Bug 960040 - Part 2: Hide more of ScriptAnalysis implementation. r=jandem

This commit is contained in:
Andy Wingo 2014-01-21 14:09:34 +01:00
parent 15adc93989
commit 54f9053623
9 changed files with 750 additions and 690 deletions

View File

@ -18,6 +18,7 @@
#include "jit/MIRGraph.h"
#include "jsinferinlines.h"
#include "jsopcodeinlines.h"
#include "jsobjinlines.h"
using namespace js;
@ -1522,7 +1523,7 @@ jit::ExtractLinearInequality(MTest *test, BranchDirection direction,
JSOp jsop = compare->jsop();
if (direction == FALSE_BRANCH)
jsop = analyze::NegateCompareOp(jsop);
jsop = NegateCompareOp(jsop);
SimpleLinearSum lsum = ExtractLinearSum(lhs);
SimpleLinearSum rsum = ExtractLinearSum(rhs);

View File

@ -29,6 +29,7 @@
#include "jsinferinlines.h"
#include "jsobjinlines.h"
#include "jsscriptinlines.h"
#include "jsopcodeinlines.h"
#include "jit/CompileInfo-inl.h"

View File

@ -17,6 +17,7 @@
#include "jsinferinlines.h"
#include "jsobjinlines.h"
#include "jsopcodeinlines.h"
#include "jit/shared/Lowering-shared-inl.h"
@ -592,7 +593,7 @@ ReorderComparison(JSOp op, MDefinition **lhsp, MDefinition **rhsp)
if (lhs->isConstant()) {
*rhsp = lhs;
*lhsp = rhs;
return js::analyze::ReverseCompareOp(op);
return ReverseCompareOp(op);
}
return op;
}

View File

@ -18,6 +18,8 @@
#include "jit/MIRGraph.h"
#include "vm/NumericConversions.h"
#include "jsopcodeinlines.h"
using namespace js;
using namespace js::jit;
@ -167,7 +169,7 @@ RangeAnalysis::addBetaNodes()
JSOp jsop = compare->jsop();
if (branch_dir == FALSE_BRANCH) {
jsop = analyze::NegateCompareOp(jsop);
jsop = NegateCompareOp(jsop);
conservativeLower = GenericNaN();
conservativeUpper = GenericNaN();
}
@ -175,7 +177,7 @@ RangeAnalysis::addBetaNodes()
if (left->isConstant() && left->toConstant()->value().isNumber()) {
bound = left->toConstant()->value().toNumber();
val = right;
jsop = analyze::ReverseCompareOp(jsop);
jsop = ReverseCompareOp(jsop);
} else if (right->isConstant() && right->toConstant()->value().isNumber()) {
bound = right->toConstant()->value().toNumber();
val = left;

