_ALWAYS_INLINE double
template<typename T>
static MOZ_ALWAYS_INLINE T
NegativeInfinity()
{
/*
* Negative infinity has all exponent bits set, sign bit set to 1, and no
* significand.
*/
return BitwiseCast<double>(DoubleSignBit | DoubleExponentBits);
typedef FloatingPoint<T> Traits;
return BitwiseCast<T>(Traits::SignBit | Traits::ExponentBits);
}
/** Constructs a NaN value with the specified sign bit and significand bits. */
static MOZ_ALWAYS_INLINE double
SpecificNaN(int signbit, uint64_t significand)
template<typename T>
static MOZ_ALWAYS_INLINE T
SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand)
{
typedef FloatingPoint<T> Traits;
MOZ_ASSERT(signbit == 0 || signbit == 1);
MOZ_ASSERT((significand & ~DoubleSignificandBits) == 0);
MOZ_ASSERT(significand & DoubleSignificandBits);
MOZ_ASSERT((significand & ~Traits::SignificandBits) == 0);
MOZ_ASSERT(significand & Traits::SignificandBits);
double d = BitwiseCast<double>((signbit ? DoubleSignBit : 0) |
DoubleExponentBits |
significand);
MOZ_ASSERT(IsNaN(d));
return d;
T t = BitwiseCast<T>((signbit ? Traits::SignBit : 0) |
Traits::ExponentBits |
significand);
MOZ_ASSERT(IsNaN(t));
return t;
}
/** Computes the smallest non-zero positive double value. */
static MOZ_ALWAYS_INLINE double
MinDoubleValue()
/** Computes the smallest non-zero positive float/double value. */
template<typename T>
static MOZ_ALWAYS_INLINE T
MinNumberValue()
{
return BitwiseCast<double>(uint64_t(1));
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
return BitwiseCast<T>(Bits(1));
}
/**
* If d is equal to some int32_t value, set *i to that value and return true;
* If t is equal to some int32_t value, set *i to that value and return true;
* otherwise return false.
*
* Note that negative zero is "equal" to zero here. To test whether a value can
* be losslessly converted to int32_t and back, use DoubleIsInt32 instead.
* be losslessly converted to int32_t and back, use NumberIsInt32 instead.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
DoubleEqualsInt32(double d, int32_t* i)
NumberEqualsInt32(T t, int32_t* i)
{
/*
* XXX Casting a double that doesn't truncate to int32_t, to int32_t, induces
* undefined behavior. We should definitely fix this (bug 744965), but as
* apparently it "works" in practice, it's not a pressing concern now.
* XXX Casting a floating-point value that doesn't truncate to int32_t, to
* int32_t, induces undefined behavior. We should definitely fix this
* (bug 744965), but as apparently it "works" in practice, it's not a
* pressing concern now.
*/
return d == (*i = int32_t(d));
return t == (*i = int32_t(t));
}
/**
* If d can be converted to int32_t and back to an identical double value,
* set *i to that value and return true; otherwise return false.
*
* The difference between this and DoubleEqualsInt32 is that this method returns
* The difference between this and NumberEqualsInt32 is that this method returns
* false for negative zero.
*/
template<typename T>
static MOZ_ALWAYS_INLINE bool
DoubleIsInt32(double d, int32_t* i)
NumberIsInt32(T t, int32_t* i)
{
return !IsNegativeZero(d) && DoubleEqualsInt32(d, i);
return !IsNegativeZero(t) && NumberEqualsInt32(t, i);
}
/**
* Computes a NaN value. Do not use this method if you depend upon a particular
* NaN value being returned.
*/
static MOZ_ALWAYS_INLINE double
template<typename T>
static MOZ_ALWAYS_INLINE T
UnspecifiedNaN()
{
/*
@ -247,7 +308,8 @@ UnspecifiedNaN()
* this value can be represented in a 32-bit signed immediate field, allowing
* it to be stored to memory in a single instruction).
*/
return SpecificNaN(1, 0xfffffffffffffULL);
typedef FloatingPoint<T> Traits;
return SpecificNaN<T>(1, Traits::SignificandBits);
}
/**
@ -255,40 +317,15 @@ UnspecifiedNaN()
* any NaN value to any other NaN value. (The normal equality operators equate
* -0 with +0, and they equate NaN to no other value.)
*/
template<typename T>
static inline bool
DoublesAreIdentical(double d1, double d2)
NumbersAreIdentical(T t1, T t2)
{
if (IsNaN(d1))
return IsNaN(d2);
return BitwiseCast<uint64_t>(d1) == BitwiseCast<uint64_t>(d2);
}
/** Determines whether a float is NaN. */
static MOZ_ALWAYS_INLINE bool
IsFloatNaN(float f)
{
/*
* A float is NaN if all exponent bits are 1 and the significand contains at
* least one non-zero bit.
*/
uint32_t bits = BitwiseCast<uint32_t>(f);
return (bits & FloatExponentBits) == FloatExponentBits &&
(bits & FloatSignificandBits) != 0;
}
/** Constructs a NaN value with the specified sign bit and significand bits. */
static MOZ_ALWAYS_INLINE float
SpecificFloatNaN(int signbit, uint32_t significand)
{
MOZ_ASSERT(signbit == 0 || signbit == 1);
MOZ_ASSERT((significand & ~FloatSignificandBits) == 0);
MOZ_ASSERT(significand & FloatSignificandBits);
float f = BitwiseCast<float>((signbit ? FloatSignBit : 0) |
FloatExponentBits |
significand);
MOZ_ASSERT(IsFloatNaN(f));
return f;
typedef FloatingPoint<T> Traits;
typedef typename Traits::Bits Bits;
if (IsNaN(t1))
return IsNaN(t2);
return BitwiseCast<Bits>(t1) == BitwiseCast<Bits>(t2);
}
namespace detail {

View File

@ -52,7 +52,7 @@ typedef std::string String;
double mozToDouble(const String &aStr, bool *valid) {
double_conversion::StringToDoubleConverter converter(
double_conversion::StringToDoubleConverter::NO_FLAGS,
mozilla::UnspecifiedNaN(), mozilla::UnspecifiedNaN(), nullptr, nullptr);
mozilla::UnspecifiedNaN<double>(), mozilla::UnspecifiedNaN<double>(), nullptr, nullptr);
const char* str = aStr.c_str();
int length = mozilla::SafeCast<int>(strlen(str));
int processed_char_count; // unused - NO_FLAGS requires the whole string to parse

View File

@ -7,11 +7,8 @@
#include <math.h>
using mozilla::DoublesAreIdentical;
using mozilla::DoubleExponentBias;
using mozilla::DoubleEqualsInt32;
using mozilla::DoubleIsInt32;
using mozilla::ExponentComponent;
using mozilla::FloatingPoint;
using mozilla::FuzzyEqualsAdditive;
using mozilla::FuzzyEqualsMultiplicative;
using mozilla::IsFinite;
@ -20,23 +17,25 @@ using mozilla::IsNaN;
using mozilla::IsNegative;
using mozilla::IsNegativeZero;
using mozilla::NegativeInfinity;
using mozilla::NumberEqualsInt32;
using mozilla::NumberIsInt32;
using mozilla::NumbersAreIdentical;
using mozilla::PositiveInfinity;
using mozilla::SpecificFloatNaN;
using mozilla::SpecificNaN;
using mozilla::UnspecifiedNaN;
static void
ShouldBeIdentical(double d1, double d2)
{
MOZ_ASSERT(DoublesAreIdentical(d1, d2));
MOZ_ASSERT(DoublesAreIdentical(d2, d1));
MOZ_ASSERT(NumbersAreIdentical(d1, d2));
MOZ_ASSERT(NumbersAreIdentical(d2, d1));
}
static void
ShouldNotBeIdentical(double d1, double d2)
{
MOZ_ASSERT(!DoublesAreIdentical(d1, d2));
MOZ_ASSERT(!DoublesAreIdentical(d2, d1));
MOZ_ASSERT(!NumbersAreIdentical(d1, d2));
MOZ_ASSERT(!NumbersAreIdentical(d2, d1));
}
static void
@ -54,143 +53,143 @@ TestDoublesAreIdentical()
ShouldBeIdentical(4294967297.0, 4294967297.0);
ShouldBeIdentical(1e300, 1e300);
ShouldBeIdentical(PositiveInfinity(), PositiveInfinity());
ShouldBeIdentical(NegativeInfinity(), NegativeInfinity());
ShouldNotBeIdentical(PositiveInfinity(), NegativeInfinity());
ShouldBeIdentical(PositiveInfinity<double>(), PositiveInfinity<double>());