View File

@ -4,8 +4,6 @@
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jsanalyzeinlines.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/PodOperations.h"
@ -16,22 +14,471 @@
#include "jsinferinlines.h"
#include "jsobjinlines.h"
using namespace js;
using namespace js::analyze;
#include "jsopcodeinlines.h"
using mozilla::DebugOnly;
using mozilla::PodCopy;
using mozilla::PodZero;
using mozilla::FloorLog2;
namespace js {
namespace analyze {
class LoopAnalysis;
} // namespace analyze
} // namespace js
namespace mozilla {
template <> struct IsPod<js::analyze::LifetimeVariable> : TrueType {};
template <> struct IsPod<js::analyze::LoopAnalysis> : TrueType {};
template <> struct IsPod<js::analyze::SlotValue> : TrueType {};
template <> struct IsPod<js::analyze::SSAValue> : TrueType {};
template <> struct IsPod<js::analyze::SSAUseChain> : TrueType {};
} /* namespace mozilla */
namespace js {
namespace analyze {
/*
* There are three analyses we can perform on a JSScript, outlined below.
* The results of all three are stored in ScriptAnalysis, but the analyses
* themselves can be performed separately. Along with type inference results,
* per-script analysis results are tied to the per-compartment analysis pool
* and are freed on every garbage collection.
*
* - Basic bytecode analysis. For each bytecode, determine the stack depth at
* that point and control flow information needed for compilation. Also does
* a defined-variables analysis to look for local variables which have uses
* before definitions.
*
* - Lifetime analysis. Makes a backwards pass over the script to approximate
* the regions where each variable is live, avoiding a full fixpointing
* live-variables pass. This is based on the algorithm described in:
*
* "Quality and Speed in Linear-scan Register Allocation"
* Traub et. al.
* PLDI, 1998
*
* - SSA analysis of the script's variables and stack values. For each stack
* value popped and non-escaping local variable or argument read, determines
* which push(es) or write(s) produced that value.
*
* Intermediate type inference results are additionally stored here. The above
* analyses are independent from type inference.
*/
/* Information about a bytecode instruction. */
class Bytecode
{
friend class ScriptAnalysis;
public:
Bytecode() { mozilla::PodZero(this); }
/* --------- Bytecode analysis --------- */
/* Whether there are any incoming jumps to this instruction. */
bool jumpTarget : 1;
/* Whether there is fallthrough to this instruction from a non-branching instruction. */
bool fallthrough : 1;
/* Whether this instruction is the fall through point of a conditional jump. */
bool jumpFallthrough : 1;
/*
* Whether this instruction must always execute, unless the script throws
* an exception which it does not later catch.
*/
bool unconditional : 1;
/* Whether this instruction has been analyzed to get its output defines and stack. */
bool analyzed : 1;
/* Whether this is a catch/finally entry point. */
bool exceptionEntry : 1;
/* Stack depth before this opcode. */
uint32_t stackDepth;
private:
/* If this is a JSOP_LOOPHEAD or JSOP_LOOPENTRY, information about the loop. */
LoopAnalysis *loop;
/* --------- SSA analysis --------- */
/* Generated location of each value popped by this bytecode. */
SSAValue *poppedValues;
/* Points where values pushed or written by this bytecode are popped. */
SSAUseChain **pushedUses;
union {
/*
* If this is a join point (implies jumpTarget), any slots at this
* point which can have a different values than at the immediate
* predecessor in the bytecode. Array is terminated by an entry with
* a zero slot.
*/
SlotValue *newValues;
/*
* Vector used during SSA analysis to store values in need of merging
* at this point. If this has incoming forward jumps and we have not
* yet reached this point, stores values for entries on the stack and
* for variables which have changed since the branch. If this is a loop
* head and we haven't reached the back edge yet, stores loop phi nodes
* for variables and entries live at the head of the loop.
*/
Vector<SlotValue> *pendingValues;
};
};
/*
* Information about the lifetime of a local or argument. These form a linked
* list describing successive intervals in the program where the variable's
* value may be live. At points in the script not in one of these segments
* (points in a 'lifetime hole'), the variable is dead and registers containing
* its type/payload can be discarded without needing to be synced.
*/
struct Lifetime
{
/*
* Start and end offsets of this lifetime. The variable is live at the
* beginning of every bytecode in this (inclusive) range.
*/
uint32_t start;
uint32_t end;
/*
* In a loop body, endpoint to extend this lifetime with if the variable is
* live in the next iteration.
*/
uint32_t savedEnd;
/*
* The start of this lifetime is a bytecode writing the variable. Each
* write to a variable is associated with a lifetime.
*/
bool write;
/* Next lifetime. The variable is dead from this->end to next->start. */
Lifetime *next;
Lifetime(uint32_t offset, uint32_t savedEnd, Lifetime *next)
: start(offset), end(offset), savedEnd(savedEnd),
write(false), next(next)
{}
};
/* Basic information for a loop. */
class LoopAnalysis
{
public:
/* Any loop this one is nested in. */
LoopAnalysis *parent;
/* Offset of the head of the loop. */
uint32_t head;
/*
* Offset of the unique jump going to the head of the loop. The code
* between the head and the backedge forms the loop body.
*/
uint32_t backedge;
};
/* Current lifetime information for a variable. */
struct LifetimeVariable
{
/* If the variable is currently live, the lifetime segment. */
Lifetime *lifetime;
/* If the variable is currently dead, the next live segment. */
Lifetime *saved;
/* Jump preceding the basic block which killed this variable. */
uint32_t savedEnd : 31;
/* If the variable needs to be kept alive until lifetime->start. */
bool ensured : 1;
/* Whether this variable is live at offset. */
Lifetime * live(uint32_t offset) const {