ShouldBeIdentical(NegativeInfinity<double>(), NegativeInfinity<double>());
ShouldNotBeIdentical(PositiveInfinity<double>(), NegativeInfinity<double>());
ShouldNotBeIdentical(-0.0, NegativeInfinity());
ShouldNotBeIdentical(+0.0, NegativeInfinity());
ShouldNotBeIdentical(1e300, NegativeInfinity());
ShouldNotBeIdentical(3.141592654, NegativeInfinity());
ShouldNotBeIdentical(-0.0, NegativeInfinity<double>());
ShouldNotBeIdentical(+0.0, NegativeInfinity<double>());
ShouldNotBeIdentical(1e300, NegativeInfinity<double>());
ShouldNotBeIdentical(3.141592654, NegativeInfinity<double>());
ShouldBeIdentical(UnspecifiedNaN(), UnspecifiedNaN());
ShouldBeIdentical(-UnspecifiedNaN(), UnspecifiedNaN());
ShouldBeIdentical(UnspecifiedNaN(), -UnspecifiedNaN());
ShouldBeIdentical(UnspecifiedNaN<double>(), UnspecifiedNaN<double>());
ShouldBeIdentical(-UnspecifiedNaN<double>(), UnspecifiedNaN<double>());
ShouldBeIdentical(UnspecifiedNaN<double>(), -UnspecifiedNaN<double>());
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 42));
ShouldBeIdentical(SpecificNaN(1, 17), SpecificNaN(1, 42));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(1, 42));
ShouldBeIdentical(SpecificNaN(1, 17), SpecificNaN(0, 42));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 42));
ShouldBeIdentical(SpecificNaN<double>(1, 17), SpecificNaN<double>(1, 42));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(1, 42));
ShouldBeIdentical(SpecificNaN<double>(1, 17), SpecificNaN<double>(0, 42));
const uint64_t Mask = 0xfffffffffffffULL;
for (unsigned i = 0; i < 52; i++) {
for (unsigned j = 0; j < 52; j++) {
for (unsigned sign = 0; i < 2; i++) {
ShouldBeIdentical(SpecificNaN(0, 1ULL << i), SpecificNaN(sign, 1ULL << j));
ShouldBeIdentical(SpecificNaN(1, 1ULL << i), SpecificNaN(sign, 1ULL << j));
ShouldBeIdentical(SpecificNaN<double>(0, 1ULL << i), SpecificNaN<double>(sign, 1ULL << j));
ShouldBeIdentical(SpecificNaN<double>(1, 1ULL << i), SpecificNaN<double>(sign, 1ULL << j));
ShouldBeIdentical(SpecificNaN(0, Mask & ~(1ULL << i)),
SpecificNaN(sign, Mask & ~(1ULL << j)));
ShouldBeIdentical(SpecificNaN(1, Mask & ~(1ULL << i)),
SpecificNaN(sign, Mask & ~(1ULL << j)));
ShouldBeIdentical(SpecificNaN<double>(0, Mask & ~(1ULL << i)),
SpecificNaN<double>(sign, Mask & ~(1ULL << j)));
ShouldBeIdentical(SpecificNaN<double>(1, Mask & ~(1ULL << i)),
SpecificNaN<double>(sign, Mask & ~(1ULL << j)));
}
}
}
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x8000000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x4000000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x2000000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x1000000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0800000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0400000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0200000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0100000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0080000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0040000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0020000000000ULL));
ShouldBeIdentical(SpecificNaN(0, 17), SpecificNaN(0, 0x0010000000000ULL));
ShouldBeIdentical(SpecificNaN(1, 17), SpecificNaN(0, 0xff0ffffffffffULL));
ShouldBeIdentical(SpecificNaN(1, 17), SpecificNaN(0, 0xfffffffffff0fULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x8000000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x4000000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x2000000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x1000000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0800000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0400000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0200000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0100000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0080000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0040000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0020000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(0, 17), SpecificNaN<double>(0, 0x0010000000000ULL));
ShouldBeIdentical(SpecificNaN<double>(1, 17), SpecificNaN<double>(0, 0xff0ffffffffffULL));
ShouldBeIdentical(SpecificNaN<double>(1, 17), SpecificNaN<double>(0, 0xfffffffffff0fULL));
ShouldNotBeIdentical(UnspecifiedNaN(), +0.0);
ShouldNotBeIdentical(UnspecifiedNaN(), -0.0);
ShouldNotBeIdentical(UnspecifiedNaN(), 1.0);
ShouldNotBeIdentical(UnspecifiedNaN(), -1.0);
ShouldNotBeIdentical(UnspecifiedNaN(), PositiveInfinity());
ShouldNotBeIdentical(UnspecifiedNaN(), NegativeInfinity());
ShouldNotBeIdentical(UnspecifiedNaN<double>(), +0.0);
ShouldNotBeIdentical(UnspecifiedNaN<double>(), -0.0);
ShouldNotBeIdentical(UnspecifiedNaN<double>(), 1.0);
ShouldNotBeIdentical(UnspecifiedNaN<double>(), -1.0);
ShouldNotBeIdentical(UnspecifiedNaN<double>(), PositiveInfinity<double>());
ShouldNotBeIdentical(UnspecifiedNaN<double>(), NegativeInfinity<double>());
}
static void
TestExponentComponent()
{
MOZ_ASSERT(ExponentComponent(0.0) == -int_fast16_t(DoubleExponentBias));
MOZ_ASSERT(ExponentComponent(-0.0) == -int_fast16_t(DoubleExponentBias));
MOZ_ASSERT(ExponentComponent(0.0) == -int_fast16_t(FloatingPoint<double>::ExponentBias));
MOZ_ASSERT(ExponentComponent(-0.0) == -int_fast16_t(FloatingPoint<double>::ExponentBias));
MOZ_ASSERT(ExponentComponent(0.125) == -3);
MOZ_ASSERT(ExponentComponent(0.5) == -1);
MOZ_ASSERT(ExponentComponent(1.0) == 0);
MOZ_ASSERT(ExponentComponent(1.5) == 0);
MOZ_ASSERT(ExponentComponent(2.0) == 1);
MOZ_ASSERT(ExponentComponent(7) == 2);
MOZ_ASSERT(ExponentComponent(PositiveInfinity()) == DoubleExponentBias + 1);
MOZ_ASSERT(ExponentComponent(NegativeInfinity()) == DoubleExponentBias + 1);
MOZ_ASSERT(ExponentComponent(UnspecifiedNaN()) == DoubleExponentBias + 1);
MOZ_ASSERT(ExponentComponent(7.0) == 2);
MOZ_ASSERT(ExponentComponent(PositiveInfinity<double>()) == FloatingPoint<double>::ExponentBias + 1);
MOZ_ASSERT(ExponentComponent(NegativeInfinity<double>()) == FloatingPoint<double>::ExponentBias + 1);
MOZ_ASSERT(ExponentComponent(UnspecifiedNaN<double>()) == FloatingPoint<double>::ExponentBias + 1);
}
static void
TestPredicates()
{
MOZ_ASSERT(IsNaN(UnspecifiedNaN()));
MOZ_ASSERT(IsNaN(SpecificNaN(1, 17)));;
MOZ_ASSERT(IsNaN(SpecificNaN(0, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNaN(0));
MOZ_ASSERT(IsNaN(UnspecifiedNaN<double>()));
MOZ_ASSERT(IsNaN(SpecificNaN<double>(1, 17)));;
MOZ_ASSERT(IsNaN(SpecificNaN<double>(0, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNaN(0.0));
MOZ_ASSERT(!IsNaN(-0.0));
MOZ_ASSERT(!IsNaN(1.0));