if (lifetime && lifetime->end >= offset)
return lifetime;
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= offset) {
if (segment->end >= offset)
return segment;
segment = segment->next;
}
return nullptr;
}
/*
* Get the offset of the first write to the variable in an inclusive range,
* UINT32_MAX if the variable is not written in the range.
*/
uint32_t firstWrite(uint32_t start, uint32_t end) const {
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= end) {
if (segment->start >= start && segment->write)
return segment->start;
segment = segment->next;
}
return UINT32_MAX;
}
uint32_t firstWrite(LoopAnalysis *loop) const {
return firstWrite(loop->head, loop->backedge);
}
/*
* If the variable is only written once in the body of a loop, offset of
* that write. UINT32_MAX otherwise.
*/
uint32_t onlyWrite(LoopAnalysis *loop) const {
uint32_t offset = UINT32_MAX;
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= loop->backedge) {
if (segment->start >= loop->head && segment->write) {
if (offset != UINT32_MAX)
return UINT32_MAX;
offset = segment->start;
}
segment = segment->next;
}
return offset;
}
#ifdef DEBUG
void print() const;
#endif
};
struct SSAPhiNode;
/*
* Representation of values on stack or in slots at each point in the script.
* Values are independent from the bytecode position, and mean the same thing
* everywhere in the script. SSA values are immutable, except for contents of
* the values and types in an SSAPhiNode.
*/
class SSAValue
{
friend class ScriptAnalysis;
public:
enum Kind {
EMPTY = 0, /* Invalid entry. */
PUSHED = 1, /* Value pushed by some bytecode. */
VAR = 2, /* Initial or written value to some argument or local. */
PHI = 3 /* Selector for one of several values. */
};
Kind kind() const {
JS_ASSERT(u.pushed.kind == u.var.kind && u.pushed.kind == u.phi.kind);
/* Use a bitmask because MSVC wants to use -1 for PHI nodes. */
return (Kind) (u.pushed.kind & 0x3);
}
bool operator==(const SSAValue &o) const {
return !memcmp(this, &o, sizeof(SSAValue));
}
/* Accessors for values pushed by a bytecode within this script. */
uint32_t pushedOffset() const {
JS_ASSERT(kind() == PUSHED);
return u.pushed.offset;
}
uint32_t pushedIndex() const {
JS_ASSERT(kind() == PUSHED);
return u.pushed.index;
}
/* Accessors for initial and written values of arguments and (undefined) locals. */
bool varInitial() const {
JS_ASSERT(kind() == VAR);
return u.var.initial;
}
uint32_t varSlot() const {
JS_ASSERT(kind() == VAR);
return u.var.slot;
}
uint32_t varOffset() const {
JS_ASSERT(!varInitial());
return u.var.offset;
}
/* Accessors for phi nodes. */
uint32_t phiSlot() const;
uint32_t phiLength() const;
const SSAValue &phiValue(uint32_t i) const;
/* Offset at which this phi node was created. */
uint32_t phiOffset() const {
JS_ASSERT(kind() == PHI);
return u.phi.offset;
}
SSAPhiNode *phiNode() const {
JS_ASSERT(kind() == PHI);
return u.phi.node;
}
/* Other accessors. */
#ifdef DEBUG
void print() const;
#endif
void clear() {
mozilla::PodZero(this);
JS_ASSERT(kind() == EMPTY);
}
void initPushed(uint32_t offset, uint32_t index) {
clear();
u.pushed.kind = PUSHED;
u.pushed.offset = offset;
u.pushed.index = index;
}
static SSAValue PushedValue(uint32_t offset, uint32_t index) {
SSAValue v;
v.initPushed(offset, index);
return v;
}
void initInitial(uint32_t slot) {
clear();
u.var.kind = VAR;
u.var.initial = true;
u.var.slot = slot;
}
void initWritten(uint32_t slot, uint32_t offset) {
clear();
u.var.kind = VAR;
u.var.initial = false;
u.var.slot = slot;
u.var.offset = offset;
}
static SSAValue WrittenVar(uint32_t slot, uint32_t offset) {
SSAValue v;
v.initWritten(slot, offset);
return v;
}
void initPhi(uint32_t offset, SSAPhiNode *node) {
clear();
u.phi.kind = PHI;
u.phi.offset = offset;
u.phi.node = node;
}
static SSAValue PhiValue(uint32_t offset, SSAPhiNode *node) {
SSAValue v;
v.initPhi(offset, node);
return v;
}
private:
union {
struct {
Kind kind : 2;
uint32_t offset : 30;
uint32_t index;
} pushed;
struct {
Kind kind : 2;
bool initial : 1;
uint32_t slot : 29;
uint32_t offset;
} var;
struct {
Kind kind : 2;
uint32_t offset : 30;
SSAPhiNode *node;
} phi;
} u;
};
/*
* Mutable component of a phi node, with the possible values of the phi
* and the possible types of the node as determined by type inference.
* When phi nodes are copied around, any updates to the original will
* be seen by all copies made.
*/
struct SSAPhiNode
{
uint32_t slot;
uint32_t length;
SSAValue *options;
SSAUseChain *uses;
SSAPhiNode() { mozilla::PodZero(this); }
};
inline uint32_t
SSAValue::phiSlot() const
{
return u.phi.node->slot;
}
inline uint32_t
SSAValue::phiLength() const
{
JS_ASSERT(kind() == PHI);
return u.phi.node->length;
}
inline const SSAValue &
SSAValue::phiValue(uint32_t i) const
{
JS_ASSERT(kind() == PHI && i < phiLength());
return u.phi.node->options[i];
}
class SSAUseChain
{
public:
bool popped : 1;
uint32_t offset : 31;
/* FIXME: Assert that only the proper arm of this union is accessed. */
union {
uint32_t which;
SSAPhiNode *phi;
} u;
SSAUseChain *next;
SSAUseChain() { mozilla::PodZero(this); }
};
class SlotValue
{
public:
uint32_t slot;
SSAValue value;
SlotValue(uint32_t slot, const SSAValue &value) : slot(slot), value(value) {}
};
/////////////////////////////////////////////////////////////////////
// Bytecode
/////////////////////////////////////////////////////////////////////
#ifdef DEBUG
void
analyze::PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc)
PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc)
{
fprintf(stderr, "#%u:", script->id());
Sprinter sprinter(cx);
@ -42,6 +489,87 @@ analyze::PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc)
}
#endif
/*
* For opcodes which assign to a local variable or argument, track an extra def
* during SSA analysis for the value's use chain and assigned type.
*/
static inline bool
ExtendedDef(jsbytecode *pc)
{
switch ((JSOp)*pc) {
case JSOP_SETARG:
case JSOP_SETLOCAL:
return true;
default:
return false;