MOZ_ASSERT(!IsNaN(PositiveInfinity()));
MOZ_ASSERT(!IsNaN(NegativeInfinity()));
MOZ_ASSERT(!IsNaN(PositiveInfinity<double>()));
MOZ_ASSERT(!IsNaN(NegativeInfinity<double>()));
MOZ_ASSERT(IsInfinite(PositiveInfinity()));
MOZ_ASSERT(IsInfinite(NegativeInfinity()));
MOZ_ASSERT(!IsInfinite(UnspecifiedNaN()));
MOZ_ASSERT(!IsInfinite(0));
MOZ_ASSERT(IsInfinite(PositiveInfinity<double>()));
MOZ_ASSERT(IsInfinite(NegativeInfinity<double>()));
MOZ_ASSERT(!IsInfinite(UnspecifiedNaN<double>()));
MOZ_ASSERT(!IsInfinite(0.0));
MOZ_ASSERT(!IsInfinite(-0.0));
MOZ_ASSERT(!IsInfinite(1.0));
MOZ_ASSERT(!IsFinite(PositiveInfinity()));
MOZ_ASSERT(!IsFinite(NegativeInfinity()));
MOZ_ASSERT(!IsFinite(UnspecifiedNaN()));
MOZ_ASSERT(IsFinite(0));
MOZ_ASSERT(!IsFinite(PositiveInfinity<double>()));
MOZ_ASSERT(!IsFinite(NegativeInfinity<double>()));
MOZ_ASSERT(!IsFinite(UnspecifiedNaN<double>()));
MOZ_ASSERT(IsFinite(0.0));
MOZ_ASSERT(IsFinite(-0.0));
MOZ_ASSERT(IsFinite(1.0));
MOZ_ASSERT(!IsNegative(PositiveInfinity()));
MOZ_ASSERT(IsNegative(NegativeInfinity()));
MOZ_ASSERT(!IsNegative(PositiveInfinity<double>()));
MOZ_ASSERT(IsNegative(NegativeInfinity<double>()));
MOZ_ASSERT(IsNegative(-0.0));
MOZ_ASSERT(!IsNegative(0.0));
MOZ_ASSERT(IsNegative(-1.0));
MOZ_ASSERT(!IsNegative(1.0));
MOZ_ASSERT(!IsNegativeZero(PositiveInfinity()));
MOZ_ASSERT(!IsNegativeZero(NegativeInfinity()));
MOZ_ASSERT(!IsNegativeZero(SpecificNaN(1, 17)));;
MOZ_ASSERT(!IsNegativeZero(SpecificNaN(1, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNegativeZero(SpecificNaN(0, 17)));;
MOZ_ASSERT(!IsNegativeZero(SpecificNaN(0, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNegativeZero(UnspecifiedNaN()));
MOZ_ASSERT(!IsNegativeZero(PositiveInfinity<double>()));
MOZ_ASSERT(!IsNegativeZero(NegativeInfinity<double>()));
MOZ_ASSERT(!IsNegativeZero(SpecificNaN<double>(1, 17)));;
MOZ_ASSERT(!IsNegativeZero(SpecificNaN<double>(1, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNegativeZero(SpecificNaN<double>(0, 17)));;
MOZ_ASSERT(!IsNegativeZero(SpecificNaN<double>(0, 0xfffffffffff0fULL)));
MOZ_ASSERT(!IsNegativeZero(UnspecifiedNaN<double>()));
MOZ_ASSERT(IsNegativeZero(-0.0));
MOZ_ASSERT(!IsNegativeZero(0.0));
MOZ_ASSERT(!IsNegativeZero(-1.0));
MOZ_ASSERT(!IsNegativeZero(1.0));
int32_t i;
MOZ_ASSERT(DoubleIsInt32(0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(!DoubleIsInt32(-0.0, &i));
MOZ_ASSERT(DoubleEqualsInt32(0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(DoubleEqualsInt32(-0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(DoubleIsInt32(INT32_MIN, &i)); MOZ_ASSERT(i == INT32_MIN);
MOZ_ASSERT(DoubleIsInt32(INT32_MAX, &i)); MOZ_ASSERT(i == INT32_MAX);
MOZ_ASSERT(DoubleEqualsInt32(INT32_MIN, &i)); MOZ_ASSERT(i == INT32_MIN);
MOZ_ASSERT(DoubleEqualsInt32(INT32_MAX, &i)); MOZ_ASSERT(i == INT32_MAX);
MOZ_ASSERT(!DoubleIsInt32(0.5, &i));
MOZ_ASSERT(!DoubleIsInt32(double(INT32_MAX) + 0.1, &i));
MOZ_ASSERT(!DoubleIsInt32(double(INT32_MIN) - 0.1, &i));
MOZ_ASSERT(!DoubleIsInt32(NegativeInfinity(), &i));
MOZ_ASSERT(!DoubleIsInt32(PositiveInfinity(), &i));
MOZ_ASSERT(!DoubleIsInt32(UnspecifiedNaN(), &i));
MOZ_ASSERT(!DoubleEqualsInt32(0.5, &i));
MOZ_ASSERT(!DoubleEqualsInt32(double(INT32_MAX) + 0.1, &i));
MOZ_ASSERT(!DoubleEqualsInt32(double(INT32_MIN) - 0.1, &i));