}
}
/*
* For opcodes which access local variables or arguments, we track an extra
* use during SSA analysis for the value of the variable before/after the op.
*/
static inline bool
ExtendedUse(jsbytecode *pc)
{
if (ExtendedDef(pc))
return true;
switch ((JSOp)*pc) {
case JSOP_GETARG:
case JSOP_CALLARG:
case JSOP_GETLOCAL:
case JSOP_CALLLOCAL:
return true;
default:
return false;
}
}
static inline unsigned
FollowBranch(JSContext *cx, JSScript *script, unsigned offset)
{
/*
* Get the target offset of a branch. For GOTO opcodes implementing
* 'continue' statements, short circuit any artificial backwards jump
* inserted by the emitter.
*/
jsbytecode *pc = script->offsetToPC(offset);
unsigned targetOffset = offset + GET_JUMP_OFFSET(pc);
if (targetOffset < offset) {
jsbytecode *target = script->offsetToPC(targetOffset);
JSOp nop = JSOp(*target);
if (nop == JSOP_GOTO)
return targetOffset + GET_JUMP_OFFSET(target);
}
return targetOffset;
}
static inline uint32_t StackSlot(JSScript *script, uint32_t index) {
return TotalSlots(script) + index;
}
static inline uint32_t GetBytecodeSlot(JSScript *script, jsbytecode *pc)
{
switch (JSOp(*pc)) {
case JSOP_GETARG:
case JSOP_CALLARG:
case JSOP_SETARG:
return ArgSlot(GET_ARGNO(pc));
case JSOP_GETLOCAL:
case JSOP_CALLLOCAL:
case JSOP_SETLOCAL:
return LocalSlot(script, GET_LOCALNO(pc));
case JSOP_THIS:
return ThisSlot();
default:
MOZ_ASSUME_UNREACHABLE("Bad slot opcode");
}
}
/////////////////////////////////////////////////////////////////////
// Bytecode Analysis
/////////////////////////////////////////////////////////////////////
@ -86,6 +614,126 @@ ScriptAnalysis::addJump(JSContext *cx, unsigned offset,
return true;
}
inline bool
ScriptAnalysis::jumpTarget(uint32_t offset)
{
JS_ASSERT(offset < script_->length());
return codeArray[offset] && codeArray[offset]->jumpTarget;
}
inline bool
ScriptAnalysis::jumpTarget(const jsbytecode *pc)
{
return jumpTarget(script_->pcToOffset(pc));
}
inline const SSAValue &
ScriptAnalysis::poppedValue(uint32_t offset, uint32_t which)
{
JS_ASSERT(which < GetUseCount(script_, offset) +
(ExtendedUse(script_->offsetToPC(offset)) ? 1 : 0));
return getCode(offset).poppedValues[which];
}
inline const SSAValue &
ScriptAnalysis::poppedValue(const jsbytecode *pc, uint32_t which)
{
return poppedValue(script_->pcToOffset(pc), which);
}
inline const SlotValue *
ScriptAnalysis::newValues(uint32_t offset)
{
JS_ASSERT(offset < script_->length());
return getCode(offset).newValues;
}
inline const SlotValue *
ScriptAnalysis::newValues(const jsbytecode *pc)
{
return newValues(script_->pcToOffset(pc));
}
inline bool
ScriptAnalysis::trackUseChain(const SSAValue &v)
{
JS_ASSERT_IF(v.kind() == SSAValue::VAR, trackSlot(v.varSlot()));
return v.kind() != SSAValue::EMPTY &&
(v.kind() != SSAValue::VAR || !v.varInitial());
}
/*
* Get the use chain for an SSA value. May be invalid for some opcodes in
* scripts where localsAliasStack(). You have been warned!
*/
inline SSAUseChain *&
ScriptAnalysis::useChain(const SSAValue &v)
{
JS_ASSERT(trackUseChain(v));
if (v.kind() == SSAValue::PUSHED)
return getCode(v.pushedOffset()).pushedUses[v.pushedIndex()];
if (v.kind() == SSAValue::VAR)
return getCode(v.varOffset()).pushedUses[GetDefCount(script_, v.varOffset())];
return v.phiNode()->uses;
}
/* For a JSOP_CALL* op, get the pc of the corresponding JSOP_CALL/NEW/etc. */
inline jsbytecode *
ScriptAnalysis::getCallPC(jsbytecode *pc)
{
SSAUseChain *uses = useChain(SSAValue::PushedValue(script_->pcToOffset(pc), 0));
JS_ASSERT(uses && uses->popped);
JS_ASSERT(js_CodeSpec[script_->code()[uses->offset]].format & JOF_INVOKE);
return script_->offsetToPC(uses->offset);
}
/* Accessors for local variable information. */
/*
* Escaping slots include all slots that can be accessed in ways other than
* through the corresponding LOCAL/ARG opcode. This includes all closed
* slots in the script, all slots in scripts which use eval or are in debug
* mode, and slots which are aliased by NAME or similar opcodes in the
* containing script (which does not imply the variable is closed).
*/
inline bool
ScriptAnalysis::slotEscapes(uint32_t slot)
{
JS_ASSERT(script_->compartment()->activeAnalysis);
if (slot >= numSlots)
return true;
return escapedSlots[slot];
}
/*
* Whether we distinguish different writes of this variable while doing
* SSA analysis. Escaping locals can be written in other scripts, and the
* presence of NAME opcodes which could alias local variables or arguments
* keeps us from tracking variable values at each point.
*/
inline bool
ScriptAnalysis::trackSlot(uint32_t slot)
{
return !slotEscapes(slot) && canTrackVars && slot < 1000;
}
inline const LifetimeVariable &
ScriptAnalysis::liveness(uint32_t slot)
{
JS_ASSERT(script_->compartment()->activeAnalysis);
JS_ASSERT(!slotEscapes(slot));
return lifetimes[slot];
}
inline void
ScriptAnalysis::setOOM(JSContext *cx)
{
if (!outOfMemory)
js_ReportOutOfMemory(cx);
outOfMemory = true;
hadFailure = true;
}
void
ScriptAnalysis::analyzeBytecode(JSContext *cx)
{
@ -836,6 +1484,19 @@ ScriptAnalysis::ensureVariable(LifetimeVariable &var, unsigned until)
// SSA Analysis
/////////////////////////////////////////////////////////////////////
/* Current value for a variable or stack value, as tracked during SSA. */
struct SSAValueInfo
{
SSAValue v;
/*
* Sizes of branchTargets the last time this slot was written. Branches less
* than this threshold do not need to be inspected if the slot is written
* again, as they will already reflect the slot's value at the branch.
*/
int32_t branchSize;
};
void
ScriptAnalysis::analyzeSSA(JSContext *cx)
{
@ -1719,4 +2380,12 @@ ScriptAnalysis::assertMatchingDebugMode()
JS_ASSERT(!!script_->compartment()->debugMode() == !!originalDebugMode_);
}
void
ScriptAnalysis::assertMatchingStackDepthAtOffset(uint32_t offset, uint32_t stackDepth) {
JS_ASSERT_IF(maybeCode(offset), getCode(offset).stackDepth == stackDepth);
}
#endif /* DEBUG */
} // namespace analyze
} // namespace js

View File

@ -14,210 +14,15 @@
namespace js {
namespace analyze {
class LoopAnalysis;
class Bytecode;
struct LifetimeVariable;
class SlotValue;
class SSAValue;
struct SSAValueInfo;
class SSAUseChain;
/*
* There are three analyses we can perform on a JSScript, outlined below.
* The results of all three are stored in ScriptAnalysis, but the analyses
* themselves can be performed separately. Along with type inference results,
* per-script analysis results are tied to the per-compartment analysis pool
* and are freed on every garbage collection.
*
* - Basic bytecode analysis. For each bytecode, determine the stack depth at
* that point and control flow information needed for compilation. Also does
* a defined-variables analysis to look for local variables which have uses
* before definitions.
*
* - Lifetime analysis. Makes a backwards pass over the script to approximate
* the regions where each variable is live, avoiding a full fixpointing
* live-variables pass. This is based on the algorithm described in:
*
* "Quality and Speed in Linear-scan Register Allocation"
* Traub et. al.
* PLDI, 1998
*
* - SSA analysis of the script's variables and stack values. For each stack
* value popped and non-escaping local variable or argument read, determines
* which push(es) or write(s) produced that value.
*
* Intermediate type inference results are additionally stored here. The above
* analyses are independent from type inference.
*/
/* Information about a bytecode instruction. */
class Bytecode
{
friend class ScriptAnalysis;
public:
Bytecode() { mozilla::PodZero(this); }
/* --------- Bytecode analysis --------- */
/* Whether there are any incoming jumps to this instruction. */
bool jumpTarget : 1;
/* Whether there is fallthrough to this instruction from a non-branching instruction. */
bool fallthrough : 1;
/* Whether this instruction is the fall through point of a conditional jump. */
bool jumpFallthrough : 1;
/*
* Whether this instruction must always execute, unless the script throws
* an exception which it does not later catch.
*/
bool unconditional : 1;
/* Whether this instruction has been analyzed to get its output defines and stack. */
bool analyzed : 1;
/* Whether this is a catch/finally entry point. */
bool exceptionEntry : 1;
/* Stack depth before this opcode. */
uint32_t stackDepth;
private:
/* If this is a JSOP_LOOPHEAD or JSOP_LOOPENTRY, information about the loop. */
LoopAnalysis *loop;
/* --------- SSA analysis --------- */
/* Generated location of each value popped by this bytecode. */
SSAValue *poppedValues;
/* Points where values pushed or written by this bytecode are popped. */
SSAUseChain **pushedUses;
union {
/*
* If this is a join point (implies jumpTarget), any slots at this
* point which can have a different values than at the immediate
* predecessor in the bytecode. Array is terminated by an entry with
* a zero slot.
*/
SlotValue *newValues;
/*
* Vector used during SSA analysis to store values in need of merging
* at this point. If this has incoming forward jumps and we have not
* yet reached this point, stores values for entries on the stack and
* for variables which have changed since the branch. If this is a loop
* head and we haven't reached the back edge yet, stores loop phi nodes
* for variables and entries live at the head of the loop.
*/
Vector<SlotValue> *pendingValues;
};
};
/*
* For opcodes which assign to a local variable or argument, track an extra def
* during SSA analysis for the value's use chain and assigned type.
*/
static inline bool
ExtendedDef(jsbytecode *pc)
{
switch ((JSOp)*pc) {
case JSOP_SETARG:
case JSOP_SETLOCAL:
return true;
default:
return false;
}
}
/*
* For opcodes which access local variables or arguments, we track an extra
* use during SSA analysis for the value of the variable before/after the op.
*/
static inline bool
ExtendedUse(jsbytecode *pc)
{
if (ExtendedDef(pc))
return true;
switch ((JSOp)*pc) {
case JSOP_GETARG:
case JSOP_CALLARG:
case JSOP_GETLOCAL:
case JSOP_CALLLOCAL:
return true;
default:
return false;
}
}
static inline JSOp
ReverseCompareOp(JSOp op)
{
switch (op) {
case JSOP_GT:
return JSOP_LT;
case JSOP_GE:
return JSOP_LE;
case JSOP_LT:
return JSOP_GT;
case JSOP_LE:
return JSOP_GE;
case JSOP_EQ:
case JSOP_NE:
case JSOP_STRICTEQ:
case JSOP_STRICTNE:
return op;
default:
MOZ_ASSUME_UNREACHABLE("unrecognized op");
}
}
static inline JSOp
NegateCompareOp(JSOp op)
{
switch (op) {
case JSOP_GT:
return JSOP_LE;
case JSOP_GE:
return JSOP_LT;
case JSOP_LT:
return JSOP_GE;
case JSOP_LE:
return JSOP_GT;
case JSOP_EQ:
return JSOP_NE;
case JSOP_NE:
return JSOP_EQ;
case JSOP_STRICTNE:
return JSOP_STRICTEQ;
case JSOP_STRICTEQ:
return JSOP_STRICTNE;
default:
MOZ_ASSUME_UNREACHABLE("unrecognized op");
}
}
static inline unsigned
FollowBranch(JSContext *cx, JSScript *script, unsigned offset)
{
/*
* Get the target offset of a branch. For GOTO opcodes implementing
* 'continue' statements, short circuit any artificial backwards jump
* inserted by the emitter.
*/
jsbytecode *pc = script->offsetToPC(offset);
unsigned targetOffset = offset + GET_JUMP_OFFSET(pc);
if (targetOffset < offset) {
jsbytecode *target = script->offsetToPC(targetOffset);
JSOp nop = JSOp(*target);
if (nop == JSOP_GOTO)
return targetOffset + GET_JUMP_OFFSET(target);
}
return targetOffset;
}
/* Common representation of slots throughout analyses and the compiler. */
// Common representation of slots between ScriptAnalysis, TypeScript, and in the
// case of TotalSlots, Ion.
static inline uint32_t ThisSlot() {
return 0;
}
@ -232,371 +37,10 @@ static inline uint32_t TotalSlots(JSScript *script) {
return LocalSlot(script, 0) + script->nfixed();
}
static inline uint32_t StackSlot(JSScript *script, uint32_t index) {
return TotalSlots(script) + index;
}
static inline uint32_t GetBytecodeSlot(JSScript *script, jsbytecode *pc)
{
switch (JSOp(*pc)) {
case JSOP_GETARG:
case JSOP_CALLARG:
case JSOP_SETARG:
return ArgSlot(GET_ARGNO(pc));
case JSOP_GETLOCAL:
case JSOP_CALLLOCAL:
case JSOP_SETLOCAL:
return LocalSlot(script, GET_LOCALNO(pc));
case JSOP_THIS:
return ThisSlot();
default:
MOZ_ASSUME_UNREACHABLE("Bad slot opcode");
}
}
/*
* Information about the lifetime of a local or argument. These form a linked
* list describing successive intervals in the program where the variable's
* value may be live. At points in the script not in one of these segments
* (points in a 'lifetime hole'), the variable is dead and registers containing
* its type/payload can be discarded without needing to be synced.
*/
struct Lifetime
{
/*
* Start and end offsets of this lifetime. The variable is live at the
* beginning of every bytecode in this (inclusive) range.
*/
uint32_t start;
uint32_t end;
/*
* In a loop body, endpoint to extend this lifetime with if the variable is
* live in the next iteration.
*/
uint32_t savedEnd;
/*
* The start of this lifetime is a bytecode writing the variable. Each
* write to a variable is associated with a lifetime.
*/
bool write;
/* Next lifetime. The variable is dead from this->end to next->start. */
Lifetime *next;
Lifetime(uint32_t offset, uint32_t savedEnd, Lifetime *next)
: start(offset), end(offset), savedEnd(savedEnd),
write(false), next(next)
{}
};
/* Basic information for a loop. */
class LoopAnalysis
{
public:
/* Any loop this one is nested in. */
LoopAnalysis *parent;
/* Offset of the head of the loop. */
uint32_t head;
/*
* Offset of the unique jump going to the head of the loop. The code
* between the head and the backedge forms the loop body.
*/
uint32_t backedge;
};
/* Current lifetime information for a variable. */
struct LifetimeVariable
{
/* If the variable is currently live, the lifetime segment. */
Lifetime *lifetime;
/* If the variable is currently dead, the next live segment. */
Lifetime *saved;
/* Jump preceding the basic block which killed this variable. */
uint32_t savedEnd : 31;
/* If the variable needs to be kept alive until lifetime->start. */
bool ensured : 1;
/* Whether this variable is live at offset. */
Lifetime * live(uint32_t offset) const {
if (lifetime && lifetime->end >= offset)
return lifetime;
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= offset) {
if (segment->end >= offset)
return segment;
segment = segment->next;
}
return nullptr;
}
/*
* Get the offset of the first write to the variable in an inclusive range,
* UINT32_MAX if the variable is not written in the range.
*/
uint32_t firstWrite(uint32_t start, uint32_t end) const {
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= end) {
if (segment->start >= start && segment->write)
return segment->start;
segment = segment->next;
}
return UINT32_MAX;
}
uint32_t firstWrite(LoopAnalysis *loop) const {
return firstWrite(loop->head, loop->backedge);
}
/*
* If the variable is only written once in the body of a loop, offset of
* that write. UINT32_MAX otherwise.
*/
uint32_t onlyWrite(LoopAnalysis *loop) const {
uint32_t offset = UINT32_MAX;
Lifetime *segment = lifetime ? lifetime : saved;
while (segment && segment->start <= loop->backedge) {
if (segment->start >= loop->head && segment->write) {
if (offset != UINT32_MAX)
return UINT32_MAX;
offset = segment->start;
}
segment = segment->next;
}
return offset;
}
#ifdef DEBUG
void print() const;
#endif
};
struct SSAPhiNode;
/*
* Representation of values on stack or in slots at each point in the script.
* Values are independent from the bytecode position, and mean the same thing
* everywhere in the script. SSA values are immutable, except for contents of
* the values and types in an SSAPhiNode.
*/
class SSAValue
{
friend class ScriptAnalysis;
public:
enum Kind {
EMPTY = 0, /* Invalid entry. */
PUSHED = 1, /* Value pushed by some bytecode. */
VAR = 2, /* Initial or written value to some argument or local. */
PHI = 3 /* Selector for one of several values. */
};
Kind kind() const {
JS_ASSERT(u.pushed.kind == u.var.kind && u.pushed.kind == u.phi.kind);
/* Use a bitmask because MSVC wants to use -1 for PHI nodes. */
return (Kind) (u.pushed.kind & 0x3);
}
bool operator==(const SSAValue &o) const {
return !memcmp(this, &o, sizeof(SSAValue));
}
/* Accessors for values pushed by a bytecode within this script. */
uint32_t pushedOffset() const {
JS_ASSERT(kind() == PUSHED);
return u.pushed.offset;
}
uint32_t pushedIndex() const {
JS_ASSERT(kind() == PUSHED);
return u.pushed.index;
}
/* Accessors for initial and written values of arguments and (undefined) locals. */
bool varInitial() const {
JS_ASSERT(kind() == VAR);
return u.var.initial;
}
uint32_t varSlot() const {
JS_ASSERT(kind() == VAR);
return u.var.slot;
}
uint32_t varOffset() const {
JS_ASSERT(!varInitial());
return u.var.offset;
}
/* Accessors for phi nodes. */
uint32_t phiSlot() const;
uint32_t phiLength() const;
const SSAValue &phiValue(uint32_t i) const;
/* Offset at which this phi node was created. */
uint32_t phiOffset() const {
JS_ASSERT(kind() == PHI);
return u.phi.offset;
}
SSAPhiNode *phiNode() const {
JS_ASSERT(kind() == PHI);
return u.phi.node;
}
/* Other accessors. */
#ifdef DEBUG
void print() const;
#endif
void clear() {
mozilla::PodZero(this);
JS_ASSERT(kind() == EMPTY);
}
void initPushed(uint32_t offset, uint32_t index) {
clear();
u.pushed.kind = PUSHED;
u.pushed.offset = offset;
u.pushed.index = index;
}
static SSAValue PushedValue(uint32_t offset, uint32_t index) {
SSAValue v;
v.initPushed(offset, index);
return v;
}
void initInitial(uint32_t slot) {
clear();
u.var.kind = VAR;
u.var.initial = true;
u.var.slot = slot;
}
void initWritten(uint32_t slot, uint32_t offset) {
clear();
u.var.kind = VAR;
u.var.initial = false;
u.var.slot = slot;
u.var.offset = offset;
}
static SSAValue WrittenVar(uint32_t slot, uint32_t offset) {
SSAValue v;
v.initWritten(slot, offset);
return v;
}
void initPhi(uint32_t offset, SSAPhiNode *node) {
clear();
u.phi.kind = PHI;
u.phi.offset = offset;
u.phi.node = node;
}
static SSAValue PhiValue(uint32_t offset, SSAPhiNode *node) {
SSAValue v;