MOZ_ASSERT(!DoubleEqualsInt32(NegativeInfinity(), &i));
MOZ_ASSERT(!DoubleEqualsInt32(PositiveInfinity(), &i));
MOZ_ASSERT(!DoubleEqualsInt32(UnspecifiedNaN(), &i));
MOZ_ASSERT(NumberIsInt32(0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(!NumberIsInt32(-0.0, &i));
MOZ_ASSERT(NumberEqualsInt32(0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(NumberEqualsInt32(-0.0, &i)); MOZ_ASSERT(i == 0);
MOZ_ASSERT(NumberIsInt32(double(INT32_MIN), &i)); MOZ_ASSERT(i == INT32_MIN);
MOZ_ASSERT(NumberIsInt32(double(INT32_MAX), &i)); MOZ_ASSERT(i == INT32_MAX);
MOZ_ASSERT(NumberEqualsInt32(double(INT32_MIN), &i)); MOZ_ASSERT(i == INT32_MIN);
MOZ_ASSERT(NumberEqualsInt32(double(INT32_MAX), &i)); MOZ_ASSERT(i == INT32_MAX);
MOZ_ASSERT(!NumberIsInt32(0.5, &i));
MOZ_ASSERT(!NumberIsInt32(double(INT32_MAX) + 0.1, &i));
MOZ_ASSERT(!NumberIsInt32(double(INT32_MIN) - 0.1, &i));
MOZ_ASSERT(!NumberIsInt32(NegativeInfinity<double>(), &i));
MOZ_ASSERT(!NumberIsInt32(PositiveInfinity<double>(), &i));
MOZ_ASSERT(!NumberIsInt32(UnspecifiedNaN<double>(), &i));
MOZ_ASSERT(!NumberEqualsInt32(0.5, &i));
MOZ_ASSERT(!NumberEqualsInt32(double(INT32_MAX) + 0.1, &i));
MOZ_ASSERT(!NumberEqualsInt32(double(INT32_MIN) - 0.1, &i));
MOZ_ASSERT(!NumberEqualsInt32(NegativeInfinity<double>(), &i));
MOZ_ASSERT(!NumberEqualsInt32(PositiveInfinity<double>(), &i));
MOZ_ASSERT(!NumberEqualsInt32(UnspecifiedNaN<double>(), &i));
}
static void
@ -256,10 +255,10 @@ TestFloatsAreApproximatelyEqual()
MOZ_ASSERT(FuzzyEqualsAdditive(10.0f, 3.0f * oneThird));
MOZ_ASSERT(FuzzyEqualsMultiplicative(10.0f, 3.0f * oneThird));
// NaN check
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificFloatNaN(1, 1), SpecificFloatNaN(1, 1)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificFloatNaN(1, 2), SpecificFloatNaN(0, 8)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificFloatNaN(1, 1), SpecificFloatNaN(1, 1)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificFloatNaN(1, 2), SpecificFloatNaN(0, 200)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN<float>(1, 1), SpecificNaN<float>(1, 1)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN<float>(1, 2), SpecificNaN<float>(0, 8)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN<float>(1, 1), SpecificNaN<float>(1, 1)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN<float>(1, 2), SpecificNaN<float>(0, 200)));
}
static void
@ -325,10 +324,10 @@ TestDoublesAreApproximatelyEqual()
MOZ_ASSERT(FuzzyEqualsAdditive(10.0, 3.0 * oneThird));
MOZ_ASSERT(FuzzyEqualsMultiplicative(10.0, 3.0 * oneThird));
// NaN check
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN(1, 1), SpecificNaN(1, 1)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN(1, 2), SpecificNaN(0, 8)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN(1, 1), SpecificNaN(1, 1)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN(1, 2), SpecificNaN(0, 200)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN<double>(1, 1), SpecificNaN<double>(1, 1)));
MOZ_ASSERT(!FuzzyEqualsAdditive(SpecificNaN<double>(1, 2), SpecificNaN<double>(0, 8)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN<double>(1, 1), SpecificNaN<double>(1, 1)));
MOZ_ASSERT(!FuzzyEqualsMultiplicative(SpecificNaN<double>(1, 2), SpecificNaN<double>(0, 200)));
}
static void