v.initPhi(offset, node);
return v;
}
private:
union {
struct {
Kind kind : 2;
uint32_t offset : 30;
uint32_t index;
} pushed;
struct {
Kind kind : 2;
bool initial : 1;
uint32_t slot : 29;
uint32_t offset;
} var;
struct {
Kind kind : 2;
uint32_t offset : 30;
SSAPhiNode *node;
} phi;
} u;
};
/*
* Mutable component of a phi node, with the possible values of the phi
* and the possible types of the node as determined by type inference.
* When phi nodes are copied around, any updates to the original will
* be seen by all copies made.
*/
struct SSAPhiNode
{
uint32_t slot;
uint32_t length;
SSAValue *options;
SSAUseChain *uses;
SSAPhiNode() { mozilla::PodZero(this); }
};
inline uint32_t
SSAValue::phiSlot() const
{
return u.phi.node->slot;
}
inline uint32_t
SSAValue::phiLength() const
{
JS_ASSERT(kind() == PHI);
return u.phi.node->length;
}
inline const SSAValue &
SSAValue::phiValue(uint32_t i) const
{
JS_ASSERT(kind() == PHI && i < phiLength());
return u.phi.node->options[i];
}
class SSAUseChain
{
public:
bool popped : 1;
uint32_t offset : 31;
/* FIXME: Assert that only the proper arm of this union is accessed. */
union {
uint32_t which;
SSAPhiNode *phi;
} u;
SSAUseChain *next;
SSAUseChain() { mozilla::PodZero(this); }
};
class SlotValue
{
public:
uint32_t slot;
SSAValue value;
SlotValue(uint32_t slot, const SSAValue &value) : slot(slot), value(value) {}
};
struct NeedsArgsObjState;
/* Analysis information about a script. */
// Analysis information about a script. FIXME: At this point, the entire
// purpose of this class is to compute JSScript::needsArgsObj, and to support
// isReachable() in order for jsinfer.cpp:FindPreviousInnerInitializer to get
// the previous opcode. For that purpose, it is completely overkill.
class ScriptAnalysis
{
friend class Bytecode;
@ -675,27 +119,16 @@ class ScriptAnalysis
}
Bytecode* maybeCode(const jsbytecode *pc) { return maybeCode(script_->pcToOffset(pc)); }
bool jumpTarget(uint32_t offset) {
JS_ASSERT(offset < script_->length());
return codeArray[offset] && codeArray[offset]->jumpTarget;
}
bool jumpTarget(const jsbytecode *pc) { return jumpTarget(script_->pcToOffset(pc)); }
inline bool jumpTarget(uint32_t offset);
inline bool jumpTarget(const jsbytecode *pc);
inline const SSAValue &poppedValue(uint32_t offset, uint32_t which);
inline const SSAValue &poppedValue(const jsbytecode *pc, uint32_t which);
const SlotValue *newValues(uint32_t offset) {
JS_ASSERT(offset < script_->length());
return getCode(offset).newValues;
}
const SlotValue *newValues(const jsbytecode *pc) { return newValues(script_->pcToOffset(pc)); }
inline const SlotValue *newValues(uint32_t offset);
inline const SlotValue *newValues(const jsbytecode *pc);
bool trackUseChain(const SSAValue &v) {
JS_ASSERT_IF(v.kind() == SSAValue::VAR, trackSlot(v.varSlot()));
return v.kind() != SSAValue::EMPTY &&
(v.kind() != SSAValue::VAR || !v.varInitial());
}
inline bool trackUseChain(const SSAValue &v);
/*
* Get the use chain for an SSA value. May be invalid for some opcodes in
@ -716,12 +149,7 @@ class ScriptAnalysis
* mode, and slots which are aliased by NAME or similar opcodes in the
* containing script (which does not imply the variable is closed).
*/
bool slotEscapes(uint32_t slot) {
JS_ASSERT(script_->compartment()->activeAnalysis);
if (slot >= numSlots)
return true;
return escapedSlots[slot];
}
inline bool slotEscapes(uint32_t slot);
/*
* Whether we distinguish different writes of this variable while doing
@ -729,23 +157,14 @@ class ScriptAnalysis
* presence of NAME opcodes which could alias local variables or arguments
* keeps us from tracking variable values at each point.
*/
bool trackSlot(uint32_t slot) { return !slotEscapes(slot) && canTrackVars && slot < 1000; }
inline bool trackSlot(uint32_t slot);
const LifetimeVariable & liveness(uint32_t slot) {
JS_ASSERT(script_->compartment()->activeAnalysis);
JS_ASSERT(!slotEscapes(slot));
return lifetimes[slot];
}
inline const LifetimeVariable & liveness(uint32_t slot);
void printSSA(JSContext *cx);
void printTypes(JSContext *cx);
void setOOM(JSContext *cx) {
if (!outOfMemory)
js_ReportOutOfMemory(cx);
outOfMemory = true;
hadFailure = true;
}
inline void setOOM(JSContext *cx);
/* Bytecode helpers */
inline bool addJump(JSContext *cx, unsigned offset,
@ -760,19 +179,6 @@ class ScriptAnalysis
inline void extendVariable(JSContext *cx, LifetimeVariable &var, unsigned start, unsigned end);
inline void ensureVariable(LifetimeVariable &var, unsigned until);
/* Current value for a variable or stack value, as tracked during SSA. */
struct SSAValueInfo
{
SSAValue v;
/*
* Sizes of branchTargets the last time this slot was written. Branches less
* than this threshold do not need to be inspected if the slot is written
* again, as they will already reflect the slot's value at the branch.
*/
int32_t branchSize;
};
/* SSA helpers */
bool makePhi(JSContext *cx, uint32_t slot, uint32_t offset, SSAValue *pv);
void insertPhi(JSContext *cx, SSAValue &phi, const SSAValue &v);
@ -799,9 +205,7 @@ class ScriptAnalysis
public:
#ifdef DEBUG
void assertMatchingDebugMode();
void assertMatchingStackDepthAtOffset(uint32_t offset, uint32_t stackDepth) {
JS_ASSERT_IF(maybeCode(offset), getCode(offset).stackDepth == stackDepth);
}
void assertMatchingStackDepthAtOffset(uint32_t offset, uint32_t stackDepth);
#else
void assertMatchingDebugMode() { }
void assertMatchingStackDepthAtOffset(uint32_t offset, uint32_t stackDepth) { }
@ -815,14 +219,4 @@ void PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc);
} /* namespace analyze */
} /* namespace js */
namespace mozilla {
template <> struct IsPod<js::analyze::LifetimeVariable> : TrueType {};
template <> struct IsPod<js::analyze::LoopAnalysis> : TrueType {};
template <> struct IsPod<js::analyze::SlotValue> : TrueType {};
template <> struct IsPod<js::analyze::SSAValue> : TrueType {};
template <> struct IsPod<js::analyze::SSAUseChain> : TrueType {};
} /* namespace mozilla */
#endif /* jsanalyze_h */

View File

@ -1,54 +0,0 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jsanalyzeinlines_h
#define jsanalyzeinlines_h
#include "jsanalyze.h"
#include "jsopcodeinlines.h"
namespace js {
namespace analyze {
inline const SSAValue &
ScriptAnalysis::poppedValue(uint32_t offset, uint32_t which)
{
JS_ASSERT(which < GetUseCount(script_, offset) +
(ExtendedUse(script_->offsetToPC(offset)) ? 1 : 0));
return getCode(offset).poppedValues[which];
}
inline const SSAValue &
ScriptAnalysis::poppedValue(const jsbytecode *pc, uint32_t which)
{
return poppedValue(script_->pcToOffset(pc), which);
}
inline SSAUseChain *&
ScriptAnalysis::useChain(const SSAValue &v)
{
JS_ASSERT(trackUseChain(v));
if (v.kind() == SSAValue::PUSHED)
return getCode(v.pushedOffset()).pushedUses[v.pushedIndex()];
if (v.kind() == SSAValue::VAR)
return getCode(v.varOffset()).pushedUses[GetDefCount(script_, v.varOffset())];
return v.phiNode()->uses;
}
inline jsbytecode *
ScriptAnalysis::getCallPC(jsbytecode *pc)
{
SSAUseChain *uses = useChain(SSAValue::PushedValue(script_->pcToOffset(pc), 0));
JS_ASSERT(uses && uses->popped);
JS_ASSERT(js_CodeSpec[script_->code()[uses->offset]].format & JOF_INVOKE);
return script_->offsetToPC(uses->offset);
}
} /* namespace analyze */
} /* namespace js */
#endif /* jsanalyzeinlines_h */

View File

@ -22,7 +22,6 @@
#include "vm/StringObject.h"
#include "vm/TypedArrayObject.h"
#include "jsanalyzeinlines.h"
#include "jscntxtinlines.h"
namespace js {

View File

@ -51,6 +51,53 @@ GetUseCount(JSScript *script, unsigned offset)
return js_CodeSpec[*pc].nuses;
}
static inline JSOp
ReverseCompareOp(JSOp op)
{
switch (op) {
case JSOP_GT:
return JSOP_LT;
case JSOP_GE:
return JSOP_LE;
case JSOP_LT:
return JSOP_GT;
case JSOP_LE:
return JSOP_GE;
case JSOP_EQ:
case JSOP_NE:
case JSOP_STRICTEQ:
case JSOP_STRICTNE:
return op;
default:
MOZ_ASSUME_UNREACHABLE("unrecognized op");
}
}
static inline JSOp
NegateCompareOp(JSOp op)
{
switch (op) {
case JSOP_GT:
return JSOP_LE;
case JSOP_GE:
return JSOP_LT;
case JSOP_LT:
return JSOP_GE;
case JSOP_LE:
return JSOP_GT;
case JSOP_EQ:
return JSOP_NE;
case JSOP_NE:
return JSOP_EQ;
case JSOP_STRICTNE:
return JSOP_STRICTEQ;
case JSOP_STRICTEQ:
return JSOP_STRICTNE;
default:
MOZ_ASSUME_UNREACHABLE("unrecognized op");
}
}
class BytecodeRange {
public:
BytecodeRange(JSContext *cx, JSScript *script)